
PHP/MySQL Programming for the Absolute Beginner

by Andy Harris ISBN:1931841322

Premier Press © 2003 (414 pages)

With this guide, you will acquire skills necessary for practical
programming applications and will learn how these skills can
be put to use in real world scenarios and apply them to the
next programming language you tackle.

 CD Content

Table of Contents Back Cover Comments

Table of Contents

PHP/MySQL Programming for the Absolute Beginner

Introduction

Chapter 1 - Exploring the PHP Environment

Chapter 2 - Using Variables and Input

Chapter 3 - Controlling Your Code with Conditions and Functions

Chapter 4 - Loops and Arrays: The Poker Dice Game

Chapter 5 - Better Arrays and String Handling

Chapter 6 - Working with Files

Chapter 7 - Using MySQL to Create Databases

Chapter 8 - Connecting to Databases Within PHP

Chapter 9 - Data Normalization

Chapter 10 - Building a Three-Tiered Data Application

Index

List of Figures

List of Tables

List of In The Real World

List of Sidebars

 CD Content

PHP/MySQL Programming for the
Absolute Beginner
ANDY HARRIS

Copyright © 2003 by Premier Press, a division of Course Technology.

All rights reserved. No part of this book may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system without written
permission from Premier Press, except for the inclusion of brief quotations in
a review.

The Premier Press logo and related trade dress are trademarks of Premier
Press and may not be used without written permission.

Microsoft, Windows, Internet Explorer, Notepad, VBScript, ActiveX, and
FrontPage are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Netscape is a
registered trademark of Netscape Communications Corporation in the U.S.
and other countries.

All other trademarks are the property of their respective owners.

Premier Press and the author have attempted throughout this book to
distinguish proprietary trademarks from descriptive terms by following the
capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from
sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, Premier Press, or others, the
Publisher does not guarantee the accuracy, adequacy, or completeness of
any information and is not responsible for any errors or omissions or the
results obtained from use of such information. Readers should be particularly
aware of the fact that the Internet is an ever-changing entity. Some facts
may have changed since this book went to press.
ISBN: 1-931841-32-2

Library of Congress Catalog Card Number: 2003104019

Printed in the United States of America

03 04 05 06 07 BH 10 9 8 7 6 5 4 3 2 1

Premier Press, a division of Course Technology
25 Thomson Place
Boston, MA 02210

Publisher:

Important: Premier Press cannot provide software support. Please contact
the appropriate software manufacturer's technical support line or
Web site for assistance.

Stacy L. Hiquet

Senior Marketing Manager:

Martine Edwards

Marketing Manager:

Heather Hurley

Manager of Editorial Services:

Heather Talbot

Associate Marketing Manager:

Kristin Eisenzopf

Acquisitions Editor:

Todd Jensen

Project Editor:

Sandy Doell

Technical Reviewer:

Jason Wynia

Retail Market Coordinator:

Sarah Dubois

Interior Layout:

Danielle Foster

Cover Designer:

Mike Tanamachi

CD-ROM Producer:

Keith Davenport

Indexer:

Kelly Talbot

Proofreader:

Margaret Bauer

To Heather, Elizabeth, Matthew, and Jacob

Acknowledgments

First I thank Him from whom all flows.

Heather, you always work harder on these books than I do. Thank you for
your love and your support. Thank you Elizabeth, Matthew, and Jacob for
understanding why Daddy was typing all the time.

Thanks to the Open Source community for creating great free software like
PHP and MySQL.

Thank you, Stacy Hiquet, for your continued support and encouragement on
this and other projects.

Thanks, Todd Jensen, for holding this thing together.

Special thanks to Sandy Doell for turning my drivel into something readable.

Thanks to J Wynia (www.phpgeek.com) for technical editing. Thanks also to
Jason for use of PHPTriad on the CD-ROM.

Thank you to the webyog development team
(http://www.webyog.com/sqlyog/) for use of the SQLyog tool.

A big thanks to Keith Davenport for putting together the CD-ROM. It's a big
job, and you did it well.

Thank you to the many members of the Premier/Course team who worked
on this book.

A huge thanks to my CSCI N399 Server Side Web Development class in
Spring 2003. Thank you for being patient with my manuscript, for helping me
spot many errors, and for providing invaluable advice. I learned as much
from you as you did from me.

About the Author

Andy Harris began his teaching career as a high school special education
teacher. During that time, he taught himself enough computing to do part-
time computer consulting and database work. He began teaching computing
at the university level in the late 1980s as a part-time job. Since 1995 he has
been a full-time lecturer in the Computer Science Department of Indiana
University/Purdue University—Indianapolis, where he manages the
Streaming Media Lab and teaches classes in several programming
languages. His primary interests are Java, Microsoft languages, Perl,
JavaScript, PHP, Web Data, virtual reality, portable devices, and streaming
media.

Introduction
If you've been watching the Web for a while you've probably noticed it is
changing. When the Web first entered into the public consciousness, it was a
way to distribute documents. These documents were pretty easy to make.
Anybody with a weekend and a text editor could get a Web page up and
running. Building a Web site in the early days was about making documents.

Today the Internet is much more than that. Interesting Web sites are not
simply documents; they are applications. They have much more complexity
and power. You might think the Web is no longer a place for individuals or
beginning programmers. Many of the software development tools available
are expensive and complicated.

To me, the most exciting thing about the Internet is its social implications.
There is a large community that believes in powerful, easy-to-use, free
software. That community has produced a number of exceptional programs,
including PHP and MySQL.

PHP is a powerful programming language that lets you build dynamic Web
sites. It works well on a variety of platforms, and it's reasonably easy to
understand. MySQL is an impressive relational data management system
used to build commercial quality databases. PHP and MySQL are such
powerful and easy-to-use platforms that they make Web programming
accessible even for beginners.

In this book, I will teach you about programming. Specifically, you will learn
how to write programs on Web servers. You'll learn all the main concepts of
programming languages. You'll also learn about how data works in the
modern environment. You'll learn commands and syntax, but you'll also learn
the process of programming.

If you've never written a computer program before, this book will be a good
introduction. If you're an experienced programmer wanting to learn PHP and
MySQL, you'll find this book to be a gentle introduction.

Programming is hard work, but it's also a lot of fun. I had a great time writing
this book, and I hope you enjoy learning from it. I'm looking forward to
hearing about what you can do after you learn from this book.

—Andy

Chapter 1: Exploring the PHP
Environment

Overview
Web pages are interesting, but on their own they are simply
documents. You can use PHP to add code to your Web pages so they
can do more. A scripting language like PHP can convert your Web site
from static documents to an interactive application. In this chapter,
you'll learn how to add basic PHP functionality to your Web pages.
Specifically, you'll:

Review HTML commands.

Use Cascading Style Sheets to enhance your Web pages.

Build HTML forms.

Ensure PHP is on your system.

Run a basic diagnostic of your PHP installation.

Add PHP code to a Web page.

Introducing the "Tip of the Day" Program
Your first program probably won't win any Web awards, but it will take you
beyond what you can do with regular HTML. Figure 1.1 illustrates the "Tip of
the day" page, which offers friendly, helpful advice.

Figure 1.1: The tip of the day might look simple, but it is a technological
marvel, because it features html, cascading style sheets, and PHP
code.

Of course, you could write this kind of page without using a technology like
PHP, but the program is a little more sophisticated than it might look on the
surface. The tip isn't actually embedded in the Web page at all, but it is
stored in a completely separate file. The program integrates this separate file
into the HTML page. The page owner can change the tip of the day very
easily by editing the text file that contains the tips.

You'll start by reviewing your HTML skills. Soon enough, you're going to be
writing programs that write Web pages, so you need to be very secure with
your HTML coding. If you usually write all your Web pages with a plain-text
editor, you should be fine. If you tend to rely on higher end tools like
Microsoft FrontPage or Macromedia Dreamweaver, you should put those
tools aside for a while and make sure you can write solid HTML by hand.

IN THE REAL WORLD

The Tip of the day page illustrates one of the hottest concepts in Web
programming today— the content management system. This kind of
structure allows programmers to design the general layout of a Web
site, but isolates the contents from the page design. The page owners
(who might or might not know how to modify a Web page directly) can
easily change a text file without risk of exposing the code that holds
the site together. As you progress through this book, you'll learn how
to develop powerful content management systems, as well as a lot of
other cool things.

Programming on the Web Server
The Internet is all about various computers communicating with each other.
The prevailing model of the Internet is the notion of clients and servers. You
can understand this better by imagining a drive-through restaurant. As you
drive to the little speaker, a barely intelligible voice asks for your order. You
ask for your "cholesto-burger supreme," and the bored teenager packages
your food. You drive up, exchange money for the combo meal, and drive
away. Meanwhile, the teenager waits for another customer to appear. The
Internet works much like this model. Large permanent computers called Web
servers permanently host Web pages and other information. They are much
like the drive-through restaurant. Users "drive up" to the Web server using a
Web browser. The data is exchanged, and the user can read the information
on the Web browser.

What's interesting about this model is the interaction doesn't have to stop
there. Since the client (user's) machine is a computer, it can be given
instructions. Commonly, the JavaScript language is used to store special
instructions in a Web page. These instructions (like the HTML code itself)
don't mean anything on the server. Once the page gets to the client
machine, the browser interprets the HTML code and any other JavaScript
instructions. While much of the work is passed to the client, there are some
disadvantages to this client-side approach. Programs designed to work
inside a Web browser are usually greatly restricted in the kinds of things they
can do. A client-side Web program usually cannot access the user's printer
or disk drives. This limitation alone prevents such programs from doing much
of the most useful work of the Internet, such as database connectivity and
user tracking.

The server is also a computer, and it's possible to write programs designed
to operate on the server rather than the client. There are a number of
advantages to this arrangement:

Server-side programs run on powerful Web server computers.

The server can freely work with files and databases.

The code returned to the user is plain HTML, which can be displayed on
any Web browser.

Building Basic HTML Pages
The basic unit of web development is the HTML page. This is simply a text
document containing special tags to describe the data in the page. Although
you might already be familiar with HTML, it makes sense to review these
skills because PHP programming is closely tied to HTML.

Creating the HTML "Hello" Page
HTML is mainly text. The Web author adds special markups to a text
document to indicate the meaning of various elements. When a user
requests a Web page, the text document is pulled from the Web server, and
the browser interprets the various tags to determine how the document is
displayed on the screen. Figure 1.2 illustrates a very simple Web page.

Figure 1.2: A very basic Web page.

If you look at the code for this page, you will see that it's pretty easy to
understand, even if you aren't terribly familiar with HTML code.
<html>
<head>
<title>Hello, World</title>
</head>

<body>
<center>
<h1>Hello, World!</h1>
This is my first HTML page
</center>
</body>
</html>

As you can see, many words are encased in angle braces(<>). These words
are called tags, and they are meant to be interpreted as instructions for the

TRAP As you are beginning, I strongly urge you to use a plain text editor. You
can use Notepad or one of the many free editors available. There are
some exceptional free editors available on the CD-ROM that accompanies
this book. Word processors usually do not save files in plain text format
(which PHP and HTML require) and many of the fancy Web editors (such
as FrontPage or Dreamweaver) tend to write clunky code that will really
get in your way once you start to add programming functionality to it.

Web browser. Most tags come in pairs. For example, the entire document
begins with <html> and ends with </html> The slash (/) indicates an
ending tag.

Each HTML document contains a head area surrounded with a
<head></head> pair. The header area contains information about the
document in general. It almost always contains a title, which is often
displayed in the title bar of the Web browser. However, there are no
guarantees. HTML tags describe the meaning of an element, not necessarily
how it is to be displayed. It's up to each browser to determine how something
will be displayed.

The bulk of an HTML document is contained in the body, indicated with the
<body></body> tags.

Within the body of the HTML document, you can use tags to define various
characteristics of the page. Usually you can guess at the meanings of most
of the tags. For example, the <center></center> pair causes all the text
between the tags to be centered (if the browser can support this feature).

The <h1></h1> tags are used to designate that the text contained between
the tags is a level-one (highest priority) heading. HTML supports six levels of
heading, from <h1> to <h6>. You can't be exactly sure how these headings
will appear in a user's browser, but any text in an <h1> pair will be strongly
emphasized, and each descending head level causes the text designated by
that code to have less and less emphasis.

Basic Tags
There are a number of tags associated with HTML. Most of these tags are
used to determine the meaning of a particular chunk of text. Table 1.1
illustrates some of these tags.

TRAP It's vital to understand that HTML tags are not commands to the browser
as much as suggestions. This is because there are so many different types
of computers and Web browsers available. It's possible that somebody
might look at your Web page on a palm-sized computer or a cell phone.
These devices will not be able to display information in the same way as
full-size computers. The Web browser will try to follow your instructions,
but ultimately, the way the page looks to the end user is not under your
direct control.

Table 1.1: BASIC HTML TAGS

Tag Meaning Discussion

 Bold Won't work on all browsers.

<i></i> Italic Won't work on all browsers.

<h1></h1> Level 1
header

Strongest headline
emphasis.

<h6></h6> Level 6
header

Weakest headline level
(levels 2–5 also supported).

Un-
numbered
list

Must contain list items
().
Used for bulleted lists.
Add as many list items as
you wish.

Of course, there are many other HTML tags, but those featured in Table 1.1
are the most commonly used. Figure 1.3 illustrates several of the tags
featured in Table 1.1.

Figure 1.3: An HTML page containing the most common HTML
tags.

The source code for the basic.html document illustrates how the page was
designed.
<html>

Ordered list Must contain list items
().
Used for numbered list.
Add as many list items as
you wish.

<a href =
"anotherPage.html"> go
to another page

Anchor
(hyperlink)

Places a link on the page.
Text between <a> and
will be visible on page as a
link. When user clicks on
link, browser will go to the
specified address.

<img src =
"imgName.gif">

image Adds the specified image to
the page. Images should be
in GIF, JPG, or PNG formats.

<font color = "red" size =
5>
this text is red

Modify font Will not work in all browsers.
It's possible to modify font
color, size, and face
(typeface), although typeface
will often not transfer to client
machine.

 Break Causes a carriage return in
the output. Does not have an
ending tag.

<hr> Horizontal
rule

Add a horizontal line to the
page. Does not have an
ending tag.

<head>
<title>Basic HTML Tags</title>
</head>
<body>
<h1>Basic HTML Tags</h1>

<h1>This is an h1 header</h1>
<h2>This is an h2 header</h2>
<h3>This is an h3 header</h3>
<h4>This is an h4 header</h4>
<h5>This is an h5 header</h5>
<h6>This is an h6 header</h6>

<center>
This text is centered
</center>

This is bold

<i>This is italic</i>
<hr>

</body>
</html>

The H1 through H6 headers create headlines of varying size and emphasis.
The tag causes text to be bold, and <i> formats text in italics. Finally,
the <hr> tag is used to draw a horizontal line on the page.

More HTML Tags
The rest of the tags shown in Table 1.1 are featured in Figure 1.4.

Figure 1.4: Examples of several other basic HTML
tags.

The tags in more.html are used to add lists, links, and images to a Web
page. The code used to produce this page looks like this:
<html>
<head>
<title>More HTML Tags</title>
</head>

<body>
<h1>More HTML Tags</h1>

<h3>Ordered List</h3>

 alpha
 beta
 charlie

<h3>Unordered List</h3>

 alpha
 beta
 charlie

<h3>Hyperlink</h3>

Andy's Home page

<h3>Image</h3>
<img src="silly.gif"
 height = 100
 width = 100>

</body>
</html>

HTML supports two types of lists. The set creates ordered (or
numbered) lists. Each element in the list set (specified by an
pair) is automatically numbered. The tags are used to produce
unnumbered lists. Each element is automatically given a bullet.

Hyperlinks are the elements that allow your user to move around on the Web
by clicking on specially designated text. The <a> tag is used to
designate a hyperlink. The <a> tag almost always includes an href
attribute, which indicates an address. The user will be redirected to
whichever address is indicated in this address when he or she clicks on the
link. The text (or other html) between the <a> and tags will be
designated as the hyperlink. That text will appear on the page as a link
(usually blue and underlined). In the more.html example, I created a link to
one of my home pages (http://www.cs.iupui.edu). When the user clicks on
the "Andy's Home Page" link in the browser, he or she will be transported to
that page.

The other feature illustrated in more.html is the tag. This tag is
used to include images into a Web page. Most browsers readily
support .gif and .jpg files, and many now can support the newer .png
format.

Tables
There are many times you might be working with large amounts of
information that could benefit from table-style organization. HTML supports a

TRICK If you have an image in some other format, or an image that needs to be
modified in some way before using it in your Web page, you can use free
software such as irfanView or the Gimp (both included on the CD-ROM
that accompanies this book).

set of tags that can be used to build tables. These tags are illustrated in
Figure 1.5.

Figure 1.5: Tables can be basic, or cells can occupy multiple rows and
columns.

The code for the simpler table looks like this:
<table border = "1">
<tr>
 <th></th>
 <th>Monday</th>
 <th>Tuesday</th>
 <th>Wednesday</th>
 <th>Thursday</th>
 <th>Friday</th>
</tr>

<tr>
 <th>Morning</th>
 <td>Math</td>
 <td>Science</td>
 <td>Math</td>
 <td>Science</td>
 <td>Music</td>
</tr>

<tr>
 <th>Afternoon</th>
 <td>PE</td>
 <td>English</td>
 <td>History</td>
 <td>English</td>
 <td>History</td>
</tr>
</table>

Tables are created with the <table></table> tags. Inside these tags, you
create rows using the <tr></tr> (table row) tags. Each table row can
contain table heading (<th></th>) or table data (<td></td>) elements.

TRICK The Web browser ignores spaces and indentation, but it's very smart to
use white space in your HTML code to make it easier to read. Notice how

In the <table> tag, you can use the border attribute to indicate how thick
the border will be around the table.

Sometimes you will find you need table cells to take up more than one row or
column. The code for the second table in table.html shows how to
accomplish this.
<table border = "4">

<tr>
 <th></th>
 <th>Monday</th>
 <th>Tuesday</th>
 <th>Wednesday</th>
 <th>Thursday</th>
 <th>Friday</th>

</tr>

<tr>
 <th>Morning</th>
 <td>One</td>
 <td colspan = "2"><center>Two</center></td>
 <td>Three</td>
 <td rowspan = "2">Four</td>
</tr>

<tr>
 <th>Afternoon</th>
 <td>A</td>
 <td>B</td>
 <td>C</td>
 <td>D</td>
</tr>

</table>

Notice that the cell containing the value "Two" has its colspan attribute set
to 2. This tells the cell to take up two cell widths. Since this cell is twice as
wide as normal, it is only necessary to define five <td> or <th> elements for
this row instead of the six elements used for each row of the simpler table.

Look also at the cell containing the value "Four." This cell takes up two rows.
I used the rowspan attribute to set up this behavior. Notice that I needed
fewer elements in the next row, because one of the columns is taken by this
expanded element.

I indented all elements inside each table row. This makes it much easier
to see that all the information within the <tr></tr> set is part of one
group.

TRAP Note that browsers are not consistent in their default values. If you don't
specify the border width, some browsers will show a border, and some will
show no border at all. It's best to specify a border width every time. If you
don't want a border, set the width to 0.

Using CSS to Enhance Your Pages
Basic HTML is easy to write, but it creates pages that are dull. Modern
browsers support cascading style sheets (CSS) elements, which allow you to
specify how to display a particular tag. Entire books have been written about
CSS, but the basic ideas are reasonably simple. You can define a style,
which is a set of formatting rules, and attach it to various elements in your
pages. An example will help clear things up.

Creating a Local Style
Figure 1.6 illustrates a Web page with some features that are not available in
normal HTML.

Figure 1.6: I used CSS to define the special styles shown on this
page.

The H2 tag does not normally generate blue text, but I added a style to the
text to make it blue. The code for the blue headline looks like this:
<h2 style = "color:blue">
This H2 has a custom style turning it blue
</h2>

I added a style attribute to the <h2> tag. This style attribute has a number
of options that can be set. The color option allows you to assign a color to
a style. The object which uses that style will appear in that color.

There are many other style options available. The larger paragraph in Figure
1.6 uses a number of other style elements. The code for that paragraph
appears below:
<p style = "color:red;
 background-color: yellow;
 font-family: 'comic sans ms';
 font-size: 20pt;
 border-width: 10px;
 border-style: groove;
 border-color: green">

This paragraph has a custom style. The custom style adds
characteristics such as background color and border that aren't
ordinarily available in HTML. Also, the font size can be specified in points by spe

the font size.
</p>

You can see that this paragraph tag has a more complex style attribute with
a number of elements. Each element has a name and a value separated by
a colon; the elements are separated by semicolons. A list of the most
commonly used style elements is shown in Table 1.2.

Page-Level Styles
Although it is sometimes convenient to attach a style directly to an HTML
element, sometimes you wish to modify a number of elements in a particular
page. You can specify the default styles of several of your elements by
adding a style to your document. Figure 1.7 shows a page using a page-
level style.

Figure 1.7: The H1 style has been defined for the entire page, as well as
two kinds of paragraph styles.

Table 1.2: COMMON CSS ELEMENTS

Element Description Possible values

Color Foreground color Valid color names (blue), hex color
values (0000FF)

Background-
color

Background
color

Valid color names, hex color
values

Font-family Font to show Font name must be installed on
client computer

Font size Size of font Can be described in pixels (px),
points (pt), centimeters (cm), or
inches (in)

Border-width Size of border Usually measured in pixels (px),
centimeters(cm) or inches (in)

Border-style How border will
be drawn

Some choices are groove, double,
ridge, solid, inset, outset

Border-color Color of border Valid color names (blue), hex color
values (0000FF)

USING DIV AND SPAN ELEMENTS IN CSS

You can apply CSS styles to any HTML entity you wish. In practice,
many Web authors prefer to use the span and div elements for custom
CSS work. The span tag has basically no characteristics of its own. This
makes it very predictable, because the CSS style will define essentially
everything about the text within the span element. The div element is
similar. It is sometimes used in place of span as a "generic" element
suitable for adding CSS to. The div element acts like a paragraph in
most instances, and the span element can work inside a paragraph.

With page-level styles, you use a <style></style> segment in your
document header to specify how each listed tag should be displayed. The
code for the pageStyle.html page illustrates how a page-level style sheet can
be created.
<html>
<head>
<style type = "text/css">
h1 {
 text-align:center;
 color:green;
 border-color:red;
 border-style:double;
 border-size: 3px
}

p {
 background-color: yellow;
 font-family: monospace
}
p.cursive {
 background-color: yellow;
 font-family: cursive
}

</style>

<title>Page-Level Styles</title>
</head>
<body>
<h1>Page-Level Styles</h1>
<h1>This is an h1 element</h1>

<p>This is a paragraph</p>

<p class = cursive>
This is a cursive paragraph
</p>
</body>
</html>

If you look at the main body of the page, you'll see that it looks pretty much
like normal HTML code (because it is). The interesting part of this page is
the code between the <style> and </style> tags. This code describes
how the various tags should be displayed. Your opening tag should read
<style type = "text/css"> to specify you're using an ordinary style
sheet. Inside the style element, you list each tag you wish to define. After the

tag name, encase the various stylistic elements in a pair of braces ({}). The
style elements are listed just like in the style attribute. Each element consists
of a name/value pair. A colon(:) separates the name and value, and each
pair is separated by a semicolon(;).

Notice the second paragraph element, which looks like this:
p.cursive {
 background-color: yellow;
 font-family: cursive
}

By adding a period and another name (in this case, .cursive) to the HTML
element's name, I was able to create a second type of paragraph tag. You
can create as many variations of a tag as you wish. This is especially handy
if you want to have varying text styles. You might want to have one kind of
paragraph for quotes, for example, and another type for ordinary text. To use
the special form of the tag, just use the class attribute in the HTML, as I did
in the following text:
<p class = cursive>
This is a cursive paragraph
</p>

External Style Sheets
Most Web browsers support a third kind of style sheet, called the external
style sheet. Figure 1.8 illustrates a page using an external style sheet.

Figure 1.8: External style sheets look just like other styles to the user,
but they have advantages for the programmer.

The user cannot tell what type of style sheet was used without looking at the
code. Although the external style example looks much like the page-level

TRICK Like most HTML programming, the style element is not picky about
where you have spaces or carriage returns. However, judicious use of
these "white space" elements can make your code much easier to read
and modify. Notice how I lined up each element so they were easy to
read, and how I lined up the closing brace(}) directly under the HTML
element's name, so I could easily see how the various parts of code are
related. You'll see the same kind of attention to indentation throughout
your programming career.

style sheet program, the underlying code is different. Here is the code for
externStyle.html:
<html>
<head>
<link rel="stylesheet"
 type="text/css"
 href = "externStyle.css">

<title>External Styles</title>
</head>
<body>
<h1>External Styles</h1>
<h1>This is an h1 element</h1>

<p>This is a paragraph</p>

<p class = cursive>
This is a cursive paragraph
</p>
</body>
</html>

The main code is identical to that in the pageLevel program, but notice that
the style sheet is not embedded directly into the document. Instead, the style
is stored in another file called externStyle.css. The contents of this file
are the exact same style rules used in the earlier page.
h1 {
 text-align:center;
 color:green;
 border-color:red;
 border-style:double;
 border-size: 3px
}

p {
 background-color: yellow;
 font-family: monospace
}

p.cursive {
 background-color: yellow;
 font-family: cursive
}

When you have the CSS rules stored in a separate file, you can use the
link tag to import the CSS rules. The advantage of this approach is you
can re-use one set of CSS rules for many pages.

IN THE REAL WORLD

External style sheets are very useful when you are working on a project
that must be consistent across many pages. Most sites go through
several iterations, and it could be a real pain to change the font color in
20 pages every time the client wants to try some new variation. If all
your style rules are stored in one CSS document and all your pages
refer to that document, you only have to change the style rules one
time, and you've automatically changed the appearance of every page
that uses that set of rules.

Using Form Elements
HTML pages often utilize form elements for user input. These elements
include basic tools for user input. These form elements are not useful in plain
HTML. Although they are rather easy to put on a page, they don't do much
unless there is some kind of program attached. Much of what you do as a
PHP author will involve getting information from Web-based forms, so it's
important to be familiar with the most common form elements. You'll start to
write programs that retrieve values from forms in the very next chapter, so
it'll be good to learn how they work.

The Text-Based Elements
Most of the form elements are really about getting some sort of text
information from the user to a program. The first set of such elements are
those that simply allow the user to enter some kind of text. There are four
such elements, illustrated in Figure 1.9.

Figure 1.9: You can add text boxes, text areas, password boxes, and
hidden fields (which do not appear to the user) to your Web
pages.

The code used to generate textForm.html is reproduced here:
<html>
<head>
<title>Text-Based Form Elements</title>
</head>
<body>
<h1>Text-Based Form Elements</h1>

<form>

text box:
<input type = "text"
 name = "txtInput"
 value = "your text here">

text area:
<textarea name = "txtBigInput"
 rows = 10

 cols = 40>
This is the stuff inside the textarea
</textarea>

password:
<input type = "password"
 name = "secret"
 value = "you can't read this">

Hidden Field: (really, it's there, but you can't see it)
<input type = "hidden"
 name = "mystery"
 value = "secret formula">

</form>
</body>
</html>

All the elements that will allow user interaction are placed inside a
<form></form> pair. The most common form element is the <input>
element, which comes in several flavors, designated by the type attribute.

Creating a Text Box
The most common input element of all is the humble text box. To make a
plain vanilla text box, I used the following code:
<input type = "text"
 name = "txtInput"
 value = "your text here">

The element is a basic input element. By setting the type to "text", I'm
signifying how the element is to be displayed on the screen— as something
that the user can type text into. An input element using the text type is
usually called a text box. Text boxes cannot include multiple lines of text, but
you can specify the length of the text box with the size attribute. (If you set
the size to 20, you are allowing for roughly 20 characters.) It is important to
add a name attribute to your text boxes (and indeed to all form elements)
because later you are going to be writing programs that try to retrieve
information from the form. These programs will use the various form element
names to refer to what the user typed in.

The value attribute is used to set a default value for the text area. This is
the value that will appear in the text area when the user first sees your form.
It's a good idea to put default values in forms when you can, because this
gives you a chance to show the user what kind of information you're
expecting.

Creating a Text Area
Text boxes are very handy, but sometimes you will want to let the user type

TRICK Naming an input element is something of an art form. The name should
be reasonably descriptive (r or albert are usually not good input object
names, because they don't explain what kind of information is expected
to be in the object). Object names should not have spaces in them,
because this will cause confusion later. You'll learn more about this in the
next chapter when you begin working with variables, which have a very
close relationship to form elements in PHP.

in more than one line's worth of information. For example, you might want to
have a feedback page where the user can type in some comments to be e-
mailed back to you. For this kind of situation, you will usually want to use an
object called the text area. The code to create such an element looks like
this:
<textarea name = "txtBigInput"
 rows = 10
 cols = 40>
This is the stuff inside the textarea
</textarea>

The text area is created using a pair of <textarea></textarea> tags.
The text area has a name attribute, as well as attributes for determining the
size of the text box in rows and columns. Text areas should also be named
using the name attribute, but the textarea object does not have a value
attribute. Instead, anything between the <textarea> and </textarea>
tags is considered the contents of the text area object.

Building a Password Field
Password fields are almost identical to text boxes. The code for creating a
password is very much like the text field:
<input type = "password"
 name = "secret"
 value = "you can't read this">

The only real difference between the password field and the text box is that
the value typed into a password field is shown as asterisks on the screen.
Presumably this will keep the KGB from peering over the shoulders of your
users while they type passwords into your pages.

Making a Hidden Field
Believe it or not, the text box has an even more secretive cousin than the
password field. The hidden field is much like the text box in code, but it
doesn't appear on the page at all. Here's how the code looks:
<input type = "hidden"
 name = "mystery"
 value = "secret formula">

The uses for such a field that are hidden from the user might not be obvious
now, but it does come in handy when you want your page to communicate
with a serverside program but you don't need the user to know all the details.
(I'll show you an example soon, I promise.)

Creating the Selection Elements
It's very easy to add text elements to your Web pages, but requiring users to
enter text can interrupt the flow of the program. Whenever possible,
experienced programmers like to give the user choices that do not involve
typing. HTML forms have a number of simple elements for allowing the user

HINT Don't forget to close the textarea with a </textarea> tag. If you don't,
everything in the page after the <textarea> tag will appear inside the text
area if the page renders at all!

TRAP It's critical to note that the password field offers virtually no real security.
As you will learn in the next chapter, the information that is sent to the
server via a password field is transmitted entirely in the clear, so it is only
nominally secret.

to choose from a list of options using the mouse.

Figure 1.10 shows a number of these selection-style elements on a Web
page.

Figure 1.10: Several HTML elements allow the user to enter information
without having to type anything.

Creating Checkboxes
The first type of input to consider is the checkbox. Checkboxes usually look
like, well, boxes that can be checked. Usually there is some kind of text near
the checkbox.

The box can be checked or not checked. Here's the code used to create the
checkboxes in the selectForm.html page:
<input type = "checkbox"
 name = "chkBurger">cholesto-burger
<input type = "checkbox"
 name = "chkFries">fries
<input type = "checkbox"
 name = "chkDrink">drink

A checkbox is simply an input element of type checkbox. Although you can
specify the value attribute of a checkbox, it isn't usually necessary as it is
with other input elements. Note that the caption next to the checkbox is
plain html text. Each checkbox is a completely independent entity. Even
though several checkboxes appear together in the HTML document, the
value of one checkbox has no bearing on the value of any other checkboxes.

Checkboxes are appropriate when any combination of the various elements
is appropriate. For example, the user might want the burger, fries, and a
drink. The user might want none of these things, or any combination.
Checkboxes are not as appropriate when the options are mutually exclusive.
For example, if asking what size a drink should be, only one size should be

TRICK Making the user's life easy is a good reason to use some of these other
input features, but there's another reason. You never know what a user
will enter into a text box. It can be very difficult to write code that
anticipates all the possible wrong things a user can type in. If you use the
various selection elements described below, you pre-determine all
possible values your program will need to deal with (at least in most
circumstances).

allowed per drink. That kind of situation is a perfect place to use another
feature called radio buttons.

Selecting with Radio Buttons
You can use radio buttons (sometimes called option buttons) to let the user
choose an item from several options. Radio buttons get their name from the
radios on cars (at least when I was a kid) that had several buttons sticking
out. To select a station, you pressed the corresponding button in, which
caused all the other buttons to pop out. HTML radio buttons have similar
behavior. Radio buttons are grouped so that when you select one button, all
the others in the group are automatically deselected.

Look at the code for the radio buttons, and see if you can spot how the radio
elements are grouped.
<input type = "radio"
 name = "size"
 value = "small">small
<input type = "radio"
 name = "size"
 value = "medium">medium
<input type = "radio"
 name = "size"
 value = "large">large

The interesting thing about radio buttons is the way they are named. There
are three radio buttons, but they all have the same name. This little trick
groups the radio buttons so they act as expected. As soon as the user
selects one item in a radio group, all other radio elements on the page with
the same name are automatically selected. Each of the radio objects has a
distinct value. Your programs will be able to determine the value of
whichever radio button in the group was selected.

Building Drop-Down List Boxes
Another common user interface trick is to use some kind of drop-down list.
These devices allow the user to choose from a list of options, but the various
options only appear when the user is choosing from the list. This is
especially useful when screen real estate is an issue or you want to keep the
interface clean. Drop-down lists are made with two different elements. The
main object is the select object. It contains a series of option objects.
(This is analogous to the way li objects appear inside a ul or ol object.)
The code for building a drop-down list box will make it all clear.
<select name = "selColor">
 <option value = "red">red</option>
 <option value = "orange">orange</option>
 <option value = "yellow">yellow</option>
 <option value = "green">green</option>
 <option value = "blue">blue</option>
 <option value = "indigo">indigo</option>
 <option value = "violet">violet</option>
</select>

The select object has a name attribute. Each option has its own value
attribute. Your program will use the value attribute of whichever element is
returned. The value property of an option button doesn't display anywhere.
Place the text you want to have visible on the page between the <option>
and </option> tags.

Creating a Multi-Select List Box

One more selection element can be useful in certain situations. This isn't
really a new object at all, but a variation of the drop-down list. The code for
the last element in selectForm.html is shown below:
<select name = "lstColor"
 size = 7
 multiple>
 <option value = "red">red</option>
 <option value = "orange">orange</option>
 <option value = "yellow">yellow</option>
 <option value = "green">green</option>
 <option value = "blue">blue</option>
 <option value = "indigo">indigo</option>
 <option value = "violet">violet</option>
</select>

The code looks identical to the previous (drop-down) list except for a few
differences in the select tag itself. By setting the size attribute to a value
of 7, I indicated that seven lines of the list should be shown at any time. This
is useful when you want the user to be able to see all (or many) of the
choices all the time. The other interesting thing about this type of list box is it
can allow for multiple selections if the multiple attribute is included. A
multi-selection list box lets the user choose more than one element using
standard multiple selection rules (for example, Shift+Click to select a range
of contiguous options or Ctrl+Click to add or remove a particular element
from the range of selections).

Adding Buttons to Your Programs
The last major form element is the button. Buttons are important because the
user is accustomed to clicking on them to make things happen. Your
programs will take advantage of this conditioning. Figure 1.11 shows a page
containing three distinct buttons.

Figure 1.11: Although these buttons all look very similar to the user,
they are different, and have distinctive behaviors.

All three button types are variants of the basic input tag you've used so
much in this chapter. The code for the buttonForm.html page illustrates
this clearly:
<html>
<head>

<title>Button Demo</title>
</head>
<body>
<h1>Button Demo</h1>
<form>
<textarea rows = 5>
Change the text here to see what happens
when you click on the reset button.
</textarea>

<input type = "button"
 value = "regular button">

<input type = "reset"
 value = "reset button">

<input type = "submit"
 value = "submit button">

</form>

</body>
</html>

The three different types of buttons look the same but behave differently.
When you set the type attribute of an input element to button, you are
creating a generic button. These buttons are frequently used in client-side
programming. To make something happen when the user clicks on such a
button, you'll need to embed code in your Web page using a language such
as JavaScript or VBScript. (Of course, there are exceptional books in the
Absolute Beginners' series describing exactly how to do this.) Server-side
programming (which is the focus of this book) rarely involves the ordinary
button object.

The reset button is used to let the user reset the page to its default
condition. This is a handy feature to add to a program, because it lets the
user back up if the page got messed up. It isn't necessary to write any code
for the reset button, because the browser automatically handles the
resetting behavior.

The Submit button style is by far the most important kind of button for server-
side programming that we will do in this book. The Submit button provides
the link between Web pages and your programs. Most interactions in server-
side programming involve sending an HTML page with a form to the user.
When the user has finished making selections and typing values into the
various form elements, he or she presses the Submit button, which
essentially bundles up all the data in the form elements and sends them to a
program. In the next chapter, you'll learn how to make this actually work, but
for now it's important to know how to add a Submit button to your forms,
because many pages will use this type of element.

Adding PHP to Your Pages
All this HTML is nice, but presumably you're here to learn PHP, so it's high
time to add PHP code to a page. PHP can be used to add characteristics to
your page that aren't typically possible with normal HTML and CSS.

Ensuring That Your Server Supports PHP
A page written in PHP can be identical to an HTML page. Both are written
with a plain text editor, and stored on a Web server. A PHP program can
have <script> elements embedded in the page. When the user requests a
PHP page, the server first examines the page and executes any script
elements before it sends the resulting HTML to the user. This will only work if
the Web server has been configured to use the PHP language. You might
need to check with your server administrator to see if this support is
available. On a home computer, you can use the PHP Tripod software
included on the CD-ROM that accompanies this book to set up all the
necessary components.

Adding PHP Commands to an HTML Page
The easiest way to determine if PHP exists on your server is to write a
simple PHP program and see if it works. Here's a very simple PHP program.
<html>
<head>
<title>Hello in PHP</title>
</head>
<body>
<h1>Hello in PHP</h1>

<?
print "Hello, world!";
phpInfo();
?>

</body>
</html>

TRAP To run all the programs in this book, your server needs to have three
different components installed. First, you will need a Web server such as
Microsoft IIS or Apache. Secondly, you'll need the PHP interpreter, which
is a program that reads PHP files and converts them into HTML pages.
Finally, you'll need a database management program to handle data. PHP
Triad integrates all these features into one installation. It includes the
Apache (free and very powerful) Web server, the PHP interpreter, and the
mySQL database management system. This package is very typical of
most servers that use PHP. If the Web host you are using does not yet
support PHP, you can still install the programs and practice on your own
machine (although nobody outside your computer will be able to get to
your programs).

HINT The <? ?> sequence is the easiest way to indicate PHP code, but it isn't
always the best way. You can also indicate PHP code with a longer
version like this: <?php ?>. This version works better when your code will
be interpreted as XML. You can also specify your code with normal HTML
tags just like JavaScript <script language = "php"></script>. Some PHP
servers are configured to prefer one type of script tag over another so you
may need to be flexible. However, all these variations work in exactly the

A PHP program looks a lot like a typical HTML page. The only thing that's
different is the special <? ?> tag. This tag specifies the existence of PHP
code. Any code inside the tag will be read by the PHP interpreter, then
converted into HTML code. The code written between the <? and ?>
symbols is PHP code. I added two commands to the page. Look at the
output of the program shown in Figure 1.12, and you might be surprised:

Figure 1.12: The page mixes HTML with some other
things.

Examining the Results
There are three distinct types of text on this page. First, the "Hello in PHP"
line is ordinary HTML. I wrote it just like a regular HTML page, and it was
displayed just like regular HTML. The "Hello world" line is a little different
though, because it was written by the PHP program embedded in the page.
The rest of the page is a bit mysterious. It contains a lot of information about
the particular PHP engine being used. It actually stretches on for several
pages. All that code was generated by the phpInfo() command. This
command is used to display information about the PHP installation. It isn't
that important to understand all the information displayed by the phpInfo()
command. It's much more critical to appreciate that when the user requests
the hello.html Web page, the text of the page is first run through the PHP
interpreter. This program scans for any PHP commands, executes the
commands, and prints HTML code in place of the original commands. By the
time a page gets to the user, all the PHP code is gone, because the server
used the PHP to generate HTML code. For proof of this, point your browser
at hello.php and then view the source code. It will look something like this:
<html>
<head>
<title>Hello in PHP</title>
</head>
<body>
<h1>Hello in PHP</h1>

Hello, world!<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head><style type="text/css"><!--
a { text-decoration: none; }

same way.

a:hover { text-decoration: underline; }
h1 { font-family: arial, helvetica, sans-serif; font-size: 18pt; font-weight: bold
h2 { font-family: arial, helvetica, sans-serif; font-size: 14pt; font-weight: bold
body, td { font-family: arial, helvetica, sans-serif; font-size: 10pt; }
th { font-family: arial, helvetica, sans-serif; font-size: 11pt; font-weight: bold
//--></style>
<title>phpinfo()</title></head><body><table border="0" cellpadding="3" cellspacing=
width="600" bgcolor="#000000" align="center">
<tr valign="middle" bgcolor="#9999cc"><td align="left">
<img src="/phab/ph01/hello.php?=PHPE9568F34-D428-11d2
00AA001ACF42" border=0 align="right" alt="PHP Logo"><h1>PHP Version 4.2.1</h1>

Note that I showed only a small part of the code generated by the phpInfo
() command, and that the details of the code might be different when you
run the program on your own machine. The key point here is the PHP code
to write "Hello World!" (print "Hello World!") is replaced with the
actual text "Hello World!" More significantly, the very simple phpInfo()
command is replaced by a huge amount of HTML code.

A small amount of PHP code can very efficiently generate large and complex
HTML documents. This is one significant advantage of PHP. Also, by the
time the document gets to the Web browser, it's plain vanilla HTML code,
which can be read easily by any browser. These two features are important
benefits of server-side programming in general, and of PHP programming in
particular. As you progress through this book, you'll learn about many more
commands for producing interesting HTML, but the basic concept is always
the same. Your PHP program is simply an HTML page that contains special
PHP markup. The PHP code is examined by a special program on the
server, and the results are embedded into the Web page before it is sent to
the user.

Creating the "Tip of the Day" Program
Way back at the beginning of the chapter I promised you would be able to
write the "Tip of the day" program featured at the beginning of the chapter.
This program requires HTML, Cascading Style Sheets, and one line of PHP
code. The code shows a reasonably basic page.
<html>
<head>
<title>Tip of the day</title>
</head>

<body>
<center>

<h1>Tip of the day</h1>

<div style = "border-color:green; border-style:groove; border-width:2px">
<?
readfile("tips.txt");
?>
</div>

</center>
</body>
</html>

The page is basic HTML. It contains one div element with a custom style
setting up a border around the tip of the day. Inside the div element, I
added PHP code with the <? and ?> devices. This code calls one PHP
function called readFile(). The readFile() command takes as an
argument the name of some file. It reads the contents of that file and
displays it onto the page as if it were HTML. As soon as that line of code
stops executing (that is, the text in the tips.txt file has been printed to the
Web browser) the ?> symbol indicates that the PHP coding is finished and
the rest of the page will be typical HTML.

Summary
You've already come a very long way. You've learned or reviewed all the
main HTML objects. You've investigated cascading style sheets and how
they are used to modify an HTML attribute. You experimented with the main
form elements and learned how to add various kinds of text boxes and
selection devices to your Web pages. You saw how PHP code can be
integrated into an HTML document. Finally, you created your first page that
includes all these elements. You should be proud of your efforts already. In
the next chapter, you'll explore more fully the relationship between PHP and
HTML, and learn how to use variables and input to make your pages do
interesting things.

Challenges
1. Create a Web-based version of your resume incorporating

headings, lists, and varying text styles.

2. Modify one of your existing pages so it incorporates CSS styles.

3. Install a practice configuration of Apache, PHP, and mySQL (or
some other package) Use a tool like PHP Tripod if possible to
make the configuration simpler.

4. Build a page that calls the phpInfo() command and run it from
your Web server. Ensure that you have a reasonably recent
version of PHP installed on the server.

Chapter 2: Using Variables and Input

Overview
In Chapter 1, "Exploring the PHP Environment," you learned the
foundations of all PHP programming. Now that you have reviewed your
HTML and CSS skills, you're ready to start seeing the real power of
programming in general, and PHP in particular. Computer programs
are ultimately about data. In this chapter, you'll begin looking at the
way programs store and manipulate data in variables. Specifically,
you'll learn how to:

Create a variable in PHP.

Recognize the main types of variables.

Name variables appropriately.

Output the values of variables in your scripts.

Perform basic operations on variables.

Read variables from an HTML form.

Introducing the Story Program
By the end of this chapter, you'll be able to write the program featured in
Figures 2.1 and 2.2.

Figure 2.1: The program begins by asking the user to enter some
information.

Figure 2.2: I hate it when the warthog's in the
kohlrabi.

The program asks the user to enter some values into an HTML form, and
then uses those values to build a custom version of a classic nursery rhyme.
The story program works like most server-side programs. It has two
distinctive parts. First, the user enters information into a plain HTML form
and hits the submit button. The PHP program doesn't execute until after the
user has submitted a form. The program takes the information from the form
and does something to it. Usually the PHP program also returns an HTML
page to the user.

Using Variables in Your Scripts
The most important new idea in this chapter is the notion of a variable. A
variable is a container for holding information in the computer's memory. To
make things easier for the programmer, every variable has a name. You can
store information into a variable and get information out of a variable.

Introducing the "Hi Jacob" program
The program featured in Figure 2.3 uses a variable, although you might not
be able to tell simply by looking at the output.

Figure 2.3: The word "Jacob" is stored in a variable in this page. You
can't really see anything special about this program from the Web page
itself (even if you look at the HTML source). To see what's new, look at
the source code of hiJacob.php.

<html>
<head>
<title>Hi Jacob</title>
</head>
<body>
<h1>Hi Jacob</h1>

<h3>Demonstrates using a variable</h3>

<?

$userName = "Jacob";

print "Hi, $userName";

?>
</body>
</html>

TRAP In regular HTML and JavaScript programming, you can use the "view
source" command of the Web browser to examine the code for your
programs. For server-side languages, this is not sufficient. There will be no
PHP at all in the view source document. Remember that the actual
program code never gets to your Web browser. Instead, the program is

The hiJacob page is mainly HTML with a small patch of PHP code in it.
That code does a lot of very important work.

Creating a String Variable
The line $userName = "Jacob"; does a number of things. First, it creates
a variable named $userName. In PHP, all variables begin with a dollar sign
to distinguish them from other program elements. The variable's name is
significant.

Naming Your Variables
As a programmer, you will frequently get to name things. Experienced
programmers have learned some tricks about naming variables and other
elements.

Make the name descriptive. It's much easier to figure out what
$userName means than something like $myVariable or $r. When
possible, make sure your variable names describe the kind of
information they contain.

Use an appropriate length. Your variable name should be long enough
to be descriptive, but not so long that it becomes tedious to type.

Don't use spaces. Most languages (including PHP) don't allow spaces in
variable names.

Don't use punctuation. Most of the special characters such as #, *, and /
already have meaning in programming languages, so they can't be used
in variable names. Of course, every variable in PHP begins with the $
character, but otherwise you should avoid using punctuation. One
exception to this rule is the underscore (_) character, which is allowed in
most languages, including PHP.

Be careful about case. PHP is a case-sensitive language, which means
that it considers $userName, $USERNAME, and $UserName to be
three different variables. The convention in PHP is to use all lowercase
except when separating words (note the uppercase "N" in $userName.)
This is a good convention to follow, and it's the one I use throughout this
book.

Watch your spelling! Every time you refer to a variable, PHP checks to
see if that variable already exists somewhere in your program. If so, it
uses that variable. If not, it quietly makes a new variable for you. If you
misspell a variable name, PHP will not catch it. Instead, it will make a
whole new variable, and your program probably won't work correctly.

It isn't necessary to explicitly create a variable. When you refer to a variable,
it is automatically created by PHP.

Assigning a Value to a Variable
The equals sign (=) is special in PHP. It does not mean "equals" (at least in
the present context.) The equals sign is used for assignment. If you read the
equals sign as the word "gets," you'll be closer to the meaning PHP uses for

executed on the server, and the results of the program are sent to the
browser as ordinary HTML. Be sure to be looking at the actual PHP source
code on the server when you are examining these programs. On a related
note, you cannot simply use the File menu of your browser to load a PHP
page. Instead, you'll need to run it through a server.

this symbol. For example, the line
$userName = "Jacob"

should be read

"The variable $userName gets the value "Jacob."

Usually when you create a variable in PHP, you'll also be assigning some
value to it. Assignment flows from right to left.

The $userName variable has been assigned the value "Jacob." Computers
are picky about what type of information goes into a variable, but PHP
automates this process for you. Still, it's important to recognize that "Jacob"
is a text value, because text is stored and processed a little bit differently in
computer memory than numeric data.

Printing the Value of a Variable
The next line of code prints a message to the screen. You can print any text
to the screen you wish. Text (also called string data) is usually encased in
quotes. If you wish to print the value of a variable, simply place the variable
name in the text you want printed. The line
print "Hi, $userName";

actually produces the output
Hi, Jacob

because when the server encounters the variable $userName, it replaces it
with the value of that variable, which is "Jacob." The output of the PHP
program will be sent directly to the Web browser, so you can even include
HTML tags in your output if you wish, simply by including them inside the
quotes.

The ability to print the value of a variable inside other text is called string
interpolation. That's not critical to know, but it could be useful
information on a trivia show or something.

Using the Semicolon to End a Line
If you look back at the complete code for the hiJacob program, you can
see that it has two lines of code inside the PHP block. Each line of PHP code
ends with a semicolon. PHP is a more formal language than HTML and, like
most programming languages, has some strict rules about the syntax used
when writing a page.

Each unique instruction is expected to end with a semicolon. You'll end most
lines of PHP code with a semicolon. If you forget to do this, you'll get an error
that looks like Figure 2.4.

TRICK Computer programmers almost never refer to text as text. Instead, they
prefer the more esoteric term string. The word string actually has a
somewhat poetic origin, because the underlying mechanism for storing
text in a computer's memory reminded early programmers of making a
chain of beads on a string.

Figure 2.4: This error will occur if you forget to add a semicolon to the
end of every line.

If you see this particular message, look back at your code to ensure you've
remembered to add a semicolon at the end of the line.

HINT There will be times when an instruction is longer than a single line on the
editor. The semicolon goes at the end of the instruction, which often (but
not always) corresponds with the end of the line.

TRICK Don't panic if you get an error message or two. They are a completely
normal part of programming. Even experienced programmers expect to
see many error messages while building and testing programs. Usually
the resulting error code gives you important clues about what went
wrong. Make sure you look carefully at whatever line of code the error
message reports. Although the error isn't always on that line, you can
often get a hint what went wrong by examining that line closely. In many
cases (particularly a missing semicolon), a syntax error will indicate an
error on the line that actually follows the real problem. If you get a syntax
error on line 14, and the problem is a missing semicolon, the problem line
is actually line 13.

Using Variables for More Complex Pages
While the HiJacob program was interesting, there was no real advantage to
using a variable. Now you will see another use of variables that shows how
useful they can be.

Building the "Row Your Boat" Page
Figure 2.5 shows the "Row Your Boat" page.

Figure 2.5: This program shows the words to a popular song. They sure
repeat a lot.

I chose this song in particular because it repeats the same verse three times.
If you look at the original code for the rowBoat.php program, you'll see I
used a special trick to save some typing.
<html>
<head>
<title>Row Your Boat</title>
</head>
<body>
<h1>Row Your Boat</h1>
<h3>Demonstrates use of long variables</h3>

<?

$verse = <<<HERE
Row, Row, Row, your boat

Gently down the stream

Merrily, merrily, merrily, merrily

Life is but a dream!

HERE;

print "<h3>Verse 1:</h3>";
print $verse;

print "<h3>Verse 2:</h3>";
print $verse;
print "<h3>Verse 3:</h3>";
print $verse;

?>

</body>
</html>

Creating Multi-Line Strings
You'll frequently find yourself wanting to print several lines of HTML code at
once. It can be very tedious to use quote signs to indicate such strings
(especially because HTML also often uses the quote symbol). PHP provides
a special quoting mechanism, which is perfect for this type of situation. The
line
$verse = <<<HERE

begins assigning a value to the $verse variable. The <<<HERE segment
indicates this will be a special multi-line string that will end with the symbol
"HERE." You can use any phrase you wish, but I generally use the word
HERE because I think of the three less than symbols as "up to." In other
words, you can think of
$verse = <<<HERE

as meaning "verse gets everything up to HERE."

You can also think of <<<HERE as a special quote sign, which is ended with
the value HERE.

You can write as much text as you wish between <<<HERE and HERE. You
can put variables inside the special text, and PHP will replace the variable
with its value, just like in ordinary (quoted) strings. The ending phrase (HERE)
must be on a line by itself, and there must be no leading spaces in front of it.

Once the multi-line string is built, it is very easy to use. It's actually harder to
write the captions for the three verses than the verses themselves. The
print statement simply places the value of the $verse variable in the
appropriate spots of the output HTML.

TRAP You might wonder why the $verse = <<<HERE line doesn't have a
semicolon after it. Although this is one line in the editor, it begins a multi-
line structure. Technically, everything from that line to the end of the
HERE; line is part of the same logical line, even though the code takes up
several lines in the editor. Everything between <<<HERE and HERE is a
string value. The semicolon doesn't have any special meaning inside a
string. If this doesn't make sense to you, don't worry about it for now, as
you'll get some other chances to think about this concept later. As a
minimum, you should know that a line beginning a multi-line quote doesn't
need a semicolon, but the line at the end of the quote does.

Working with Numeric Variables
Computers ultimately store information in on/off impulses. These very simple
data values can be converted into a number of more convenient kinds of
information. The PHP language makes most of this invisible to you, but it's
still important to know that string (text) is handled differently in memory than
numeric values, and there are two main types of numeric values.

Making the ThreePlusFive Program
As an example of how PHP works with numbers, consider the
ThreePlusFive.php program illustrated in Figure 2.6.

Figure 2.6: This program does basic math on variables containing the
values 3 and 5.

All the work in the ThreePlusFive program is done with two variables
called $x and $y. (I know, I recommended that you assign variables longer,
descriptive names, but these variables are commonly used in arithmetic
problems, so these very short variable names are OK in this instance.) The
code for the program looks like this:
<html>
<head>
<title>Three Plus Five</title>
</head>
<body>
<h1>Three Plus Five</h1>
<h3>Demonstrates use of numeric variables</h3>

<?
$x = 3;
$y = 5;

print "$x + $y = ";
print $x + $y;
print "

";

print "$x - $y = ";
print $x - $y;
print "

";

print "$x * $y = ";
print $x * $y;
print "

";

print "$x / $y = ";
print $x / $y;
print "

";

?>

</body>
</html>

Assigning Numeric Values
You create a numeric variable like any other variable in PHP. Simply assign
a value to a variable, and the variable is created. Notice that numeric values
do not require quotes. I created variables called $x and $y and assigned
appropriate values to these variables.

Using Mathematical Operators
For each calculation, I wanted to print the problem as well as its solution.
The line that says
print "$x + $y = ";

prints out the values of the $x and $y variables with the plus sign between
them. In this particular case (since $x is 3 and $y is 5), it prints out the literal
value
3 + 5 =

Because the plus sign and the equals sign are inside quotes, they are
treated as ordinary text elements and PHP doesn't do any calculation (such
as addition or assignment) with them.

The next line
print $x + $y;

does not contain any quotes. It calculates the value of $x + $y and prints the
result of this calculation (8) to the Web page.

Most of the math symbols you are familiar with also work with numeric
variables. The plus sign (+) is used for addition, the minus sign (-) indicates
subtraction, the asterisk (*) is used for multiplication, and the forward slash
(/) is used for division. The remainder of the program illustrates how PHP
does subtraction, multiplication, and division.

IN THE REAL WORLD

Those numbers without any decimal point are called integers and the
numbers with decimal values (like 1.5, 0.333, and so on) are called
real numbers. These two types of numbers are stored differently in
computers, and this distinction sometimes leads to problems. PHP
does its best to shield you from this type of issue. For example, since
the values 3 and 5 are both integers, the results of the addition,
subtraction, and multiplication problems are also guaranteed to be
integers. However, the quotient of two integers is often a real number.
Many languages would either refuse to solve this problem or would not

give a complete result. They might say that 3 / 5 = 0 rather than 0.6.
PHP tries to convert things to the appropriate type whenever possible,
and it usually does a pretty good job. There are times, however, that
you will need to control this behavior. The setType() function lets you
force a particular variable into a particular type. You can look up the
details in the online help for PHP (included in the CD-ROM that
accompanies this book).

Creating a Form to Ask a Question
It's very typical for PHP programs to be made of two or more separate
documents. An ordinary HTML page contains a form, which the user fills out.
When the user presses the submit button, the information in all the form
elements is sent to a program specified by a special attribute of the form.
This program processes the information from the form and returns a result,
which looks to the user like an ordinary Web page. To illustrate, look at the
whatsName.html page illustrated in Figure 2.7.

Figure 2.7: This is an ordinary HTML page containing a
form.

The whatsName.html page does not contain any PHP at all. It's simply an
HTML page with a form on it. When the user clicks on the Submit Query
button, the page sends the value in the text area to a PHP program called
hiUser.php. Figure 2.8 shows what happens when the hiUser.php
program runs:

Figure 2.8: The resulting page uses the value from the original HTML
form.

It's important to recognize that two different pages are involved in the
transaction. In this section, you'll learn how to link an HTML page to a
particular script, and how to write a script that expects certain form

information.

Building an HTML Page with a Form
Forms are very useful when you want to get information from the user. To
illustrate how this is done, look at the code for the whatsName.html file.
<html>
<head>
<title>What's your name?</title>
</head>
<body>
<h1>What's your name?</h1>
<h3>Writing a form for user input</h3>
<form method = "post"
 action = "hiUser.php">
Please type your name:
<input type = "text"
 name = "userName"
 value = "">

<input type = "submit">

</form>
</body>
</html>

There is only one element of this page that may not be familiar to you. Take
a careful look at the form tag. It contains two new attributes. The method
attribute indicates how the data will be sent to the browser. There are two
primary methods, get and post. The post method is the most powerful
and flexible, so it is the one I use most often in this book. However, you'll see
some interesting ways to use the get method later in this chapter in the
section called "Sending Data without a Form."

Setting the Action Attribute to a Script File
The other attribute of the form tag is the action attribute. This is used to
determine the URL of a program that will interpret the form. This attribute is
used to connect a Web page to a program to read the page and respond
with another page. The URL can be an absolute reference (which begins
with http:// and contains the entire domain name of the response
program), or they can be relative references (meaning the program will be in
the same directory as the original Web page).

The whatsName.html page contains a form with its action attribute set to
hiUser.php. Whenever the user clicks on the submit button, the values of
all the fields (there's only one in this case) will be packed up and sent to a
program called hiUser.php, which is expected to be in the same directory
as the original whatsName.html page.

Writing a Script to Retrieve the Data
The code for hiUser.php is specially built. The form that called the
hiUser.php code is expected to have an element called userName. Take a
look at the code for hiUser.php and you'll see what I mean.

IN THE REAL WORLD

Some PHP servers have turned off the ability to automatically create a
variable from a form. You might be able to convince your server
administrator to turn register_globals on in the PHP.INI file. If not,
here's a workaround: If your form has a field called userName, add this
code to the beginning of the program that needs the value of that field:
$userName = $_REQUEST["userName"];

Repeat this code for every variable you wish to pull from the original
form.

For a complete explanation of this code, you'll need to skip ahead to
Chapter 5, "Better Arrays and String Handling." In that chapter, you'll
also find a routine for automatically extracting all the fields of a form
even if you don't know the names of the fields.

<html>
<head>
<title>Hi User</title>
</head>
<body>
<h1>Hi User</h1>
<h3>PHP program that receives a value from "whatsName"</h3>

<?

 print "<h3>Hi there, $userName!</h3>";

?>

</body>
</html>

Like many PHP pages, hiUser.php is mainly HTML. The only thing that's
different is the one print statement. This statement incorporates the variable
$userName. The puzzling thing is there is no other mention of the variable
anywhere in the code.

When a user submits a form to a PHP program, the PHP processor
automatically creates a variable with the same name as every form element
on the original HTML page. Since the whatsName.html page has a form
element called userName, any PHP program that whatsName.html
activates will automatically have access to a variable called $userName.
The value of that variable will be whatever the user has entered into the field
before pressing the Submit button.

Sending Data without a Form
Sometimes it can be very handy to send data to a server-side program
without necessarily using a form. This is a little-known trick that can really
enhance your Web pages without requiring a lick of PHP programming. The
Link Demo page (linkDemo.html) shown in Figures 2.9 and 2.10 illustrate
this phenomenon.

Figure 2.9: The links on this page appear ordinary, but they are
unusually powerful.

Figure 2.10: When I clicked on the "Hi Elizabeth" link, I was taken
to the HiUser program with the value "Elizabeth" automatically sent to
the program!

Understanding the get Method
All the links in the linkDemo.html page use a similar trick. As you recall
from earlier in the chapter, form data can be sent to a program through two
different methods. The post method is the technique you'll usually use in
your forms, but you've actually been using the get method all along,
because normal HTML requests actually are get requests. The interesting
thing about that is that you can send form data to any program that knows
how to read get requests by embedding the request in your URL. As an

experiment, switch the method attribute of whatsName.html so the form
looks like this:
<form method = "get"
 action = "hiUser.php">

Then run the page again. It will work the same as before, but the URL of the
resulting page will look like this (presuming you said the user's name is
"Andy"):

http://127.0.0.1/phab/ph02/hiUser.php?userName=Andy

The get method stashes all the form information into the URL using a
special code. If you go back to the whatsName page and put in "Andy
Harris," you'll get a slightly different result:

http://127.0.0.1/phab/ph02/hiUser.php?
userName=Andy+Harris

The space between "Andy" and "Harris" was converted to a plus sign
because space characters cause a lot of confusion. When form data is
transmitted, it often undergoes a number of similar transformations. In PHP
programming, all the translation is automatic, so you don't have to worry
about it.

Using a URL to Embed Form Data
If you understand how this works, you can use a similar technique to
harness any server-side program on the Internet. (Presuming it's set up to
take get-method data—some are not.) When I examined the URLs of
Google searches, I could see my search data in a field named "q" (for
query, I suppose). I took a gamble that all the other fields would have default
values, and wrote a hyperlink that incorporates a query. My link looked like
this:

 Google search for "php"

Whenever the user clicks on this link, it sets up a get-method query to
google's search program. The result is a nifty Google search. One fun thing
you might want to do is figure out how to set up "canned" versions of your
most common queries in various search engines so you can get updated
results with one click. Figure 2.11 illustrates what happens when the user
clicks on the "google php" link in the linkDemo page.

Figure 2.11: The Google PHP runs a search on www.google.com for
the term "PHP".

Figure 2.12 shows the results of this slightly more complex search.

Figure 2.12: The Google search for "Absolute Beginners Programming"
shows some really intriguing book offerings!

<a href =
 "http://www.google.com/search?q=programming for the absolute beginner">
 Google search for "programming absolute beginner"

Working with Multiple Field Queries

TRAP There's a down side to this approach. The owner of the program can
change the program without telling you, and your link will no longer work
correctly. Most Web programmers assume that their programs will be
called only by the forms that they originally built.

The other thing to consider is people can do this with your programs. Just
because you intend for your program to be called only by a form doesn't
mean that's how it will always work. Such is the vibrant nature of the free-
form Internet.

As one more practical example, the code for the National Weather service
link looks like this:
<a href = "http://www.crh.noaa.gov/data/forecasts/
INZ039.php?warncounty=INC057&city=Noblesville">
National Weather Service Forecast
for Noblesville, Indiana.

While this link looks a little more complex, it didn't require any special
knowledge. I simply searched the National Weather Service Web site until I
found the automatically generated page for my hometown. When I looked at
the URL that resulted, I was pleased (but not surprised) to see that the page
was generated by a PHP script. (Note the .php extension in the URL.) I
copied the link from my browser and incorporated it into linkDemo.html.
The weather page is automatically created by a PHP program based on two
inputs (the county and city name). Any time I want to see the local weather, I
can re-call the same query even though the request doesn't come directly
from the National Weather Service. This is a really easy way to customize
your Web page.

In the last paragraph I mentioned that the PHP program requires two fields.
I've never actually seen the program, but I know this because I looked
carefully at the URL. The part that says warncounty=INCO57 indicates the
state and county (at least that's a reasonable guess), and the
city=Noblesville indicates which city within the county I'm interested in.
When a form has two or more input elements, they are attached to each
other with the ampersand (&) as you can see in the National Weather
Service example.

Reading Input from Other Form Elements
A PHP program can read the input from any type of HTML form element. In
all cases, the name attribute of the HTML form object becomes a variable
name in PHP. In general, the value of the PHP variable comes from the
value property of the form object.

Introducing the borderMaker program
To examine most of the various form elements, I built a simple page to
demonstrate various attributes of Cascading Style Sheet borders. The HTML
program is shown in Figure 2.13.

Figure 2.13: The borderMaker HTML page uses a text area, two list
boxes, and a select group.

Building the borderMaker.html Page
The borderMaker.html page contains a very typical form with most of the
major input elements in it. The code for this form is
<html>
<head>
<title>Font Choices</title>
</head>
<body>
<center>
<h1>Font Choices</h1>
<h3>Demonstrates how to read HTML form elements</h3>

<form method = "post"
 action = "borderMaker.php">

<h3>Text to modify</h3>
<textarea name = "basicText"
 rows = "10"
 cols = "40">
Four score and seven years ago our fathers brought forth on this
continent a new nation, conceived in liberty and dedicated to the
proposition that all men are created equal. Now we are engaged in a

great civil war, testing whether that nation or any nation so
conceived and so dedicated can long endure.
</textarea>

<table border = 2>
<tr>
 <td><h3>Border style</h3></td>
 <td colspan = 2><h3>Border Size</h3></td>
</tr>

<tr>
<td>
<select name = borderStyle>
 <option value = "ridge">ridge</option>
 <option value = "groove">groove</option>
 <option value = "double">double</option>
 <option value = "inset">inset</option>
 <option value = "outset">outset</option>
</select>
</td>
<td>

<select size = 5
 name = borderSize>
 <option value = "1">1</option>
 <option value = "2">2</option>
 <option value = "3">3</option>
 <option value = "5">5</option>
 <option value = "10">10</option>
</select>
</td>

<td>
<input type = "radio"
 name = "sizeType"
 value = "px">pixels

<input type = "radio"
 name = "sizeType"
 value = "pt">points

<input type = "radio"
 name = "sizeType"
 value = "cm">centimeters

<input type = "radio"
 name = "sizeType"
 value = "in">inches

</td>
</tr>
</table>

<input type = "submit"
 value = "show me">

</form>

</center>
</body>
</html>

The borderMaker.html page is designed to interact with a PHP program
called borderMaker.php, as you can see by inspection of the action

attribute. Note that I added a value attribute for each option element, and
the radio buttons all have the same name but different values. The value
attribute becomes very important when your program is destined to be read
by a program, as you shall see very shortly. Finally, the Submit button is
critical, because nothing interesting will happen until the user submits the
form.

Reading the Form Elements
The borderMaker.php program expects input from borderMaker.html.
When the user submits the HTML form, the PHP program produces results
like those shown in Figure 2.14.

Figure 2.14: The borderMaker.php code reacts to all the various
input elements on the form.

In general, it doesn't matter what type of element is used on an HTML form.
The PHP interpreter simply looks at the name of each element and the
value. By the time the information gets to the server, it doesn't really matter
what type of input element was used. PHP automatically creates a variable
corresponding to each form element. The value of that variable will be the
value of the element. The code used in borderMaker.php illustrates:
<html>
<head>
<title>Your Output</title>
</head>
<body>
<h1>Your Output</h1>
<center>
<?
$theStyle = <<<HERE
"border-width:$borderSize$sizeType;
border-style:$borderStyle;
border-color:green"
HERE;

TRICK You might have noticed I didn't include checkboxes in this particular
example. Checkboxes work much like the other form elements, but in
practice they are more useful when you understand conditional
statements, which will be the major topic of the next chapter. You'll get
plenty of opportunity to practice these elements when we get there.

print "<div style = $theStyle>";
print $basicText;
print "";

?>
</center>

</body>
</html>

In the case of text boxes and text areas, the user types the value directly in.
In borderMaker.html, there is a text area called basicText. The PHP
interpreter creates a variable called $basicText. Anything typed into that
text box (as a default the first few lines of the Gettysburg Address) becomes
the value of the $basicText variable.

Reading Select Elements
Recall that both drop-down lists and list boxes are created with the select
object. That object has a name attribute. Each of the possible choices in the
list box is an option object. Each option object has a value attribute.

The name of the select object will become the name of the variable. For
example, borderMaker.html has two select objects, borderSize and
borderStyle. The PHP program can expect to find two corresponding
variables, $borderSize and $borderStyle. Because there is no place
for the user to type a value into a select object, the values it can return
must be encoded into the structure of the form itself. The value of
whichever option the user selected will be sent to the PHP program as the
value of the corresponding variable. For example, if the user chose groove
as the border style, the $borderStyle variable will have the value groove
in it.

IN THE REAL WORLD

Note that the value of the options doesn't necessarily have to be what
the user sees on the form. This is handy if you want to show the user
one thing, but send something else to the server. For example, you
might want to let the user choose from several colors. In this case you
might want to create a list box that shows the user several color
names, but the value property corresponding to each of the option
objects might have the actual hexidecimal values used to generate the
color. Similar tricks are used in online shopping environments where
you might let the user choose an item by its name, but the value
associated with that item might be its catalog number, which is easier
to work with in a database environment.

Reading Radio Groups
CSS allows the developer to indicate sizes with a variety of measurements.
This is an ideal place for a group of radio buttons because only one unit of
measure is appropriate at a time. Even though there are four different radio

TRAP You might recall that it is possible to have multiple selections enabled in a
list box. In that case, the variable will contain a listof responses. While
managing this list is not difficult, it is a topic for another chapter (To be
specific, Chapter 4, "Loops and Arrays." For now, concentrate on the
singular style of list box.

buttons on the borderDemo.html page with the name sizeType, the PHP
program will only see one $sizeType variable. The value associated with
whichever option is selected will become the value of the $sizeType
variable. Note that like option elements, it is possible for the value of a radio
button to be different than the text displayed beside it.

IN THE REAL WORLD

How do you decide what type of form element to use?

You might wonder if all these different form elements are necessary,
since they all boil down to a name and value by the time they get to the
PHP interpreter. The various kinds of user interface elements do make
a difference in a few ways:

First, it's easier (for many users) to use a mouse than to type.
Whenever possible, it is nice to add lists, checks, and options so
the user can navigate your forms more quickly. Typing is often
much slower than the kinds of input afforded by the other
elements.

Secondly, interface elements (especially the drop-down list box)
are extremely efficient in terms of screen space. You can pack a lot
of choices on a small screen by using drop-downs effectively.
While you might not think this is an issue any more, take a look at
how many people are now surfing the Web with PDAs and cell
phones.

Third, your life as a programmer is much easier if you can predict
what the user will be sending you. When users type things, they
make spelling and grammar mistakes, use odd abbreviations, and
are just unpredictable. If you limit the user's choices whenever
possible, you are less likely to frustrate your users because your
program should be able to anticipate all the possible choices.

Returning to the Story Program
The story program introduced at the beginning of this chapter is an
opportunity to bring together all the new elements you've learned. It doesn't
introduce anything new, but it helps you see a larger context.

Designing the Story
Even though this is not an especially difficult program to write, you'll run into
problems if you simply open up your text editor and start blasting away. It
really pays to plan ahead. The most important thinking happens before you
write a single line of code.

In this situation, start by thinking about your story. You can write your own
story, or you can modify some existing text for humorous effect. I raided a
nursery rhyme book for my story. Regardless of how you come up with a
story, you need to have it in place before you start to write code. I wrote the
original unmodified version of "Little Boy Blue" in my text editor first so I
could admire its artistic genius—and then mangle it beyond recognition. As
you look over the original prose, look for key words you can take out, and try
to find a description that will hint at the original word without giving anything
away. For example, I printed out my story, circled the word "blue" in the
original poem, and wrote "color" on another piece of paper. Keep doing this
until you've found several words you can take out of the original story. You
should have a document with a bunch of holes in it, and a list of hints. Mine
looked like Figure 2.15.

Figure 2.15: My plan for the story game. I thought through the story and
the word list before writing any code.

IN THE REAL WORLD

Figure 2.15 shows the plan written as a MS Word document. Although
things are sometimes done this way (especially in a professional
programming environment) I really wrote the plan on paper. I
reproduced it in a cleaner format because you don't deserve to be
subjected to my handwriting. I usually plan my programs on paper,
chalkboard, or dry erase board. I avoid planning programs on the
computer, because it's too tempting to start programming immediately.
It's really important to make your plan describe what you wish to do in
English before you worry about how exactly you'll implement the plan.
Most beginners (and a lot of pros) start programming way too early,

and get stuck as a result. You'll see throughout the rest of this chapter
how this plan evolves into a working program.

Building the HTML Page
With the basic outline from Figure 2.15, it becomes clear how the story
program should be created. It should have two parts. The first is an HTML
page that prompts the user for all the various words. Here's the code for my
version:
<html>
<head>
<title>Story</title>
</head>
<body>
<h1>Story</h1>
<h3>Please fill in the blanks below, and I'll tell
 you a story</h3>
<form method = "post"
 action = "story.php">

<table border = 1>
<tr>
 <th>Color:</th>
 <th>
 <input type = "text"
 name = "color"
 value = "">
 </th>
</tr>

<tr>
 <th>Musical Instrument</th>
 <th>
 <input type = "text"
 name = "instrument"
 value = "">
 </th>
</tr>

<tr>
 <th>Animal</th>
 <th>
 <input type = "text"
 name = "anim1"
 value = "">
 </th>
</tr>

<tr>
 <th>Another animal</th>
 <th>
 <input type = "text"
 name = "anim2"
 value = "">
 </th>
</tr>

<tr>

 <th>Yet another animal!</th>
 <th>
 <input type = "text"
 name = "anim3"
 value = "">
 </th>
</tr>

<tr>
 <th>Place</th>
 <th>
 <input type = "text"
 name = "place"
 value = "">
 </th>
</tr>

<tr>
 <th>Vegetable</th>
 <th>
 <input type = "text"
 name = "vegetable"
 value = "">
 </th>
</tr>

<tr>
 <th>A structure</th>
 <th>
 <input type = "text"
 name = "structure"
 value = "">
 </th>
</tr>

<tr>
 <th>An action</th>
 <th>
 <select name = "action">
 <option value = "fast asleep">fast asleep</option>
 <option value = "drinking cappuccino">drinking cappuccino</option>
 <option value = "wandering around aimlessly">wandering around aimlessly</opti
 <option value = "doing nothing in particular">doing nothing in particular</op
 </select>
 </th>
</tr>

<tr>
 <td colspan = 2>
 <center>
 <input type = "submit"
 value = "tell me the story">
 </center>
 </td>
</tr>
</table>

</form>
</body>
</html>

There's nothing terribly exciting about the HTML. In fact, since I had the plan,
I knew exactly what kinds of things I was asking for and created form
elements to ask each question. I used a list box for the last question so I
could put in some interesting suggestions. Note that I changed the order a
little bit just to throw the user off.

There are a few things to check when you're writing a page that will connect
to a script. First, ensure you've got the correct action attribute in the form
tag. (for that matter, make sure you've added an action attribute.) Make
sure each form element has an appropriate name attribute. If you have radio
or option objects, make sure each one has an appropriate value. Finally, be
sure there is a Submit button somewhere in your form.

Checking the Form
I actually wrote two different scripts to read this form. The first one I wrote
simply checked each element to make sure it received the value I expected.
Here's the first program, called storySimple.php.
<html>
<head>
<title>Little Boy Who?</title>
</head>
<body>
<h1>Little Boy Who?</h1>

<h3>Values from the story page</h3>

<table border = 1>
<tr>
 <th>Variable</th>
 <th>Value</th>
</tr>

<tr>
 <th>color</th>
 <td><? print $color ?></td>
</tr>

<tr>
 <th>instrument</th>
 <td><? print $instrument ?></td>
</tr>

<tr>
 <th>anim1</th>
 <td><? print $anim1 ?></td>
</tr>

<tr>
 <th>anim2</th>
 <td><? print $anim2 ?></td>
</tr>

<tr>
 <th>anim3</th>
 <td><? print $anim3 ?></td>
</tr>

<tr>
 <th>place</th>
 <td><? print $place ?></td>
</tr>

<tr>
 <th>vegetable</th>
 <td><? print $vegetable ?></td>
</tr>

<tr>
 <th>structure</th>
 <td><? print $structure ?></td>
</tr>

<tr>
 <th>action</th>
 <td><? print $action ?></td>
</tr>

</table>
<form>
</html>

I made this program as simple as possible, because I didn't expect to need it
for long. It's simply a table with the name of each variable and its associated
value. I did it this way to ensure that I get all the variables exactly the way I
want them. There's no point in building the story if you don't have the
variables working.

Building the Final Story
The story itself is very simple to build if you've made a plan and ensured that
the variables are working right. All I had to do was write out the story as it
was written in the plan, with the variables incorporated in the appropriate
places. Here's the code for the finished story.php page:
<html>
<head>
<title>Little Boy Who?</title>
</head>
<body>
<center>

<h1>Little Boy Who?</h1>

<?

print <<<HERE
<h3>
Little Boy $color, come blow your $instrument!

The $anim1's in the $place, the $anim2's in the $vegetable.

Where's the boy that looks after the $anim3?

He's under the $structure, $action.
</h3>
HERE;
?>

</center>

</body>
</html>

It might astonish you that the final program is quite a bit simpler than the test
program. Neither is very complicated, but once you have created the story,
set up the variables, and tested that all the variables are being sent correctly,
the story program itself turns out to be almost trivial. Most of the story.php
code is plain HTML. The only part that's in PHP is one long print
statement. This uses the print <<<HERE syntax to print out a long line of
HTML text with PHP variables embedded inside. The story itself is this text.

Summary
In this chapter you have learned some incredibly important concepts. You
learned what variables are, and how to create them in PHP. You've learned
how to connect a form to a PHP program with modifications to the form's
method and action attributes. You learned how to write normal links to
send values to server-side scripts. You've built programs that respond to
various kinds of input elements, including drop-down lists, radio buttons, and
list boxes. You've gone through the process of writing a program from
beginning to end, including the critical planning stage, creating a form for
user input, and using that input to generate interesting output.

Challenges
1. Write a Web page that asks the user for first and last name, then

uses a PHP script to write a form letter to that person. Inform the
user he or she might be a millionaire.

2. Write a custom Web page that uses the "embedded data" tricks
described in this chapter to generate custom links for your
favorite Web searches, local news and weather, and other
elements of interest to you.

3. Write your own story game. Find or write some text to modify,
create an appropriate input form, and output the story with a
PHP script.

Chapter 3: Controlling Your Code with
Conditions and Functions

Overview
So far you've written some PHP programs that get information from the
user, store things in variables, and do some simple operations on
those variables. Most of the really interesting things you can do with a
computer involve letting it make decisions. Actually, the computer only
appears able to decide things. The programmer generates code that
tells the computer exactly what to do in different circumstances. In this
chapter, you'll learn how to control the flow of a program. Specifically,
you'll learn how to:

Create a random integer.

Use the if structure to change the program's behavior.

Write conditions to evaluate variables.

Work with the else clause to provide instructions when a
condition is not met.

Use the switch statement to work with multiple choices.

Build functions to better manage your code.

Write programs that can create their own forms.

Examining the "Petals Around the Rose" Game
The Petals Around the Rose game, featured in Figure 3.1 illustrates all the
new skills you will learn in this chapter.

Figure 3.1: This is a new twist on an old dice puzzle.

The premise of the Petals game is very simple. The computer rolls a set of
five dice and asks the user to guess the number of "petals around the rose."
The user enters a number and presses the button. The computer then
indicates whether this value was correct, and provides a new set of dice.
Once the user understands the secret, it's a very easy game, but it can take
a long time to figure out how it works. When you look at the code towards
the end of this chapter, you'll learn the secret, but for now you should try the
game yourself before you know how it's done.

Creating a Random Number
The dice game, like many other games, relies on random number generation
to make things interesting. Most languages have at least one way to create
random numbers. PHP makes it very easy to create random numbers with
the rand function.

Viewing the "Roll 'em" Program
The roll' em program shown in Figure 3.2 demonstrates how the rand
function can be used to generate virtual dice.

Figure 3.2: The die roll is randomly generated by
PHP.

The code for the rollEm program shows how easy random number
generation is.
<html>
<head>
<title>Roll Em!</title>
</head>
<body>
<h1>Roll Em!</h1>
<h3>Demonstrates rolling a die</h3>

<?
$roll = rand(1,6);
print "You rolled a $roll";
print "
";
print "";
?>

Refresh this page in the browser to roll another die.

</body>
</html>

I used the rand function to generate a random number between one and six
(inclusive) and stored the resulting value in the $roll variable. The rand
function expects two parameters. The first value is the lowest number you
wish, and the second value represents the highest number. Since I want to

replicate an ordinary six-sided die, I told the rand function to return a value
between one and six. Since I knew that rand would return a value, I
assigned that resulting value to the variable $roll. By the time the line
$roll = rand(1,6);

has finished executing, the $roll variable will have a random value in it.
The lowest possible value will be one, the highest possible value will be six,
and the value will not have a decimal part. (In other words, it will never be
1.5.)

Printing a Corresponding Image
Notice the sneaky way I used variable interpolation. I carefully named my
first image die1.jpg, the second die2.jpg, and so on. When I was ready to
print an image to the screen, I used an ordinary HTML image tag, but the
source is set to die$roll.jpg. If $roll is three, the image will show die3.jpg.
You'll see some other ways to let the computer respond to random numbers
shortly, but variable interpolation can be a wonderful trick if you know how
the file names are structured.

ACQUIRING IMAGES

The dice games in this chapter demonstrate the power of graphical
images to make your programs more interesting and fun. There are a
number of ways to get graphics for your programs. The easiest is to find
an existing image on the Web. Although this is technically very simple,
many of the images on the Web are owned by somebody, so you should
try to respect the intellectual property rights of the original owners. Try to
get permission for any images you use.

Another alternative is to create the graphics yourself. Even if you don't
have any artistic talent at all, modern software and technology make it
quite easy to generate passable graphics. You can do a lot with a digital
camera and a freeware graphics editor. Even if you will hire a
professional artist to do graphics for your program, you might still need
to be able to sketch what you are looking for. We've added a couple of
very powerful freeware image editing programs to the CD-Rom that
accompanies this book.

TRICK If you're coming from another programming language, you might be a
little surprised at the way random numbers are generated in PHP. Most
languages allow you to create a random floating point value between
zero and one, and then require you to transform that value to whatever
range you wish. PHP allows (in fact requires) you to create random
integers within a range, which is usually what you want anyway. If you
really want a value between zero and one, you can generate a random
number between zero and 1000 and then divide that value by 1000.

HINT You might recall from Chapter 2, "Using Variables and Input" that
interpolationis the technique that allows you to embed a variable in a
quoted string by simply using its name.

Using the if Statement to Control Program Flow
One of the most interesting things computers do is appear to make
decisions. The decision-making ability of the computer is really an illusion.
The programmer stores very specific instructions inside a computer, and it
acts only on those instructions. The simplest form of this behavior is a
structure called the if statement.

Introducing the Ace Program
I'll slightly modify the "roll-em" program to illustrate how it can be improved
with an if structure. Figure 3.3 shows the program when the program rolls
any value except one.

Figure 3.3: When the roll is not a one, nothing interesting
happens.

However, this program does something exciting (okay, moderately exciting)
when it rolls a one, as you can see from Figure 3.4.

Figure 3.4: When a one appears, the user is treated to a lavish
multimedia display.

Creating a Condition
On the surface, the behavior of the Ace program is very straightforward: it
does something interesting only if the die roll is one, and it doesn't do that
interesting thing in any other case. While it is a simple idea, the implications
are profound.

The same simple mechanism used in the Ace program is the foundation of
all complicated computer behavior, from flight simulators to heart monitors.
Take a look at the code for the Ace program and see if you can spot the new
element:
<html>
<head>
<title>Ace!</title>
</head>
<body>
<h1>Ace!</h1>
<h3>Demonstrates if statement</h3>

<?
$roll = rand(1,6);
print "You rolled a $roll";

if ($roll == 1){
 print "<h1>That's an ace!!!!!</h1>";
} // end if

print "
";
print "";
?>

Refresh this page in the browser to roll another die.

</body>
</html>

The secret to this program is the segment that looks like this:
if ($roll == 1){
 print "<h1>That's an ace!!!!!</h1>";
} // end if

The line that prints "That's an ace!" will not happen every time the program is
run. It will only happen if a certain condition is true. The if statement sets
up a condition for evaluation. In this case, the condition is read "$roll is
equal to one." If that condition is true, all the code between the left brace ({)
and the right brace (}) will evaluate. If the condition is not true, the code
between the braces will be skipped altogether.

A condition can be thought of as an expression that can be evaluated as true
or false. Any expression that can return a true or false value can be used as
a condition. Most conditions look much like the one in the Ace program. This
condition checks the variable $roll to see if it is equal to the value 1.

Note that equality is indicated by two equals signs (==).

This is important, because computer programs are not nearly as flexible as
humans. We humans often use the same symbol for different purposes.
While computer languages can do this, it often leads to problems. The single

equals sign is reserved for assignment. You should read this line
$x = 5;

as x gets five, indicating that the value five is being assigned to the
variable $x. The code fragment
$x == 5;

should be read as x is equal to five, as it is testing equality. It is
essentially asking whether x is equal to five. A condition such as $x == 5
does not stand on its own. Instead, it is used inside some sort of other
structure, such as an if statement.

Exploring Comparison Operators
Equality (==) is not the only type of comparison PHP allows. There are
several other ways to compare a variable and a value or two variables.
These comparison operators are described in table 3.1

These comparison operators work on any type of data, although the results
might be a little strange. For example, if you have a condition like
"a" < "b"

you would get the result true because alphabetically, the letter "a" is earlier
than "b," so it has a "smaller" value.

Creating an if Statement
An if statement begins with the keyword if followed by a condition inside
parentheses. After the parentheses is a left brace ({). You can put as many
lines of code between the left brace and the right brace(}) as you wish. Any
code between the braces will only be executed if the condition is true. If the
condition is false, program control flows to the next line after the right brace.
It is not necessary to put a semicolon on a line ending with a brace. It is
customary to indent all the code between the left brace and the right brace.

CODE STYLE

You might be aware that the PHP processor actually ignores the spaces
and carriage returns in your PHP code, so you might wonder if it matters
to pay such attention to how code is indented, where the braces go, and
so on. While the PHP processor doesn't care how you format your code,
human readers do. Programmers have passionate arguments about how
you should format your code. If you are writing code with a group (for
instance in a large project or for a class), you will often be given a style
guide you are expected to follow. When you're working on your own, the

Table 3.1: COMPARISON OPERATORS

Operator Description

== equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

!= not equal to

specific style you adopt is not as important as staying with it and being
consistent in your coding. The particular stylistic conventions I have
adopted for this book are reasonably common, relatively readable
(especially for beginners), and easily adapted to a number of languages.
If you don't have your own programming style, the one presented in this
book is a good starting place. However, if your team leader or teacher
requires another style, you will need to adapt to it. Regardless of the
specific style guidelines you use, it makes lots of sense to indent your
code, place comments liberally throughout your program, and use white
space to make your programs easier to read and debug.

TRAP Do not put a semicolon at the end of the if line. The following code
if ("day" == "night") ; {
 print "we must be near a black hole";
} // end if

will print "we must be near a black hole." When the processor sees the
semicolon following ("day" == "night"), it thinks there is no code at all to
evaluate if the condition is true, so the condition is effectively ignored.
Essentially, the braces are used to indicate that an entire group of lines are
to be treated as one structure, and that structure is part of the current
logical line.

Working with Negative Results
The Ace program shows how to write code that handles a condition. Much of
the time, you'll want the program to do one thing if the condition is true, and
something else if the condition is false. Most languages include a special
variant of the if statement to handle exactly this type of contingency.

Demonstrating the Ace or Not Program
The Ace or Not program is built from the Ace program, but it has an
important difference, as you can see from Figures 3.5 and 3.6.

Figure 3.5: If the program rolls a "one," it still hollers out
"Ace!"

Figure 3.6: If the program rolls anything but a one, it still has a message
for the user.

In other words, the program does one thing when the condition is true and
something else when the condition is false.

Using the else Clause

The code for the aceOrNot program shows how the else clause can be
used to allow for multiple behavior.
<html>
<head>
<title>Ace or Not</title>
</head>
<body>
<h1>Ace or Not</h1>
<h3>Demonstrates if statement with else clause</h3>

<?
$roll = rand(1,6);
print "You rolled a $roll";
print "
";

if ($roll == 1){
 print "<h1>That's an ace!!!!!</h1>";
} else {
 print "That's not an ace...";
} // end if

print "
";
print "";
?>

Refresh this page in the browser to roll another die.

</body>
</html>

The interesting part of this code comes near the if statement:
if ($roll == 1){
 print "<h1>That's an ace!!!!!</h1>";
} else {
 print "That's not an ace...";
} // end if

If the condition $roll == 1 is true, the program prints "That's an ace!!!!!" If
the condition is not true, the code between else and the end of the if
structure is executed instead. Notice the structure and indentation. One
chunk of code (between the condition and the else statement, encased in
braces) occurs if the condition is true. If the condition is false, the code
between else and the end of the if structure (also in braces) is executed.
You can put as much code in either segment as you wish. Only one of the
segments will run (based on the condition), but you are guaranteed that one
will execute.

Working with Multiple Values
Often you will find yourself working with more complex data. For example,
you might want to respond differently to each of the six possible rolls of a
die. The Binary Dice program illustrated in Figures 3.7 and 3.8 demonstrates
just such a situation.

Figure 3.7: The roll is a 5, and the program shows the binary
representation of that value.

Figure 3.8: After rolling again, the program again reports the binary
representation of the new roll.

Writing the Binary Dice Program
This program has a slightly more complex if structure than the others,
because the binary value should be different for each of six possible
outcomes. An ordinary if structure would not be sufficient, but it is possible
to put several if structures together to solve this kind of dilemma.
<html>
<head>
<title>Binary Dice</title>
</head>
<body>

<h1>Binary Dice</h1>
<h3>Demonstrates multiple if structure</h3>

<?
$roll = rand(1,6);
print "You rolled a $roll";
print "
";

if ($roll == 1){
 $binValue = "001";
} else if ($roll == 2){
 $binValue = "010";
} else if ($roll == 3){
 $binValue = "011";
} else if ($roll == 4){
 $binValue = "100";
} else if ($roll == 5){
 $binValue = "101";
} else if ($roll == 6){
 $binValue = "110";
} else {
 print "I don't know that one...";
} // end if

print "
";
print "";
print "
";
print "In binary, that's $binValue";
print "
";
print "
";
print "
";

?>

Refresh this page in the browser to roll another die.

</body>
</html>

Using Multiple else if Clauses
The binaryDice program still has only one if structure, but that structure
has multiple else clauses. The first condition simply checks to see if $roll
is equal to one. If it is, the appropriate code runs (assigning the binary
representation of 1 to the $binValue variable.) If the first condition is false,
the program looks at all the successive if else clauses until it finds a
condition that evaluates to true. If none of the conditions is true, the code in
the else clause will be executed.

TRICK You may be surprised that I even put an else clause in this code. Since
you know the value of $roll must be between one and six, and we've
checked each of those values, the program should never need to
evaluate the else clause. Things in programming don't always work out
the way you expect, so it's a great idea to have some code in an else
clause even if you don't expect to ever need it. It's much better to get a
message from your program explaining that something unexpected
occurred than to have your program blow up inexplicably while your
users are using it.

The indentation for a multiple-condition if statement is useful so you can tell
which parts of the code are part of the if structure, and which parts are
meant to be executed if a particular condition turns out to be true.

Using the switch Structure to Simplify Programming
The situation in the Binary Dice program happens often enough that another
structure is designed for exactly this kind of case, when you are comparing
one variable to a number of possible values. The Switch Dice program
shown in Figure 3.9 looks identical to the Binary Dice program as far as the
user is concerned, except it shows the Roman numeral representation of the
die roll instead of the binary version.

Figure 3.9: This version shows a die roll in Roman
numerals.

While the outward appearance of the last two programs is extremely similar,
the underlying structure of the code is changed to illustrate a very handy
device called the switch structure.

Building the Switch Dice Program
The code of the Switch Dice program looks different than the Binary Dice
demo, but the results are the same.
<html>
<head>
<title>Switch Dice</title>
</head>
<body>
<h1>SwitchDice</h1>
<h3>Demonstrates switch structure</h3>

<?
$roll = rand(1,6);
print "You rolled a $roll";
print "
";

switch ($roll){
 case 1:
 $romValue = "I";
 break;
 case 2:
 $romValue = "II";
 break;
 case 3:

 $romValue = "III";
 break;
 case 4:
 $romValue = "IV";
 break;
 case 5:
 $romValue = "V";
 break;
 case 6:
 $romValue = "VI";
 break;
 default:
 print "This is an illegal die!";
} // end switch

print "
";
print "";
print "
";
print "In Roman numerals, that's $romValue";
print "
";
print "
";
print "
";

?>

Refresh this page in the browser to roll another die.

</body>
</html>

Using the switch Structure
The switch structure is optimized for those situations where you have one
variable that you want to compare against a number of possible values. To
make it work, use the switch keyword followed by the name of the variable
you wish to evaluate in parentheses. A set of braces indicates that the next
block of code will be focused on evaluating the possible values of this
variable.

For each possible value, use the case statement, followed by the value,
followed by a colon. End each case with a break statement, which indicates
the program should stop thinking about this particular case, and get ready for
the next one.

The last case is called default. This works just like the else clause of the
multi-value if statement. It defines code to execute if none of the other
cases is active. As in multi-value if statements, it's smart to test for a
default case even if you think it is impossible for the computer to get to
this default option. Crazy things happen, and it's good to be prepared for
them.

TRAP The use of the break statement is probably the trickiest part of using the
switch statement, especially if you are familiar with a language, such as
Visual Basic, which does not require such a construct. It's important to add
the break statement to the end of each case, or the program flow will
simply "fall through" to the next possible value, even if that value would not
otherwise evaluate to true. As a beginner, you should always place the
break statement at the end of each case.

Combining a Form and Its Results
Most of your PHP programs up to now have had two distinct files. An HTML
file has a form, which calls a PHP program. Sometimes it can be tedious to
keep track of two separate files. You can use the if statement to combine
both functions into one page. The hiUser program shown in Figures 3.10
and 3.11 looks much like its counterpart in Chapter 2, Using Variables and
Input, but it has an important difference. Rather than being an HTML page
and a separate PHP program, the entire program resides in one file on the
server.

Figure 3.10: The HTML page is actually produced through PHP
code.

Figure 3.11: The result is produced by exactly the same
program.

The code for the new version of hiUser shows how to achieve this trick.
<html>
<head>
<title>Hi User</title>
</head>
<body>
<h1>Hi User</h1>

<?

if (empty($userName)){
 print <<<HERE
 <form>
 Please enter your name:
 <input type = "text"
 name = "userName">

 <input type = "submit">
 </form>
HERE;

} else {
 print "<h3>Hi there, $userName!</h3>";
} //end
?>

</body>
</html>

This program begins by looking for the existence of a variable called
$userName. The first time the program is called, there will be no
$userName variable, because the program was not called from a form. The
empty() function returns the value true if the specified variable is empty or
false if it has a value. If $userName does not exist, empty($userName) will
evaluate as true. The condition (empty($userName)) will generally be
true if this is the first time this page has been called. If it's true, the program
should generate a form so the user can enter his or her name. If the
condition is false, that means somehow the user has entered a name
(presumably through the form) so the program greets the user using that
name.

The key idea here is that the program runs more than once. When the user
first links to hiUser.php, the program creates a form. The user enters a
value on the form, and presses the Submit button. This causes exactly the
same program to be run again on the server. This time, though, the
$userName variable is not empty, so rather than generating a form, the
program uses the variable's value in a greeting.

Server-side programming frequently works in this way. It isn't uncommon for
a user to call the same program many times in succession as part of solving
a particular problem. You'll often use branching structures such as the if
and switch statements to direct the flow of the program based on the user's
current state of activity.

Using Functions to Encapsulate Parts of the
Program
It hasn't taken long for your programs to get complex. As soon as the code
gets a little bit larger than the size of a screen in your editor, it gets much
harder to keep track of. Programmers like to break up code into smaller
segments called functions to help keep everything straight. A function is
like a miniature program. It should be designed to do one job well. As a silly
example, look at Figure 3.12.

Figure 3.12: This song has a straightforward verse, chorus, verse,
chorus pattern.

Examining the This Old Man Program
Song lyrics often have a very repetitive nature. The This Old Man song
shown in Figure 3.12 is a good example. Each verse is different, but the
chorus is always the same. Often when you write the lyrics to such a song,
you will write out each verse, but you'll only write the chorus once. After that,
you simply write "chorus" and people generally understand they are not to
sing the word "chorus" but to repeat the song's chorus. This works very
much like subroutines in programming language. The code for the
thisOldMan program illustrates how it works.
<html>
<head>
<title>This Old Man</title>
</head>
<body>
<h1>This Old Man</h1>
<h3>Demonstrates use of functions</h3>
<?

verse1();
chorus();
verse2();
chorus();

function verse1(){
 print <<<HERE
 This old man, he played 1

 He played knick-knack on my thumb

HERE;
} // end verse1

function verse2(){
 print <<<HERE
 This old man, he played 2

 He played knick-knack on my shoe

HERE;
} // end verse1

function chorus(){
 print <<<HERE
 ...with a knick-knack

 paddy-whack

 giva a dog a bone

 this old man came rolling home

} // end chorus

?>
</body>
</html>

Careful examination of this code will show how it works. The main part of the
program is extremely simple:
verse1();
chorus();
verse2();
chorus();

Creating New Functions
There appear to be some new PHP functions. I called the verse1()
function, then the chorus() function, and so on. There are some new
functions, but they weren't shipped with PHP. Instead, I made them as part
of the page. You can take a set of instructions and store them with a name.
This essentially builds a new temporary command in PHP, so you can
combine simple commands to do complex things. Building a function is
simple. Use the keyword function followed by the function's name and a
set of parentheses. Keep the parentheses empty for now. You'll learn how to
use this feature in the next section. Use a pair of braces ({}) to combine a
series of code lines into one function. Don't forget the right brace (}) to end
the function definition. It's smart to indent everything between the beginning
and end of a function.

The chorus() function is especially handy in this program because it can
be re-used. It isn't necessary to re-write the code for the chorus each time
when you can simply call a function instead.

TRICK When you look at my code, you'll note there's one line I never indent.
That's the HERE token used for multi-line strings. Recall that the word
HERE is acting like a closing quote, and it must be all the way on the left
side of the screen, so it can't be indented.

TRAP Although you can use any function name you like, be careful. If you try to
define a function that already exists, you're bound to get confused. PHP
has a large number of functions already built in. If you're having strange
problems with a function, you might look at the online help (it comes with
PHP, or you can get it at www.php.net) to see if that function already
exists.

Using Parameters and Function Values
Functions are meant to be self-contained. This is good because the entire
program can be too complex to understand. If you break the complex
program into smaller functions, each function can be set up to work
independently. When you work inside a function, you don't have to worry
about anything outside the function. If you create a variable inside a function,
that variable dies as soon as you leave the function. This prevents many
errors that can otherwise creep into your code. The bad side of functions
being so self-contained is you often want them to work with data from the
outside program. There are a couple of ways to do this. You can send a
parameter to a function, which allows you to determine one or more values
sent to the function as it starts. Each function can also have a return value.
An example will make this more clear. The param program, shown in Figure
3.13 illustrates another form of the This Old Man song. Although again the
user might not be aware of it, there are some important differences between
this more sophisticated program and the first This Old Man program.

Figure 3.13: While the output looks similar to Figure 3.12, the program
that produced this page is much more efficient.

Examining the Param.php Program
Notice that the output of Figure 3.13 is longer than that of 3.12, but the code
that generates this longer output is shorter and more efficient.
<html>
<head>
<title>Param Old Man</title>
</head>
<body>
<h1>Param Old Man </h1>
<h3>Demonstrates use of function parameters</h3>
<?

print verse(1);
print chorus();
print verse(2);
print chorus();
print verse(3);
print chorus();
print verse(4);

print chorus();

function verse($stanza){
 switch ($stanza){
 case 1:
 $place = "thumb";
 break;
 case 2:
 $place = "shoe";
 break;
 case 3:
 $place = "knee";
 break;
 case 4:
 $place = "door";
 break;
 default:
 $place = "I don't know where";
 } // end switch

 $output = <<<HERE
 This old man, he played $stanza

 He played knick-knack on my $place

HERE;
 return $output;
} // end verse

function chorus(){
 $output = <<<HERE
 ...with a knick-knack

 paddy-whack

 give a dog a bone

 this old man came rolling home

HERE;
 return $output;
} // end chorus

?>
</body>
</html>

Looking at Encapsulation in the Main Code Body
This code features a number of improvements over the previous version.
First, look at the main body of the code that looks like this:
print verse(1);
print chorus();
print verse(2);
print chorus();
print verse(3);
print chorus();
print verse(4);
print chorus();

The main code body is very easy to understand. The program is to print the
first verse, then the chorus, then the second verse, then the chorus, and so
on. The details of how all these things are to be generated is left to the

individual functions. This is an example of encapsulation. Encapsulation is
good, because it allows you to think about problems in multiple levels. At the
highest level, you're interested in the main ideas (print the verses and
chorus) but you're not so concerned about the exact details. You use the
same technique when you talk about your day: "I drove to work, had some
meetings, went to lunch, and taught a class." You don't usually describe
each detail of each task. Each major task can be broken down into its
component tasks later. (If somebody asks, you could really describe the
meeting: "I got some coffee, appeared to be taking notes furiously on my
palm pilot, got a new high score on Solitaire while appearing to take notes,
scribbled on the agenda, and dozed off during a presentation.")

Returning a Value: The chorus() Function
Another interesting thing about the main section of code is the use of the
print() function. In the last program, I simply said chorus() and the
program printed the verse. In this program, I did it a little differently. The
chorus() function doesn't actually print anything to the screen. Instead, it
creates the chorus as a big string and sends that value back to the program,
which can do whatever it wants with it. This behavior isn't really new to you.
Think about the rand() function. It always returns a value back to the
program. The functions in this program work in the same way. Take another
look at the chorus() function to see what I mean.
function chorus(){
 $output = <<<HERE
 ...with a knick-knack

 paddy-whack

 give a dog a bone

 this old man came rolling home

HERE;
 return $output;
} // end chorus

I began the function by creating a new variable called $output. You can
create variables inside functions by mentioning them, just like you can in the
main part of the program. However, a variable created inside a function
loses its meaning as soon as the function is finished. This is good, because
it means the variables inside a function belong only to that function. You
don't have to worry about whether the variable already exists somewhere
else in your program. You also don't have to worry about all the various
things that can go wrong if you mistakenly modify an existing variable. I
assigned a long string (the actual chorus of the song) to the $output
variable with the <<<HERE construct.

The last line of the function uses the return statement to send the value of
$output back to the program. Any function can end with a return
statement. Whatever value follows the keyword return will be passed to
the program. This is one way your functions can communicate to the main
program.

Accepting a Parameter in the verse() Function
The most efficient part of this newer program is the verse() function.
Rather than having a different function for each verse, I wrote one function
that can work for all the verses. After careful analysis of the song, I noticed
that each verse is remarkably similar to the others. The only thing that
differentiates each verse is what the old man played (which is always the

verse number) and where he played it (which is something rhyming with the
verse number). If there is some way to indicate which verse to play, it should
be easy enough to produce the correct verse. Notice that when the main
body calls the verse function, it always indicates a verse number in
parentheses. For example, it makes a reference to verse(1) and verse
(3). These commands both call the verse function, but they send different
values (1 and 3) to the function. Take another look at the code for the verse
() function to see how the function responds to these inputs.
function verse($stanza){
 switch ($stanza){
 case 1:
 $place = "thumb";
 break;
 case 2:
 $place = "shoe";
 break;
 case 3:
 $place = "knee";
 break;
 case 4:
 $place = "door";
 break;
 default:
 $place = "I don't know where";
 } // end switch

 $output = <<<HERE
 This old man, he played $stanza

 He played knick-knack on my $place

HERE;
 return $output;
} // end verse

In this function, I indicated $stanza as a parameter in the function
definition. A parameter is simply a variable associated with the function. If
you create a function with a parameter, you are required to supply some sort
of value whenever you call the function. The parameter variable
automatically receives the value from the main body. For example, if the
program says verse(1), the verse function will be called, and the
$stanza variable will contain the value 1.

I then used a switch statement to populate the $place variable based on
the value of $stanza. Finally, I created the $output variable using the
$stanza and $place variables and returned the value of $output.

IN THE REAL WORLD

If you're an experienced programmer, you probably know there are
other ways to make this code even more efficient. We'll come back to
this program as you learn about loops and arrays in the coming
chapters.

TRICK You can create functions with multiple parameters if you wish. Simply
declare several variables inside the parentheses of the function definition,
and be sure to call the function with the appropriate number of
arguments. Make sure to separate parameters with commas.

Managing Variable Scope
You have learned some ways to have your main program share variable
information with your functions. In addition to parameter passing, sometimes
you'll want your functions to have access to variables created in the main
program. This is especially true because all the variables automatically
created by PHP (such as those coming from forms) will be generated at the
main level. You must tell PHP when you want a function to use a variable
that has been created at the main level.

Looking at the Scope Demo
To illustrate the notion of global variables, take a look at the scope demo,
shown in Figure 3.14.

Figure 3.14: Variable $a keeps its value inside a function, but $b does
not.

Take a look at the code for the Scope Demo, and you'll see how it works.
<html>
<head>
<title>Scope Demo</title>
</head>
<body>
<h1>Scope Demo</h1>
<h3>Demonstrates variable scope</h3>

<?

$a = "I have a value";
$b = "I have a value";

print <<<HERE
 outside the function,

 \$a is "$a", and

TRAP If you've programmed in another language, you're bound to get confused
by the way PHP handles global variables. In most languages, any variable
created at the main level is automatically available to every function. In
PHP, you must explicitly request that a variable be global inside a function.
If you don't do this, a new local variable with the same name (and no
value) will be created at the function level.

 \$b is "$b"

HERE;

myFunction();

function myFunction(){

 //make $a global, but not $b
 global $a;

 print <<<HERE
 inside the function,

 \$a is "$a", and

 \$b is "$b"

HERE;
} // end myFunction

?>

</body>
</html>

For this demonstration, I created two variables, called $a and $b. I gave
them both the value "I have a value." As a test, I printed out the values for
both $a and $b.

TRICK Notice the trick I used to make the actual dollar sign show up in the
quotes. When PHP sees a dollar sign inside quotes, it usually expects to
be working with a variable. Some-times (as in this case) you really want
to print a dollar sign. You can precede a dollar sign with a backslash to
indicate you really want the dollar sign to appear. So, print $a will print
the value of the variable $a, but print \$a will print out the value
"$a".

Returning to the Petals Game
At the beginning of this chapter, I showed you the Petals Around the Rose
game. This game uses all the skills you have learned so far, including the
new concepts you learned in this chapter. If you haven't already done so,
play the game now so you can see how it works, because it won't be as
much fun once you know the secret.

Here's the basic plan of the Petals game: Each time the page is drawn, it
randomly generates five dice, and calculates the correct number of petals
based on a super-secret formula. The page includes a form that has a text
area called guess for the user to guess the right answer. The form also
includes a hidden field called numPetals, which tells the program what the
correct answer was.

IN THE REAL WORLD

Can't the program simply remember the right answer?

Since the program generated the correct answer in the first place, you
might be surprised to learn that the right answer must be hidden in the
Web page and then retrieved by the same program that generated it.
Each contact between the client and the server is completely new.
When the user first plays the game, the page will be sent to the
browser and then the connection will be completely severed until the
user hits the Submit button. When the user submits the form, the
petals program starts over again. It's possible the user plays the game
right before he or she goes to bed, then leaves the page on the
computer overnight. Meanwhile, a hundred other people might use
your program. For now, you'll use hidden data to help keep track of the
user's situation. Later in this book, you'll learn some other clever
methods for keeping track of the users' situations.

The Petals game doesn't really introduce anything new, but it's a little longer
than any of the other programs you've seen so far. I'll introduce the code in
smaller chunks. Look on the CD-ROM for the program in its entirety.

Starting HTML
Like most PHP programs, the Petals game uses some HTML to set
everything up. The HTML is pretty basic because most of the interesting
HTML will be created by the PHP code.
<HTML>
<head>
<title>Petals Around the Rose</title>
</head>
<body bgcolor = "tan">
<center>

<h1>Petals Around the Rose</h1>

I decided on a tan background with a whimsical font. This should give the
program a light feel.

Main Body Code
The main PHP code segment has three main jobs to do. These jobs are
(appropriately enough) stored in three different functions. One goal of

encapsulation is to make the main code body as clean as possible. This goal
has been achieved in the Petals game.
<?

printGreeting();
printDice();
printForm();

All the real work is passed off to the various functions, which will each be
described shortly. Even before you see the functions themselves, you have a
good idea what each function will do, and you also have a good sense of the
overall flow of the program. If you encapsulate your code and name your
functions well, it makes your code much easier to read and repair.

The printGreeting() Function
The purpose of this function is to print a greeting to the user. There are three
possible greetings. If the user has never called this program before, the
program should provide a welcome. If the user has been here before, he or
she has guessed the number of petals. That guess might be correct (in
which case a congratulatory message is appropriate) or incorrect, requiring
information about what the correct answer was. The printGreeting()
function uses a switch statement to handle the various options.
function printGreeting(){
 global $guess, $numPetals;
 if (empty($guess)){
 print "<h3>Welcome to Petals Around the Rose</h3>";
 } else if ($guess == $numPetals){
 print "<h3>You Got It!</h3>";
 } else {

 print <<<HERE

 <h3>from last try: </h3>
 you guessed: $guess

 -and the correct answer was: $numPetals petals around the rose

HERE;

 } // end if

} // end printGreeting

This function refers to both the $guess and $numPetals variables, which
are both automatically created. You can use one global statement to make
more than one variable global by separating the variables with commas.

The $guess variable will be empty if this is the first time the user has come
to the program. If $guess is empty, I print a welcoming greeting. If $guess
is equal to $numPetals, the user has guessed correctly, so I print an
appropriate congratulations. If neither of these conditions is true (which will
be most of the time), the function will print out a slightly more complex string
indicating the user's last guess and the correct answer. This should give the
user enough information to finally solve the riddle.

The else if structure turned out to be the easiest option here for handling
the three possible conditions I wanted to check.

The printDice() Function

After the program prints out a greeting, it does the important business of
generating the random dice. It's relatively easy to generate random dice, as
you saw from earlier in this chapter. However, I also wanted to be efficient
and calculate the correct number of petals. To make the printDice()
function more efficient, you'll see that it calls some other custom functions.
function printDice(){
 global $numPetals;

 print "<h3>New Roll:</h3>";
 $numPetals = 0;

 $die1 = rand(1,6);
 $die2 = rand(1,6);
 $die3 = rand(1,6);
 $die4 = rand(1,6);
 $die5 = rand(1,6);

 showDie($die1);
 showDie($die2);
 showDie($die3);
 showDie($die4);
 showDie($die5);

 print "
";

 calcNumPetals($die1);
 calcNumPetals($die2);
 calcNumPetals($die3);
 calcNumPetals($die4);
 calcNumPetals($die5);

} // end printDice

The printDice() function is very concerned with the $numPetals
variable, but doesn't need access to $guess. It requests access to
$numPetals from the main program. After printing out the "New Roll"
message, it resets $numPetals to zero. The value of $numPetals will be
recalculated each time the dice are rolled.

I got new dice values by calling the rand(1, 6) function six times. I stored
each result in a different variable, named $die1 to $die6. To print out an
appropriate graphic for each die, I called the showDie() function (which will
be described next). I printed out a line break, then called the
calcNumPetals() function (which will also be described soon) once for
each die.

The showDie() Function
The showDie() function is used to simplify repetitive code. It accepts a die
value as a parameter, and generates the appropriate HTML code for drawing
a die with the corresponding number of dots.
function showDie($value){
 print <<<HERE

 <img src = "die$value.jpg"
 height = 100
 width = 100>
HERE;

} // end showDie

The calcNumPetals Function
The printDice() function also calls calcNumPetals() once for each
die. This function receives a die value as a parameter. It also references the
$numPetals global variable. The function uses a switch statement to
determine how much to add to $numPetals based on the current die's
value.

Here's the trick. The center dot of the die is the rose. Any dots around the
center dot are the petals. The value one has a rose but no petals. 2, 4, and 6
have petals, but no rose. 3 has two petals, and 5 has four. If the die roll is 3,
$numPetals should be increased by 2, and if the roll is 5, $numPetals
should be increased by 4.
function calcNumPetals($value){

 global $numPetals;
 switch ($value) {
 case 3:
 $numPetals += 2;
 break;
 case 5:
 $numPetals += 4;
 break;
} // end switch

} // end calcNumPetals

The += code is a shorthand notation. The line
$numPetals += 2;

is exactly equivalent to
$numPetals = $numPetals + 2;

The first style is much shorter and easier to type, so it's the form most
programmers prefer.

The printForm() Function
The purpose of the printForm() function is to print out the form at the
bottom of the HTML page. This form is pretty straightforward except for the
need to place the hidden field for $numPetals.
function printForm(){
 global $numPetals;

 print <<<HERE

 <h3>How many petals around the rose?</h3>

 <form method = "post">

TRICK One advantage of using functions for repetitive HTML code is the ease
with which you can modify large sections of code. For example, if you
wish to change the image sizes, all you need to do is change the img tag
in this one function, and all six die images will be changed.

 <input type = "text"
 name = "guess"
 value = "0">
 <input type = "hidden"
 name = "numPetals"
 value = "$numPetals">

 <input type = "submit">
 </form>

 <a href = "petalHelp.html"
 target = "helpPage">
 give me a hint
HERE;

} // end printForm

This code places the form on the page. I could have done most of the form in
plain HTML without needing PHP for anything but the hidden field, but when
I start using PHP, I like to have much of my code in PHP. It helps me see the
flow of things more clearly (print greeting, print dice, print form).

The Ending HTML Code
The final set of HTML code closes everything up. It completes the PHP
segment, the font, the centered text, the body, and finally the HTML itself.
?>

</center>
</body>
</html>

Summary
You learned a lot in this chapter. You've learned several kinds of branching
structures, including the if clause, else statements, and the switch
structure. You know how to write functions, which make your programs much
more efficient and easier to read. You know how to pass parameters to
functions and return values from them. You can access global variables from
inside functions. You've put all these things together to make an interesting
game. You should be very proud! In the next chapter, you'll learn how to use
looping structures to make your programs even more powerful.

Challenges
1. Write a program that generates 4-, 10-, or 20-sided dice

(sometimes used in various games).

2. Write a program that lets the user choose how many sides a die
will have and print out a random roll with the appropriate
maximum values (don't worry about using images to display the
dice).

3. Write a "loaded dice" program that generates the value 1 half the
time, and some other value the other half.

4. Modify the adventure game from the last chapter so the form and
the program are all one file.

5. Create a Web page generator. Make a form for the page caption,
background color, font color, and text body. Use this form to
generate an HTML page.

Chapter 4: Loops and Arrays: The
Poker Dice Game

Overview
You know all the basic parts of a program now, but your programs can
be much easier to write and much more efficient when you know some
other things. In this chapter, you'll learn about two very important
tools. Arrays are special variables that form lists. Looping structures
are used to repeat certain code segments. As you might expect, arrays
and loops often work together. You'll learn how to use these new
elements to make more interesting programs. Specifically, you'll:

Use the for loop to build basic counting structures.

Modify the for loop for different kinds of counting.

Use a while loop for more flexible looping.

Identify the keys to successful loops.

Create basic arrays.

Write programs that use arrays and loops.

Store information in hidden fields.

Introducing the Poker Dice Program
The main program for this chapter is a simplified dice game. In this game,
you are given $100 dollars of virtual money. On each turn, you bet two
dollars. The computer will roll five dice. You can elect to keep each die or roll
it again. On the second roll, the computer checks for various combinations.
You can earn money back for rolling pairs, triples, four and five of a kind, and
straights (five numbers in a row) Figures 4.1 and 4.2 illustrate the game in
action.

Figure 4.1: After the first roll, you can choose to keep some of the dice
by selecting the checkboxes underneath each die.

Figure 4.2: The player has earned back some money with a full
house!

The basic concepts of this game are much like the ones you used in the
earlier programs. Keeping track of all five dice can get very complicated, so
this program uses arrays and loops to manage all the information.

Counting with the for Loop
Computers are good at repetitive behavior. There are many times you might
want the computer to repeat some sort of action multiple times. For example,
take a look at the simpleFor.php program shown in Figure 4.3.

Figure 4.3: This program counts from zero to one using only one print
statement!

While the output of the simpleFor program doesn't look all that interesting,
it has a unique characteristic. It has only one print statement in the entire
program, which is executed ten different times. Take a look at the source
code of this program to see how it works.
<html>

<head>
<title>
A simple For Loop
</title>
</head>

<body>

<h1>A simple for loop</h1>

<?

for ($i = 0; $i < 10; $i++){
 print "$i
\n";
} // end for loop

?>

</body>
</html>

Each number is printed in the line that looks like this:
 print "$i
\n";

This line can only print one value, but it happens ten times. The key to this
behavior is the for statement. The for structure has three main parts.

Initializing a Sentry Variable
for loops usually involve an integer variable. Sometimes the key variable in
a loop is referred to as a sentry variable, because it acts like a gatekeeper to
the loop. The first part of a for loop definition is a line of code that identifies
the sentry variable and initializes it to some starting value. In the simple for
loop demo, the initialization segment looks like this:
$i = 0;

It specifies that the sentry variable will be called $i, and its starting value
will be zero.

IN THE REAL WORLD

You might wonder why the sentry variable is called $i. Like most
variables, it's really best if sentry variables have a name that suits their
purpose. Sometimes, however, a for loop sentry is simply an integer,
and it doesn't really have any other meaning. In those situations, an old
programming tradition is often called into play. In the Fortran language
(one of the earliest common programming languages) all integer
variables had to begin with the letters "i," "j," and a few other
characters. Fortran programmers would commonly use "i" as the name
of their generic sentry variables. Even though most modern
programmers have never written a line of Fortran code, the tradition
remains. It's amazing how much folklore exists in such a relatively new
activity as computer programming.

Computer programs frequently begin counting with zero, so I initialized $i to
zero as well.

Setting a Condition to Finish the Loop
Getting a computer to repeat behavior is actually the easy part. The harder
task comes when you try to get the computer to stop correctly. The second
part of the for loop construct is a condition. When this condition is
evaluated as true, the loop should continue. As soon as the condition is
evaluated to false, the loop should exit. In this case, I set the condition as $i
< 10; This means that as long as the variable $i has a value less than 10,
the loop continues. As soon as the program detects that $i has a value
equal to or larger than 10, the loop exits. Usually a for loop's condition
checks the sentry variable against some terminal value.

Changing the Sentry Variable
The final critical element of a for loop is some mechanism for changing the
value of the sentry variable. At some point the value of $i must become 10
or larger, or the loop will continue forever. In the basicLoop program, the
part of the for structure which makes this happen looks like $i++. The
notation $i++ is just like saying 'add one to $i,' or $i = $i + 1. The ++
symbol is called an increment operator because it provides an easy way to
increment (add one) to a variable.

TRICK Although the $i = 0; segment looks like (and is) a complete line of
code, it is usually placed on the same line as the other parts of the for
loop construct.

Building the Loop
Once you've set up the parts of the for statement, the loop itself is easy to
use. Place braces ({}) around your code and indent all code that will be
inside the loop. You can have as many lines of code as you wish inside a
loop, including branching statements and other loops. The sentry variable
will have special behavior inside the loop. It will begin with the initial value.
Each time the loop repeats, it will be changed as specified in the for
structure, and the interpreter will check the condition to ensure that it's still
true. If so, the code in the loop will occur again. In the case of the
basicArray program, $i begins as zero. The first time the print
statement occurs, it prints out zero, because that is the current value of $i.
When the interpreter reaches the right brace that ends the loop, it
increments $i by one (following the $i++ directive in the for structure) and
checks the condition ($i < 10). Because 0 is less than 10, the condition is
true, and the code inside the loop occurs again. Eventually, the value of $i
becomes 10, so the condition ($i < 10) is no longer true. Program control
then reverts to the next line of code after the end of the loop, which ends the
program.

Modifying the for Loop
Once you understand the basics of the for loop structure, you can modify it
in a couple of interesting ways. You can build a loop that counts by fives, or
one that counts backwards.

Counting by Fives
The countByFive.php program shown in Figure 4.4 illustrates a program
that counts by fives.

Figure 4.4: This program uses a for loop to count by
five.

The program is very much like the basicArray program, but with a couple
of twists.
<html>

<head>
<title>
Counting By Fives
</title>
</head>

<body>

<h1>Counting By Fives</h1>

<?

for ($i = 5; $i <= 50; $i+= 5){
 print "$i
\n";
} // end for loop

?>

</body>
</html>

The only thing I changed was the various parameters in the for statement.
Since it seems silly to start counting at 0, I set the initial value of $i to 5. I

decided to stop when $i reached 50 (after ten iterations). Each time through
the loop, $i will be incremented by 5. The += syntax is used to increment a
variable.
$i += 5;

is exactly like
$i = $i + 5;

Counting Backwards
It is fairly simple to modify a for loop so it counts backwards. Figure 4.5
illustrates this feat.

Figure 4.5: This program counts backwards from ten to one using a for
loop.

Once again, the basic structure is just like the basic for loop program, but
by changing the parameters of the for structure I was able to alter the
behavior of the program. The code for this program shows how it is done.
<html>

<head>
<title>
Counting Backwards
</title>
</head>

<body>

<h1>Counting Backwards</h1>

<?

for ($i = 10; $i > 0; $i--){
 print "$i
\n";
} // end for loop

?>

</body>

</html>

If you understand how for loops work, the changes will all make sense. I'm
counting backwards this time, so $i begins with a large value (in this case
10.) The condition for continuing the loop is now $i > 0, which means the
loop will continue as long as $i is greater than zero. As soon as $i is zero
or less, the loop will end. Note that rather than adding a value to $i, this
time I decrement by one each time through the loop. If you're counting
backwards, you must be very careful that the sentry variable has a
mechanism for getting smaller, or the loop will never end. Recall that $i++
adds one to $i. $i- - subtracts one from $i.

Using a while Loop
PHP, like most languages, provides another kind of looping structure that is
even more flexible than the for loop. The while loop can be used when
you know how many times something will happen, just like the for loop.
Figure 4.6 shows how a while loop can work much like a for loop:

Figure 4.6: Although the output of this program looks a lot like the basic
for loop, it uses a different construct to achieve the same
result.

Repeating Code with a while Loop
The code for the while.php program is much like the for loop demo, but
you can see that the loop is a little bit simpler:
<html>

<head>
<title>
A simple While Loop
</title>
</head>

<body>

<h1>A simple while loop</h1>

<?

$i = 1;

while ($i <= 10){
 print "$i
\n";
 $i++;
} // end while

?>

</body>
</html>

The while loop requires only one parameter, which is a condition. The loop
will continue as long as the condition is evaluated as true. As soon as the
condition is evaluated as false, the loop will exit. This particular program
starts by initializing the variable $i, then checking to see if it's greater than
or equal to ten in the while statement. Inside the loop body, the program
prints out the current value of $i and increments $i.

Recognizing Endless Loops
The flexibility of the while construct gives it power, but with that power
comes some potential for problems. while loops are easy to build, but a
loop that does not work properly can cause a lot of problems. It's possible
that the code in the loop will never execute at all. Even worse, you might
have some sort of logical error that causes the loop to continue indefinitely.
As an example, look at the following code:
<html>

<head>
<title>
A bad While Loop
</title>
</head>

<body>

<h1>A bad while loop</h1>

<?

$i = 1;

while ($i <= 10){
 print "$i
\n";
 $j++;
} // end while

?>

</body>
</html>

The badWhile.php program has a subtle but deadly error. Look carefully at
the source code and see if you can spot it. The code is just like the first
while program, except instead of incrementing $i, I incremented $j. The
variable $j has nothing to do with $i, and $i never changes. The loop
keeps going on forever, because it cannot end until $i is greater than or
equal to ten, which will never happen. This program is an example of the
classic "endless loop." Every programmer alive has written them
accidentally, and you will too.

TRAP The badWhile.php program is intended to show what happens when you
have an endless loop in your code. If you run this program, it's possible it
will cause a temporary slowdown of your Web server. Be sure your server
is configured to stop a PHP process when the user presses the Stop
button on the browser. (This is a default setting on most installations of
PHP.)

Building a Well-Behaved Loop
Fortunately, there are some guidelines for building a loop that behaves as
you wish. Even better, you've already learned most of the important ideas,
because these fundamental concepts are built in to the structure of the for
loop. When you write a while loop, you are responsible for these three
things:

Creating a sentry variable

Building a condition

Ensuring the loop can exit

I'll discuss each of these ideas in the following sections.

Create and Initialize a Sentry Variable
If your loop will be based on the value of a variable (there are some other
alternatives), make sure you identify that variable, make sure it has
appropriate scope, and make sure it has a reasonable starting value. You
might also check that value to ensure the loop runs at least one time (at least
if that's your intent). Creating a variable is much like the initialization stage of
a for construct.

Build a Condition to Continue the Loop
Your condition will usually compare a variable and a value. Make sure you
have a condition that can be met, and that can be broken. The hard part is
not building the loop, but ensuring the program gets out of the loop at the
correct time. This condition is much like the condition in the for loop.

Ensure the Loop Can Exit
There must be some trigger that changes the sentry variable so the loop can
exit. This code must exist inside the code body. Be sure it is possible for the
sentry variable to achieve the value necessary to exit the loop by making the
condition false.

TRICK Usually the culprit of an endless loop is a sloppy variable name, spelling,
or capitalization. If you use a variable like $myCounter as the sentry
variable, but then increment $MyCounter, PHP will keep track of two
entirely different variables, and your program won't work correctly. This is
another reason to be consistent on your variable naming and
capitalization conventions.

Working with Basic Arrays
Programming is about the combination of control structures (like loops) and
data structures (like variables). You've learned the very powerful looping
structures. Now it's time to look at a data structure that works naturally with
loops. Arrays are special variables made to hold lists of information. PHP
makes it quite easy to work with arrays. Look at Figure 4.7. This program,
called basicArray.php, demonstrates two arrays.

Figure 4.7: The information displayed on this page is stored in two array
variables.

First, I'll let you look over the entire program, then I'll show you how it does
its work.
<html>
<head>
<title>
Basic Array
</title>
</head>

<body>

<h1>Basic Array</h1>

<?

//simply assign values to array
$camelPop[1] = "Somalia";
$camelPop[2] = "Sudan";
$camelPop[3] = "Mauritania";
$camelPop[4] = "Pakistan";
$camelPop[5] = "India";

//output array values
print "<h3>Top Camel Populations in the World</h3>\n";
for ($i = 1; $i <= 5; $i++){
 print "$i: $camelPop[$i]
\n";
} // end for loop

print "<i>Source: Food and Ag
Organization of the United Nations</i>\n";

//use array function to load up array
$binary = array("000", "001", "010", "011");

print "<h3>Binary numbers</h3>\n";
for ($i = 0; $i < count($binary); $i++){
 print "$i: $binary[$i]
\n";
} // end for loop

?>

</body>
</html>

Generating a Basic Array
Look at the lines that describe $camelPop:
//simply assign values to array
$camelPop[1] = "Somalia";
$camelPop[2] = "Sudan";
$camelPop[3] = "Mauritania";
$camelPop[4] = "Pakistan";
$camelPop[5] = "India";

The $camelPop variable is a variable meant to hold the five countries with
the largest camel populations in the world. (If this array stuff isn't working for
you, at least you've learned something in this chapter!) Since $camelPop is
going to hold the names of five different countries, it makes sense that this is
an array (computer geek lingo for list) rather than an ordinary variable. The
only thing different about $camelPop and all the other variables you've
worked with so far is $camelPop can have multiple values. To tell these
values apart, use an index in square brackets.

Many languages require you to explicitly create array variables, but PHP is
very easygoing in this regard. Simply assign a value to a variable with an
index in square braces and you've created an array.

Using a Loop to Examine an Array's Contents
Arrays go naturally with for loops. Very often when you have an array
variable, you'll want to step through all of its values and do something to
each one. In this example, I want to print out the index and the
corresponding country's name. Here's the for loop that performs this task:
//output array values
print "<h3>Top Camel Populations in the World</h3>\n";

TRICK Apparently the boxer George Foreman has several sons also named
George. I've often wondered what Mrs. Foreman does when she wants
somebody to take out the trash. I suspect she has assigned a number to
each George, so there is no ambiguity. This is exactly how arrays work.
Each element has the same name, but a different numerical index, so
you can tell them apart.

HINT Even though PHP is good-natured about letting you create an array
variable on the fly, you might get a warning about this behavior on some
Web servers (those that have error reporting set to E_ALL). If that's the
case, you can create an empty array with the array() function described in
the following sections and then add values to it.

for ($i = 1; $i <= 5; $i++){
 print "$i: $camelPop[$i]
\n";
} // end for loop

Because I know the array indices will vary between 1 and 5 (inclusive), I set
up my loop so the value of $i will go from 1 to 5. Inside the loop, I simply
print out the index ($i) and the corresponding country ($camelPop[$i])
The first time through the loop, $i will be 1, so $camelPop[$i] is
$camelPop[1], which is "Somalia." Each time through the loop, the value
of $i will be incremented, so eventually every element of the array will be
displayed.

Using the array() Function to Pre-Load an Array
Often you'll start out knowing exactly which values you want to place in an
array. PHP provides a shortcut for loading up an array with a set of values.
//use array function to load up array
$binary = array("000", "001", "010", "011");

In this example, I created an array of the first four binary digits (starting at
zero). You can use the array keyword to assign a list of values to an array.
Note that when you use this technique, the indices of the elements are
automatically created for you.

Detecting the Size of an Array
Arrays are meant to add flexibility to your code. You don't actually need to
know how many elements are in an array, because PHP provides a function
called count() that can determine how many elements an array has. In the
following code, I used the count() function to determine the array size.
print "<h3>Binary numbers</h3>\n";
for ($i = 0; $i < count($binary); $i++){
 print "$i: $binary[$i]
\n";
} // end for loop

Note that my loop sentry goes from zero to one less than the number of
elements in the array. If you have four elements in an array and the array
begins with zero, the largest index will be three. This is a standard way of
looping through an array.

TRICK The advantage of combining loops and arrays is convenience. If you
want to do something with each element of an array, you only have to
write the code one time, then put that code inside a loop. This is
especially powerful when you start to design programs that work with
large amounts of data. If, for example, I wanted to list the camel
population of every country in the UN database rather than simply the top
five countries, all I would have to do is make a bigger array and modify
the for loop.

TRAP Most computer languages automatically begin counting things with zero
rather than one (the way humans tend to count). This can cause
confusion. When PHP builds an array for you, the first index will
automatically be zero, not one.

TRICK Since it is so common to step through arrays, PHP provides another kind
of loop that makes this even easier. You'll get a chance to see that
looping structure in Chapter 5, "Better Arrays and String Handling." For
now, just make sure you understand how an ordinary for loop is used

with an array.

Improving "This Old Man" with Arrays and Loops
The basicArray.php program shows how to build arrays, but it doesn't
illustrate the power of arrays and loops working together. To see how these
features can help you, let's revisit an old friend from the last Chapter 3,
"Controlling Your Code with Conditions and Functions." The version of the
"This Old Man" program featured in Figure 4.8 looks a lot like it did in
Chapter 3, but the code is quite a bit more compact.

Figure 4.8: The Fancy Old Man program uses a more compact structure
that is easy to modify.

The improvements in this version of the program are only apparent when
you look under the hood.
<html>
<head>
<title>
Fancy Old Man
</title>
</head>
<body>
<h1>This Old Man with Arrays</h1>
<pre>
<?
$place = array(
 "",
 "on my thumb",
 "on my shoe",
 "on my knee",
 "on a door");

//print out song
for ($verse = 1; $verse <= 4; $verse++){

print <<<HERE
 This old man, He played $verse
 He played knick-knack $place[$verse]
 ...with a knick, knack, paddy-whack
 give a dog a bone
 This old man came rolling home

HERE;
 } // end for loop

?>
</pre>
</body>
</html>

This improved version takes advantage of the fact that the only things that
really change from verse to verse is the verse number, and the place where
the old man plays paddy-whack (whatever that means). You can organize
the places into an array, and that would greatly simplify writing out the song
lyrics.

Building the Place Array
I noticed that each place is a string value associated with some number. I
used the array() directive to pre-load the $place array with appropriate
values. There isn't a place corresponding to zero, so I simply left the zero
element blank.
$place = array(
 "",
 "on my thumb",
 "on my shoe",
 "on my knee",
 "on a door");

Note that like most places in PHP, carriage returns don't really matter when
you're writing the source code. I decided to put each place on a separate
line, just because it looked neater that way.

Writing Out the Lyrics
The song itself is incredibly repetitive. Each verse is identical with the others
except for the verse number and the corresponding place. For each verse,
the value of the $verse variable will be the current verse number. The
corresponding place is stored in $place[$verse]. The code to print out
the entire song is a large print statement in a for loop.
//print out song
for ($verse = 1; $verse <= 4; $verse++){

print <<<HERE
 This old man, He played $verse
 He played knick-knack $place[$verse]
 ...with a knick, knack, paddy-whack
 give a dog a bone
 This old man came rolling home

HERE;
 } // end for loop

The Fancy Old Man program illustrates very nicely the trade-off associated
with using arrays. Creating a program that uses arrays correctly often takes
a little more planning than using control structures alone (as the programs in
Chapter 3). However, the extra work up front can really pay off because the
program can be much easier to modify and extend.

Keeping Persistent Data
Most traditional kinds of programming presume that the user and the
program are engaging in a continual dialog. A program begins running, might
ask the user some questions, responds to these inputs, and continues
interacting with the user until the user somehow indicates an interest in
leaving the program. Programs written on a Web server are different. The
PHP programs you are writing have an incredibly short life span. When the
user makes a request to your PHP program through a Web browser, the
server runs the PHP interpreter (the program that converts your PHP code
into the underlying machine language your server really understands). The
result of the program is a Web page that is sent back to the user's browser.
Once your program sends a page to the user, the PHP program shuts down
because its work is done. Web servers do not maintain contact with the
browser after sending a page. Each request from the user is seen as an
entirely new transaction. The poker dice program featured at the beginning
of this chapter appears to interact with the user indefinitely. Actually, the
same program is being called repeatedly. The program acts differently in
different circumstances. Some-how it needs to keep track of what state it's
currently in.

IN THE REAL WORLD

The underlying Web protocol (HTTP) that Web servers use does not
keep connections open any longer than necessary. This behavior is
referred to as being a stateless protocol. There are some very good
reasons for this behavior. Imagine if your program were kept running
as long as anybody anywhere on the Web was looking at it. What if a
person fired up your program, then went to bed? Your Web server
would have to maintain a connection to that page all night. Also,
remember that your program might be called by thousands of people
all at the same time. It could be very hard on your server to have all
these concurrent connections open. Having stateless behavior
improves your Web server's performance, but that performance comes
at a cost. Essentially, your programs have complete amnesia every
time they run, and you'll some-how need a mechanism for determining
what the current state is.

Counting with Form Fields
There are a couple of ways to store information, which you'll learn about later
in this book. The easiest approach is to hide the data in the user's page. To
illustrate, take a look at Figures 4.9 and 4.10.

Figure 4.9: The program has two counters, which both read one when
the program is run the first time.

Figure 4.10: After the user clicks the Submit button, both values are
incremented.

Each time you click on the Submit button of the persistence program, the
counters increment by one. The behavior of the persistence program
appears to contradict the basic nature of server-side programs because the
program seems to remember the previous value of the counter and
increment it each time. In fact, if two users were accessing the
persistence program at the same time, each would count correctly. Look
at the source code to see how it works:
<html>
<head>
<title>
persistence demo
</title>
</head>

<body>

<h1>Persistence Demo</h1>

<form>
<?
//increment the counters
$txtBoxCounter++;
$hdnCounter++;

print <<<HERE

<input type = "text"
 name = "txtBoxCounter"
 value = "$txtBoxCounter">

<input type = "hidden"
 name = "hdnCounter"
 value = "$hdnCounter">
<h3>The hidden value is $hdnCounter</h3>
<input type = "submit"
 value = "click to increment counters">
HERE;

?>

</form>
</body>
</html>

Storing Data in the Text Box
The program has two variables, $txtBoxCounter and $hdnCounter. For
now, concentrate on $txtBoxCounter. This variable is the variable that is
related to the text box. When the program begins, it grabs the value of
$txtBoxCounter (if it exists) and adds one to it. When the program prints
out the text box, it automatically places the $txtBoxCounter value in the
text box. Since the form has no action attribute defined, the program will
automatically call itself when the user clicks on the Submit button. This time,
there will be a value in $txtBoxCounter (the value 1). When the program
runs again, it will increment $txtBoxCounter and store the new value
(now 2) in the text box. Each time the program runs, it stores the value it will
need on the next run in the text box.

Using a Hidden Field for Persistence
The text box is convenient for this example because you can see it, but there
are serious problems with using a text box in this way in real programs. Text
boxes are editable by the user, which means the user could put any kind of
information in them, and really mess up your day. Hidden form fields are the
unsung heroes of server-side programming. Look at $hdnCounter in the
source code. This hidden field also has a counter, but since it is hidden, the
user never sees it. However, the value of the $hdnCounter variable will be
sent to the PHP program indicated by the form's action attribute. That
program can do anything with it, including printing it out in the HTML code
body.

Very often when you find yourself wanting to keep track of information
between pages, you'll store the information in hidden fields on the user's
page.

IN THE REAL WORLD

The "hidden fields" technique shown here works fine for storing small
amounts of information, but it is very inefficient and insecure when you
are working with more serious forms of data. As you progress through
this book, you'll learn many other ways of making data persist,
including the use of cookies, session variables, files, and databases.

Writing the Poker Dice Program
It's time to take another look at the Poker Dice program that made its debut
at the beginning of this chapter. As usual, this program doesn't do anything
you haven't already learned. It is a little more complex than the trivial sample
programs I've been showing you in this chapter, but it's surprisingly compact
considering how much it does. It won't surprise you that arrays and loops are
the secret to this program's success.

Setting up the HTML
As always, a basic HTML page serves as the foundation for the PHP
program. I chose to add a simple style sheet to this page to make tan
characters on a green background.
<html>
<head>
<title>poker dice</title>
<style type = "text/css">
body {
 background: green;
 color: tan;
}

</style>
</head>

<body>
<center>
<h1>Poker Dice</h1>

<form>

<?

Building the Main Code Body
The poker dice program is long enough to merit functions. I've broken it
down into smaller segments to describe it here, but you may also want to
look at the code in its entirety from the CD-ROM that accompanies this book.

The main part of the code is used to set up the general flow of the program.
Most of the work is done in other functions called from this main area.
//check to see if this is first time here
if (empty($cash)){
 $cash = 100;
} // end if

rollDice();

if ($secondRoll == TRUE){
 print "<h2>Second roll</h2>\n";
 $secondRoll = FALSE;
 evaluate();
} else {
 print "<h2>First roll</h2>\n";
 $secondRoll = TRUE;
} // end if

printStuff();

The first order of business is to see if this is the first time the user has come
to this page. It's important to understand how timing works in this program.
The user will feel like he or she is playing the same game for several turns,
but actually each time he or she rolls the dice, the entire program runs again.
The program will have different behavior based on which form elements (if
any) have values. If the user has never been to the page before, the value
for the $cash variable will be null. The first if statement checks this
condition. If the $cash variable has not yet been created, the user will get a
starting value of $100. (I wish real casinos worked like this...)

The program then calls the rollDice() function, which will be described
momentarily. This function rolls the dice and prints them to the screen.

If you look carefully at the program as it is running, you'll see it runs in two
different modes. Each turn consists of two possible rolls. On the first roll, the
user is given the ability to save a roll with a checkbox, and no scoring is
performed. On the second roll, there are no checkboxes (because the user
will need to start with all fresh dice on the next turn) and the program keeps
track of the player's score by adding money for various combinations.

The $secondRoll variable is used to keep track of whether the user is on
the second roll. I chose to give it the value TRUE when the user is on the
second roll and FALSE when on the first roll. If $secondRoll is TRUE, the
program will call the evaluate() function, which will tally any losses or
winnings. Regardless, I inform the user which roll it is, and change the value
of $secondRoll so it reflects what should happen the next time this
program is called (which will happen when the user clicks on the Submit
button).

Making the rollDice() Function
The job of the rollDice() function is—well—to roll the dice. It's a
somewhat long function, so I'll print it all out for you here, then I'll explain it in
smaller chunks. Essentially, this function builds an HTML table based on five
die rolls. It is able to determine if the user has chosen to keep any previous
dice, and only rolls a new die if the user did not choose to keep it. If it is the
first roll, the program prints a checkbox, which allows the user to select a die
to keep.
function rollDice(){
 global $die, $secondRoll, $keepIt;

 print "<table border = 1><td><tr>";

 for ($i = 0; $i < 5; $i++){
 if ($keepIt[$i] == ""){
 $die[$i] = rand(1, 6);
 } else {
 $die[$i] = $keepIt[$i];
 } // end if
 $theFile = "die" . $die[$i] . ".jpg";

 //print out dice images
 print <<<HERE
 <td>
 <img src = "$theFile"
 height = 50
 width = 50>

HERE;
 //print out a checkbox on first roll only
 if ($secondRoll == FALSE){
 print <<<HERE
 <input type = "checkbox"
 name = "keepIt[$i]"
 value = $die[$i]>
 </td>

HERE;

 } // end if
 } // end for loop

 //print out submit button and end of table
 print <<<HERE
 </tr></td>
 <tr>
 <td colspan = "5">
 <center>
 <input type = "submit"
 value = "roll again">
 </center>
 </td>
 </tr>
 </table>

HERE;

} // end rollDice

The checkboxes that appear sometimes are special. The general strategy for
them is this: If it's the first turn, I'll print out a checkbox under each die. The
checkboxes are all called keepIt, and all have an index. When PHP sees
these variables with the same name but different indices, it will automatically
create an array. Checkboxes in PHP are a little different than some of the
other form elements, because they only send a value if they are checked.
Any checkbox the user does not check will not be passed to the program. If
the checkbox has been checked, the value associated with that checkbox
will be passed to the program.

Rolling the Dice if Necessary
The program uses two arrays to keep track of the dice. The $die array is
used to store the current values of all the dice. The $keepIt array will
contain no values unless the user has checked the corresponding checkbox
(which will only happen on the first roll, because the checkboxes will not be
printed on the second roll).
if ($keepIt[$i] == ""){
 $die[$i] = rand(1, 6);
 } else {
 $die[$i] = $keepIt[$i];
 } // end if
 $theFile = "die" . $die[$i] . ".jpg";

For each die, if the user chose to keep the previous value, that previous
value will be stored in the appropriate element of the $keepIt array. If so,
the $keepIt value will be transferred over to the $die array. Otherwise, the
program will roll a new random value for the die.

Printing Out the Table Contents
Once the function has determined a value for each die (by copying it from
$keepIt or rolling a new value as appropriate) it is time to print out the
image corresponding to each die.
//print out dice images
 print <<<HERE
 <td>
 <img src = "$theFile"
 height = 50
 width = 50>

HERE;
 //print out a checkbox on first roll only
 if ($secondRoll == FALSE){
 print <<<HERE
 <input type = "checkbox"
 name = "keepIt[$i]"
 value = $die[$i]>
 </td>

HERE;

 } // end if

If it's the first roll, the function also prints out the keepIt checkbox
corresponding to this die. Note how the name of the checkbox will
correspond to the die name. (Remember, the value $i will be translated to a
number before the HTML page is printed.) The value of the current die is
stored as the value of the keepIt checkbox.

Printing Up the End of the Table
After the loop that rolls and prints out the dice, it's a simple matter to print the
Submit button and the end of table HTML.
//print out submit button and end of table
 print <<<HERE
 </tr></td>
 <tr>
 <td colspan = "5">
 <center>
 <input type = "submit"
 value = "roll again">
 </center>
 </td>
 </tr>
 </table>

HERE;

Note that since no action was specified in the form, PHP will default to the
same page that contains the form. This is convenient for programs like this

TRICK If you're still baffled, that's okay. It can be hard to see how all this works
together. It might help to run the program a couple of times and look
carefully at the HTML source that's being generated. To fully understand
a PHP program, you can't always look at it simply on the surface as the
end user will. You may need to see the HTML elements that are hidden
to the user to fully understand what's going on.

that call themselves repeatedly.

Creating the evaluate() Function
The purpose of the evaluate() function is to examine the $die array and
see if the user has achieved patterns worthy of reward. Again, I'll print out
the entire function here, and then show you some highlights below.
function evaluate(){
 global $die, $cash;
 //set up payoff
 $payoff = 0;

 //subtract some money for this roll
 $cash -= 2;

 //count the dice
 $numVals = array(6);
 for ($theVal = 1; $theVal <= 6; $theVal++){
 for ($dieNum = 0; $dieNum < 5; $dieNum++){
 if ($die[$dieNum] == $theVal){
 $numVals[$theVal]++;
 } // end if
 } // end dieNum for loop
 } // end theVal for loop

 //print out results
 // for ($i = 1; $i <= 6; $i++){
 // print "$i: $numVals[$i]
\n";
 // } // end for loop

 //count how many pairs, threes, fours, fives
 $numPairs = 0;
 $numThrees = 0;
 $numFours = 0;
 $numFives = 0;

 for ($i = 1; $i <= 6; $i++){
 switch ($numVals[$i]){
 case 2:
 $numPairs++;
 break;
 case 3:
 $numThrees++;
 break;
 case 4:
 $numFours++;
 break;
 case 5:
 $numFives++;
 break;
 } // end switch
 } // end for loop

 //check for two pairs
 if ($numPairs == 2){
 print "You have two pairs!
\n";
 $payoff = 1;
 } // end if

 //check for three of a kind and full house
 if ($numThrees == 1){
 if ($numPairs == 1){
 //three of a kind and a pair is a full house
 print "You have a full house!
\n";
 $payoff = 5;
 } else {
 print "You have three of a kind!
\n";
 $payoff = 2;
 } // end 'pair' if
 } // end 'three' if

 //check for four of a kind
 if ($numFours == 1){
 print "You have four of a kind!
\n";
 $payoff = 5;
 } // end if

 //check for five of a kind
 if ($numFives == 1){
 print "You got five of a kind!
\n";
 $payoff = 10;
 } // end if

 //check for flushes
 if (($numVals[1] == 1)
 && ($numVals[2] == 1)
 && ($numVals[3] == 1)
 && ($numVals[4] == 1)
 && ($numVals[5] == 1)){
 print "You have a flush!
\n";
 $payoff = 10;
 } // end if

 if (($numVals[2] == 1)
 && ($numVals[3] == 1)
 && ($numVals[4] == 1)
 && ($numVals[5] == 1)
 && ($numVals[6] == 1)){
 print "You have a flush!
\n";
 $payoff = 10;

 } // end if
 print "You bet 2
\n";
 print "Payoff is $payoff
\n";
 $cash += $payoff;

} // end evaluate

The general strategy of the evaluate() function is to subtract two dollars
for the player's bet each time. (Change this to make the game easier or
harder.) Then I created a new array called $numVals, which tracks how
many times each possible value appears. Analyzing the $numVals array is
an easier way to track the various scoring combinations than looking directly
at the $die array. The rest of the function checks each of the possible
scoring combinations and calculates an appropriate payoff.

Counting Up the Dice Values
When you think about the various scoring combinations in this game, it's

important to know how many of each value the user rolled. The user will get
points for pairs, three, four, and five of a kind, and flushes (five values in a
row). I made a new array called $numVals which has six elements.
$numVals[1] will contain the number of ones the user rolled. $numVals
[2] shows how many twos, and so on.
//count the dice
 for ($theVal = 1; $theVal <= 6; $theVal++){
 for ($dieNum = 0; $dieNum < 5; $dieNum++){
 if ($die[$dieNum] == $theVal){
 $numVals[$theVal]++;
 } // end if
 } // end dieNum for loop
 } // end theVal for loop

 //print out results
 // for ($i = 1; $i <= 6; $i++){
 // print "$i: $numVals[$i]
\n";
 // } // end for loop

To build the $numVals array, I stepped through each possible value (1
through 6) with a for loop. I then used another for loop to look at each die
and determine if it showed the appropriate value. (In other words, I checked
for ones the first time through the outer loop, then twos, then threes, and so
on.) If I found the current value, I incremented $numVals[$theVal]
appropriately.

Notice the lines at the end of this segment that are commented out. There
was no need to move on with the scorekeeping code if the $numVals array
was not working as expected, so I put in a quick loop that would tell me how
many of each value the program found. This was a quick way to make sure
my program was working properly before I added new functionality to it. It's
smart to periodically check your work and make sure that things are working
as you expected. When things were working correctly, I decided to place
comments in front of each line to temporarily turn it off. By doing this, I
removed the code, but it is still there if something goes wrong and I need to
look at the $numVals array again.

Counting Up Pairs, Twos, Threes, Fours, and Fives
The $numVals array has most of the information I need, but it's not quite in
the right format yet. The user will earn cash for pairs, and for three, four, and
five of a kind. To check for these conditions, I'll use some other variables and
another loop to look at $numVals.
 //count how many pairs, threes, fours, fives
 $numPairs = 0;
 $numThrees = 0;
 $numFours = 0;
 $numFives = 0;

 for ($i = 1; $i <= 6; $i++){
 switch ($numVals[$i]){
 case 2:
 $numPairs++;
 break;
 case 3:
 $numThrees++;
 break;
 case 4:
 $numFours++;

 break;
 case 5:
 $numFives++;
 break;
 } // end switch
 } // end for loop

First, I created variables to track pairs, and threes, fours, and fives of a kind.
I initialized all these variables to zero. I then stepped through the $numVals
array to see how many of each value occurred. If, for example, the user
rolled 1, 1, 5, 5, 5, $numVals[1] will equal 2 and $numVals[5] will equal
3. After the switch statement executes, $numPairs will equal 1 and
$numThrees will equal 1. All the other $num variables will still contain zero.
Creating these variables will make it very easy to determine which scoring
situations (if any) have occurred.

Looking for Two Pairs
All the work setting up the scoring variables pays off, because it's now very
easy to determine when a scoring condition has occurred. I chose to award
the user one dollar for two pairs (and nothing for one pair.) If the value of
$numPairs is 2, the user has gotten two pairs, and the $payoff variable is
given the value 1.
 //check for two pairs
 if ($numPairs == 2){
 print "You have two pairs!
\n";
 $payoff = 1;
 } // end if

Of course, you're welcome to change the payoffs as you wish. As it stands,
this game is incredibly generous, but that makes it fun for the user.

Looking for Three of a Kind and Full House
I decided to combine the checks for three of a kind and full house (which is
three of a kind and a pair). The code first checks for three of a kind by
looking at $numThrees. If the user has three of a kind, it then checks for a
pair. If both these conditions are true, it's a full house, and the user is
rewarded appropriately. If there isn't a pair, there is still a (meager) reward
for the three of a kind.
 //check for three of a kind and full house
 if ($numThrees == 1){
 if ($numPairs == 1){
 //three of a kind and a pair is a full house
 print "You have a full house!
\n";
 $payoff = 5;
 } else {
 print "You have three of a kind!
\n";
 $payoff = 2;
 } // end 'pair' if
 } // end 'three' if

Checking for Four and Five of a Kind
Checking for four and five of a kind is trivial. All that is necessary is to look at
the appropriate variables.
 //check for four of a kind
 if ($numFours == 1){
 print "You have four of a kind!
\n";

 $payoff = 5;
 } // end if

 //check for five of a kind
 if ($numFives == 1){
 print "You got five of a kind!
\n";
 $payoff = 10;
 } // end if

Checking for Straights
Straights are a little trickier, because there are two possible straights. The
player could have the values 1–5 or 2–6. To check these situations, I used
two compound conditions.
 //check for straights
 if (($numVals[1] == 1)
 && ($numVals[2] == 1)
 && ($numVals[3] == 1)
 && ($numVals[4] == 1)
 && ($numVals[5] == 1)){
 print "You have a straight!
\n";
 $payoff = 10;
 } // end if

 if (($numVals[2] == 1)
 && ($numVals[3] == 1)
 && ($numVals[4] == 1)
 && ($numVals[5] == 1)
 && ($numVals[6] == 1)){
 print "You have a straight!
\n";
 $payoff = 10;

Notice how each if statement has a condition made of several sub-
conditions joined by the && operator. The && operator is called a boolean
and operator. You can read it as "and." The condition will be evaluated to
true only if all the sub conditions are true.

The two conditions are very similar to each other. They simply check the two
possible flush situations.

Printing Out the Results
The last function in the program prints out variable information to the user.
The $cash value describes the user's current wealth. Two hidden elements
are used to store information the program will need on the next run. The
secondRoll element contains a true or false value indicating whether the
next run should be considered the second roll. The cash element describes
how much cash should be attributed to the player on the next turn.
function printStuff(){
 global $cash, $secondRoll;

 print "Cash: $cash\n";

 //store variables in hidden fields
 print <<<HERE
 <input type = "hidden"
 name = "secondRoll"
 value = "$secondRoll">

 <input type = "hidden"
 name = "cash"
 value = "$cash">

HERE;
} // end printStuff

Summary
You are beginning to round out your basic training as a programmer. You
have added rudimentary looping behavior to your bag of tricks. Your
programs can repeat based on conditions you establish. You know how to
build for loops that work forwards, backwards, and by skipping values. You
also know how to create while loops. You know the guidelines for creating
a well-behaved loop. You know how to form arrays manually and with the
array() directive. You can step through all elements of an array using a
loop. You learned how your program can keep track of persistent variables
by storing them in form fields in your output pages. You've put all these skills
together to build an interesting game. In Chapter 5, you'll extend your ability
to work with arrays and loops by building more powerful arrays and using
specialized looping structures.

Challenges
1. Modify the poker dice game in some way. Add a custom

background, change the die images, or modify the payoffs to
balance the game to your liking.

2. Write the classic "I'm thinking of a number" game. Have the
computer randomly generate a number, then let the user guess
its value. Tell the user if he or she is too high, too low, or correct.
When the user guesses correctly, tell how many turns it has
been. No arrays are necessary for this game, but it will be
necessary to store values in hidden form elements.

3. Write the guessing game in reverse. This time the user generates
a random number between 1 and 100 and the computer guesses
the number. Let the user choose from too high, too low, or
correct. Your algorithm should always be able to guess the
number in seven turns or less.

4. Write a program that deals out a random poker hand. Use
playing card images from http://waste.org/~oxymoron/cards/ or
another source. Your program does not need to score the hand.
It simply needs to deal out a hand of five random cards. Use an
array to handle the deck.

Chapter 5: Better Arrays and String
Handling

Overview
So far, you have learned quite a bit about how to work with information
in your PHP programs. In this chapter, you will learn some important
new skills to improve the ways you work with data. You will learn about
some more sophisticated ways to work with arrays, and how to
manage text information with more flair. Specifically, you will learn how
to:

Manage arrays with the foreach loop.

Create and use associative arrays.

Extract useful information from some of PHP's built-in arrays.

Build basic two-dimensional arrays.

Build two-dimensional associative arrays.

Break a string into smaller segments.

Search for one string inside another.

Introducing the Word Search Creator
By the end of this chapter, you will be able to create a fun program that
generates word search puzzles. The user will enter a series of words into a
list box, as shown in Figure 5.1.

Figure 5.1: The user enters a list of words, and a size for the finished
puzzle.

The program then tries to generate a word search based on the user's word
list. (It isn't always possible, but the program can usually generate a legal
puzzle.) One possible solution for the word list shown in Figure 5.1 is
demonstrated in Figure 5.2.

Figure 5.2: This puzzle contains all the words in the
list.

If desired, the program can also generate an answer key based on the
puzzle. This capability is shown in Figure 5.3.

Figure 5.3: Here's the answer key for the puzzle.

The secret to the word find game (and indeed most computer programs) is
the way the data is handled. Once I had determined a good scheme for
working with the data in the program, the actual programming wasn't too
tough.

Using the foreach loop to Work with an Array
As I mentioned in Chapter 4, "Loops and Arrays: The Poker Dice Game,"
for loops and arrays are natural companions. In fact, PHP supplies a
special kind of loop that makes it even easier to step through each element
of an array.

Introducing the foreach.php Program
The program shown in Figure 5.4 illustrates how the foreach loop works.

Figure 5.4: Although it looks just like normal HTML, this page was
created with an array and a foreach loop.

The HTML page is unremarkable, but it was generated by surprisingly simple
code.
<html>
<head>
<title>Foreach Demo</title>
</head>
<body>
<h1>Foreach Demo</h1>
<?

$list = array("alpha", "beta", "gamma", "delta", "epsilon");

print "\n";
foreach ($list as $value){
 print " $value\n";
} // end foreach
print "\n";

?>
</body>
</html>

All the values that will be in the list are created in the $list variable using
the array function.

The foreach loop works a lot like a for loop, except it is a bit simpler. The
first parameter of the foreach construct is an array (in this case, $list).

The keyword as then indicates the name of a variable that will hold each
value in turn. In this case, the foreach loop will step through the $list
array as many times as necessary. Each time through the loop, the function
will populate the $value variable with the current member of the $list
array. In essence, this foreach loop:
foreach ($list as $value){
 print " $value\n";
} // end foreach

works just like the following traditional for loop:
for ($i = 0; $i < length($list); $i++);
 $value = $list[$i];
 print " $value\n";
} // end for loop

The foreach loop can be an extremely handy shortcut for stepping through
each value of an array. Since this is a common task, knowing how to use the
foreach loop is an important skill. As you learn some other kinds of arrays,
you'll see how to modify the foreach loop to handle these other array
styles.

TRICK The main difference between a foreach loop and a for loop is the
presence of the index variable ($i in this example). If you're using a
foreach loop and you need to know the index of the current element,
you can use the key() function.

Creating an Associative Array
PHP is known for its extremely flexible arrays. You can easily generate a
number of interesting and useful array types in addition to the ordinary
arrays you've already made. One of the handiest types of arrays is called an
"associative array."

While it sounds complicated, an associative array is much like a normal
array. While regular arrays rely on numeric indices, an associative array has
a string index. Figure 5.5 shows a page created with two associative arrays.

Figure 5.5: This page uses associative arrays to relate countries and
states to their capital cities.

Examining the assoc.php Program
Imagine that you want to store a list of capital cities. You could certainly
store the cities in an array. However, if your main interest is in the
relationship between a state and its capital, it could be difficult to maintain
the relationship using arrays. In this particular instance, it would be nice if
you could use the name of the state as the array index rather than a number.

Building an Associative Array
Here is the code from assoc.php that generates the array of state capitals:
$stateCap["Alaska"] = "Juneau";
$stateCap["Indiana"] = "Indianapolis";
$stateCap["Michigan"] = "Lansing";

The associative array is just like a normal array, except the index values are
strings. Note that the indices must be inside quotes. Once you have created
an associative array, it is used much like a normal array, as well.

IN THE REAL WORLD

If all this "associative array" talk is making you dizzy, don't panic. It's
actually just a new name for something you're very familiar with. Think
about the way HTML attributes work. Each tag has a number of
attributes that you can use in any order. For example, a standard
button might look like this:

<input type = "button"
 value = "Save the world.">

This button has two attributes. Each attribute is made up of a
name/value pair. The keywords "type" and "value" are names(or
indices, or keys, depending on how you want to think of it) and the
terms "button" and "Save the world." are the values associated with
those names. CSS uses a different syntax for exactly the same idea.
The CSS element
p {background-color:red;
 color:yellow;
 font-size:14pt}

indicates a series of modifications to the paragraph tag. While the
syntax is different, the same pattern applies. The critical part of a CSS
definition is a list of name/ value pairs.

There's one more place associative arrays naturally pop up. As
information comes into your program from an HTML form, it comes in
as an associative array. The name of each element becomes an index,
and the value of that form element is translated to the value of the array
element. Later in this chapter you'll see how you can take advantage of
this.

An associative array is simply a data structure used when the
name/value relationship is the easiest way to work with some kind of
data.

print "Alaska: ";
print $stateCap["Alaska"];
print "

";

Once again, note that the index of the array is a quoted string. The
associative form is terrific for data like the state capital information. In
essence, it lets you "look up" the capital city if you know the state name.

Building an Associative Array with the array()
Function
If you know the values you want to have in your array, you can use the
array() function to build an associative array. However, building
associative arrays requires a slightly different syntax than the garden variety
arrays you encountered in the last chapter. I build the $worldCap array
using the array() syntax:
$worldCap = array(
 "Albania"=>"Tirana",
 "Japan"=>"Tokyo",
 "United States"=>"Washington DC"
);

When you are building an ordinary array, the array() function requires the
data, but doesn't require you to specify the indices. It automatically
generates the index of each element by grabbing the next available integer.
In an associative array, you are responsible for providing both the data and
the index. The general format for this assignment uses a special kind of
assignment operator. The => operator indicates an element holds some kind
of value. I generally read it as "holds," so you can say "Japan holds Tokyo."
In other words, "Japan" => "Tokyo" indicates that PHP should generate an
array element with the index "Japan" and store the value "Tokyo" in that

element. You can access the value of this array just like any other
associative array.
print "Japan: ";
print $worldCap["Japan"];
print "

";

Using foreach with Associative Arrays
The foreach loop is just as useful with associative arrays as it is with the
vanilla kind. However, it uses a slightly different syntax. Take a look at this
code from the assoc.php page:
foreach ($worldCap as $country => $capital){
 print "$country: $capital
\n";
} // end foreach

A foreach loop for a regular array uses only one variable because the
index can be easily calculated. In an associative array, each element in the
array will have a unique index and value. The associative form of the
foreach loop takes this into account by indicating two variables. The first
variable holds the index. The second variable refers to the value associated
with that index. Inside the loop, you can refer to the current index and value
using whatever variable names you designated in the foreach structure.
Each time through the loop, you will be given a name/value pair. In this
example, the name will be stored in the variable $country, because all the
indices in this array are names of countries. Each time through the loop,
$country will have a different value. In each iteration, the value of the
$capital variable contains the array value corresponding to the current
value of $country.

TRAP Unlike traditional arrays, you cannot rely on associative arrays to return in
any particular order when you use a foreach loop to access elements of
the array. If you need elements to show up in a particular order, you'll need
to call them explicitly.

Using Built-In Associative Arrays
Associative arrays are extremely handy because they reflect a kind of
information storage that is very frequently used. In fact, you've been using
associative arrays in disguise ever since Chapter 2 of this book. Whenever
your PHP program receives data from a form, that data is actually stored in a
number of associative arrays for you. A variable was automatically created
for you by PHP for each form element. However, you can't always rely on
that particular bit of magic. Increasingly, server administrators have been
turning this "automatic variable creation" off for security reasons. In fact, the
default setup for PHP is now to have this behavior (with the odd name
render_globals) turned off. It's handy to know how PHP gets data from
the form as a good example of associative arrays. It's also useful because
you may find yourself needing to know how to get form data without the
variables being created explicitly for you.

Introducing the formReader.php Program
The formReader.php program is actually one of the first PHP programs I
ever wrote, and it's one I use frequently. It's very handy, because it can take
the input from any HTML form and report back the names and values of
each of the form elements on the page. To illustrate, Figure 5.6 shows a
typical Web page with a form.

Figure 5.6: This form has three basic fields. It will call the
formReader.php program.

When the user clicks the Submit Query button, formReader responds with
some basic diagnostics, as you can see from Figure 5.7.

Figure 5.7: The formReader program determines each field and its
value.

Reading the $_REQUEST Array
The formReader program does its work by taking advantage of an
associative array built into PHP. Until now, you've simply relied on PHP to
create a variable for you based on the input elements of whatever form calls
your program. This automatic variable creation is called
register_globals. While this is an extremely convenient feature, it can
be dangerous, so some administrators turn it off. Even when
register_globals is active, it can be useful to know other ways of
accessing the information that comes from the form.

All the fields sent to your program are automatically stored in a special
associative array called $_REQUEST. Each field name on the original form
becomes a key, and the value of that field becomes the value associated
with that key. If you have a form with a field called userName, you can get
the value of the field by calling $_REQUEST["userName"].

The $_REQUEST array is also useful because you can use a foreach loop
to quickly determine the names and values of all form elements known to the
program. The source code of the formReader.php program illustrates how
this is done.
<!doctype html public "-//W3C//DTD HTML 4.0 //EN">
<html>
<head>
 <title>Form Reader</title>
</head>
<body>
<h1>Form Reader</h1>
<h3>Here are the fields I found on the form</h3>
<?
print <<<HERE
<table border = 1>
<tr>
 <th>Field</th>
 <th>Value</th>
</tr>
HERE;

foreach ($_REQUEST as $field => $value){
 print <<<HERE
 <tr>
 <td>$field</td>
 <td>$value</td>
 </tr>
HERE;
} // end foreach
print "</table>\n";

?>

</body>
</html>

Note how I stepped through the $_REQUEST array. Each time through the
foreach loop, the current field name is stored in the $field variable, and
the value of that field is stored in $value.

IN THE REAL WORLD

PHP provides some other variables related to $_REQUEST. The
$HTTP_POST_VARS array holds all the names and values sent through a
POST request, and $HTTP_GET_VARS array holds names and values
sent through a GET request. You can use this feature to make your
code more secure. If you create variables only from the
$HTTP_POST_VARS array, for example, all input sent via the GET method
will be ignored. This will make it harder for users to forge data by
putting field names in the browser's address bar. Of course, a clever
user can still write a form that contains bogus fields, so you always
have to be a little suspicious whenever you get any data from the user.

TRICK I use this script when I'm debugging my programs. If I'm not getting the
form elements I expected from a form, I'll put a loop like this in at the top
of my program to make sure I know exactly what's being sent to the
program. Often this type of procedure can help you find misspellings or
other bugs.

Creating a Multi-Dimensional Array
Arrays are very useful structures for storing various kinds of data into the
computer's memory. Normal arrays are much like lists. Associative arrays
are like name/value pairs. A third special type of array acts much like a table
of data. For instance, imagine you were trying to write a program to help
users determine the distance between major cities. You might start on paper
with a table like Table 5.1:

It's reasonably common to work with this sort of tabular data in a computer
program. PHP (and most languages) provides a special type of array to
assist in working with this kind of information. The basicMultiArray
program featured in Figures 5.8 and 5.9 illustrates how a program can
encapsulate a table.

Figure 5.8: The user can choose origin and destination cities from select
groups.

Table 5.1: DISTANCES BETWEEN MAJOR CITIES

 Indianapolis New York Tokyo London

Indianapolis 0 648 6476 4000

New York 648 0 6760 3470

Tokyo 6476 6760 0 5956

London 4000 3470 5956 0

Figure 5.9: The program will look up the distance between the cities and
return an appropriate value.

Building the HTML for the Basic Multi-Dimensional
Array
Using a two-dimensional array is actually pretty easy if you plan well. I first
wrote out my table of data on paper (actually, I have a white board in my
office for exactly this kind of situation). I assigned a numeric value to each
city, so

Indianapolis = 0

New York = 1

Tokyo = 2

London = 3

This will make it easier to keep track of the cities later on.

The HTML code builds the two select boxes and a Submit button in a form.
<!doctype html public "-//W3C//DTD HTML 4.0 //EN">
<html>
<head>
 <title>Basic multi-dimensional array</title>
</head>
<body>
<h1>Basic 2D Array</h1>

<form action = basicMultiArray.php>
<table border = 1>
<tr>
 <th>First city</th>
 <th>Second city</th>
<tr>

<!-- note each option value is numeric -->

<tr>
 <td>
 <select name = "cityA">

 <option value = 0>Indianapolis</option>
 <option value = 1>New York</option>
 <option value = 2>Tokyo</option>
 <option value = 3>London</option>
 </select>
 </td>

 <td>
 <select name = "cityB">
 <option value = 0>Indianapolis</option>
 <option value = 1>New York</option>
 <option value = 2>Tokyo</option>
 <option value = 3>London</option>
 </select>
 </td>
</tr>

<tr>
 <td colspan = 2>
<input type = "submit"
 value = "calculate distance">
 </td>
</tr>
</table>
</body>
</html>

Recall that when the user submits this form, it will send two variables. The
cityA variable will contain the value property associated with whatever city
the user selected, and cityB will likewise contain the value of the currently
selected destination city. I carefully set up the value properties so they would
coordinate with each city's numeric index. If the user chooses New York as
the origin city, the value of $cityA will be 1, because I decided that New
York would be represented by the value 1. The reason I'm giving numeric
values is because the information will all be stored in arrays, and normal
arrays take numeric indices. (In the next section I'll show you how to do the
same thing with associative arrays.)

Responding to the Distance Query
The PHP code that determines the distance between cities is actually quite
simple once the arrays are in place.
<!doctype html public "-//W3C//DTD HTML 4.0 //EN">
<html>
<head>
 <title>Distance calculator</title>
</head>
<body>
<?
$city = array (
 "Indianapolis",
 "New York",
 "Tokyo",
 "London"
);

$distance = array (
 array (0, 648, 6476, 4000),
 array (648, 0, 6760, 3470),

 array (6476, 6760, 0, 5956),
 array (4000, 3470, 5956, 0)
);

$result = $distance[$cityA][$cityB];
print "<h3>The distance between ";
print "$city[$cityA] and $city[$cityB]";
print " is $result miles.</h3>";

?>
</body>
</html>

Storing City Names in the $city Array
I have two arrays in this program. The $city array is a completely normal
array of string values. It contains a list of city names. I carefully set up the
array so the numeric values I assigned to the city would correspond to the
index in this array. Remember that array indices usually start with zero, so
Indianapolis is zero, New York is one, and so on.

The user won't care that Indianapolis is city 0, so I used the $city array to
assign names to the various cities. If the user chose city zero (Indianapolis)
for the $cityA field, I can refer to the name of that city as $city[$cityA]
because $cityA will contain the value 0 and $city[0] is "Indianapolis."

Storing Distances in the $distance Array
The distances don't fit in a list, because it requires two values to determine a
distance. You must know which city you are coming from and which city you
are going to in order to calculate a distance. These two values correspond to
rows and columns in the original table. Look again at the code that
generates the $distance array.
$distance = array (
 array (0, 648, 6476, 4000),
 array (648, 0, 6760, 3470),
 array (6476, 6760, 0, 5956),
 array (4000, 3470, 5956, 0)
);

The $distance array is actually an array full of other arrays! Each of the
inner arrays corresponds to distance from a certain destination city. For
example, since Indianapolis is city 0, the first (zeroth?) inner array refers to
the distance between Indy and the other cities. If it helps, you can think of
each inner array as a row of a table, and the table as an array of rows. It
might sound complicated to build a two-dimensional array, but it actually is
more natural than you may think. If you compare the original data in Table
5.1 with the code that creates the two-dimensional array, you'll see that all
the numbers are in the right place.

Getting Data from the $distance Array

TRICK There's no need to stop at two dimensions. It's possible to build arrays
with three, four, or any other number of dimensions. However, it becomes
difficult to visualize how the data works with these complex arrays.
Generally, one-and two dimensions are as complex as you'll want your
ordinary arrays to get. For more complex data types, you'll probably want
to look towards file manipulation tools and relational data structures,
which you'll learn throughout the rest of this book.

Once data is stored in a two-dimensional array, it is reasonably easy to
retrieve. To look up information in a table, you need to know the row and
column. A two-dimensional array requires two indices, one for the row, and
one for the column. To find the distance from Tokyo (City number 2) to New
York (City number 1), you can simply refer to $distance[2][1]. The code for
the demo program gets the index values from the form:
$result = $distance[$cityA][$cityB];

This value is stored in the variable $result and then sent to the user.

Making a Two-Dimensional Associative Array
You can also create two-dimensional associative arrays. It takes a little more
work to set up this array, but it can be worth it because the name-value
relationship eliminates the need to keep track of numeric identifiers for each
element. Another version of the multiArray program illustrates how to use
associative arrays to generate the same city distance program.

Building the HTML for the Associative Array
The HTML page for the associative version of this program is much like the
indexed version, except for one major difference. See if you can spot the
difference in the source code.
<!doctype html public "-//W3C//DTD HTML 4.0 //EN">
<html>
<head>
<title>2D Array</title>
</head>
<body>
<h1>2D Array</h1>

<form action = multiArray.php>
<table border = 1>
<tr>
 <th>First city</th>
 <th>Second city</th>
<tr>

<!-- note each option value is a string -->

<tr>
 <td>
 <select name = "cityA">
 <option value = "Indianapolis">Indianapolis</option>
 <option value = "New York">New York</option>
 <option value = "Tokyo">Tokyo</option>
 <option value = "London">London</option>
 </select>
 </td>

 <td>
 <select name = "cityB">
 <option value = "Indianapolis">Indianapolis</option>
 <option value = "New York">New York</option>
 <option value = "Tokyo">Tokyo</option>
 <option value = "London">London</option>
 </select>
 </td>
</tr>

<tr>
 <td colspan = 2>
 <input type = "submit"
 value = "calculate distance">
 </td>

TRICK Since this program looks exactly like the basicMultiArray program to
the user, I am not showing the screen shots. All of the interesting
features of this program are in the source code.

</tr>
</table>

</body>
</html>

The only difference between this HTML page and the last one is the value
properties of the select objects. In this case, the distance array will be an
associative array, so it will not have numeric indices. Since the indices can
be text-based, I send the actual city name as the value for $cityA and
$cityB.

Responding to the Query
The code for the associative response is interesting, because it spends a lot
of effort to build the fancy associative array. Once the array is created, it's
very easy to work with.
<!doctype html public "-//W3C//DTD HTML 4.0 //EN">
<html>
<head>
<title>Distance Calculator</title>
</head>
<body>
<h1>Distance Calculator</h1>

<?
//create arrays
$indy = array (
 "Indianapolis" => 0,
 "New York" => 648,
 "Tokyo" => 6476,
 "London" => 4000
);
$ny = array (
 "Indianapolis" =>648,
 "New York" => 0,
 "Tokyo" => 6760,
 "London" => 3470
);
$tokyo = array (
 "Indianapolis" => 6476,
 "New York" => 6760,
 "Tokyo" => 0,
 "London" => 5956
);
$london = array (
 "Indianapolis" => 4000,
 "New York" => 3470,
 "Tokyo" => 5956,
 "London" => 0
);

//set up master array
$distance = array (
 "Indianapolis" => $indy,
 "New York" => $ny,
 "Tokyo" => $tokyo,
 "London" => $london
);

$result = $distance[$cityA][$cityB];
print "<h3>The distance between $cityA and $cityB is $result miles.</h3>";

?>

</body>
</html>

Building the Two-Dimensional Associative Array
The basic approach to building a two-dimensional array is the same whether
it's a normal array or uses associative indexing. Essentially, you create each
row as an array, and then build an array of the existing arrays. In the
traditional array, the indices were automatically created. The development of
an associative array is a little more complex, because you need to specify
the key for each value. As an example, look at the code used to generate the
$indy array:
$indy = array (
 "Indianapolis" => 0,
 "New York" => 648,
 "Tokyo" => 6476,
 "London" => 4000
);

Inside the array, I used city names as indices. The value for each index
refers to the distance from the current city (Indianapolis) to the particular
destination. The distance from Indianapolis to Indianapolis is zero, and the
distance from Indy to New York is 648, and so on.

I created an associative array for each city, and then put those associative
arrays together in a kind of mega-associative array:
//set up master array
$distance = array (
 "Indianapolis" => $indy,
 "New York" => $ny,
 "Tokyo" => $tokyo,
 "London" => $london
);

This new array is also an associative array, but each of its indices refers to
an array of distances.

Getting Data from the Two-Dimensional Associative
Array
Once the two-dimensional array is constructed, it's extremely easy to use.
The city names themselves are used as indices, so there's no need for a
separate array to hold city names. The data can be output in two lines of
code:
$result = $distance[$cityA][$cityB];
print "<h3>The distance between $cityA and $cityB is $result miles.</h3>";

TRICK If you wish, you can combine associative and normal arrays. It would be
possible to have a list of associative arrays and put them together in a
normal array, or vice-versa. PHPs array-handling capabilities allow for a

phenomenal level of control over your data structures.

Manipulating String Values
The Word Search program featured at the beginning of this chapter uses
arrays to do some of its magic, but arrays alone are not sufficient to handle
the tasks needed for this program. The word search program takes
advantage of a number of special string manipulation functions to work
extensively with text values. PHP has a huge number of string functions that
give you an incredible ability to fold, spindle, and mutilate string values.

Demonstrating String Manipulation with the Pig
Latin Translator
As a context for describing string manipulation functions, consider the
program featured in Figures 5.10 and 5.11. This program allows the user to
enter a phrase into a text box and converts the phrase into a bogus form of
Latin.

Figure 5.10: The pigify program lets the user type some text into a
text area.

Figure 5.11: The program translates immortal prose into incredible
silliness.

HINT If you're not familiar with pig Latin, it's a silly kid's game. Essentially, you

The pigify program will use a number of string functions to manipulate the
text.
<!doctype html public "-//W3C//DTD HTML 4.0 //EN">
<html>
<head>
 <title>Pig Latin Generator</title>
</head>
<body>
<h1>Pig Latin Generator</h1>
<?
if ($inputString == NULL){
 print <<<HERE
 <form>
 <textarea name = "inputString"
 rows = 20
 cols = 40></textarea>
 <input type = "submit"
 value = "pigify">
 </form>

HERE;
} else {
 //there is a value, so we'll deal with it

 //break phrase into array
 $words = split(" ", $inputString);
 foreach ($words as $theWord){
 $theWord = rtrim($theWord);
 $firstLetter = substr($theWord, 0, 1);
 $restOfWord = substr($theWord, 1, strlen($theWord));
 //print "$firstLetter) $restOfWord
 \n";
 if (strstr("aeiouAEIOU", $firstLetter)){
 //it's a vowel
 $newWord = $theWord . "way";
 } else {
 //it's a consonant
 $newWord = $restOfWord . $firstLetter . "ay";
 } // end if
 $newPhrase = $newPhrase . $newWord . " ";
 } // end foreach
 print $newPhrase;

} // end if

?>

</body>
</html>

Building the Form
This program uses a PHP page to create an input form and to respond
directly to the input. It begins by looking for the existence of the
$inputString variable. This variable will not exist the first time the user

take the first letter of each word, move it to the end of the word, and add"
ay." If the word begins with a vowel, simply end the word with" way."

gets to the page. In this situation, the program will build the appropriate
HTML page and await user input. After the user hits the Submit button, the
program will run again, but this time there will be a value in the
$inputString variable. The rest of the program uses string manipulation
functions to create a pig Latin version of the input string.

Using the Split Function to Break a String into an
Array
One of the first tasks is to break the entire string that comes from the user
into individual words. PHP provides a couple of interesting functions for this
purpose. The split() function takes a string and breaks it into an array
based on some sort of delimiter. The split() function takes two
arguments. The first argument is a delimiter and the second is a string to
break up. I want each word to be a different element in the array, so I use
space ("") as a delimiter. The following line takes the $inputString
variable and breaks it into an array called $words. Each word will be a new
element of the array.
$words = split(" ", $inputString);

Once the $word array is constructed, I stepped through it with a foreach
loop. I stored each word temporarily in $theWord inside the array.

Trimming a String with rtrim()
Sometimes when you split a string into an array, each element of the array
will still have the split character at the end. In the pig Latin game, there will
be a space at the end of each word, which can cause some problems later.
PHP provides a function called rtrim() which automatically removes
spaces, tabs, newlines, and other white space from the end of a string. I
used the rtrim() function to clean off any trailing spaces from the split
() operation, and returned the results back to $theWord.
$theWord = rtrim($theWord);

Finding a Substring with substr()
The behavior of the algorithm depends on the first character of each word. I'll
also need to know all the rest of the word without the first character. The
substr() function is useful for getting part of a string. It requires three
parameters. The first argument is the string you want to get a piece from.
The second parameter is which character you want to begin with (starting
with zero as usual), and the third parameter is how many characters you
want to extract.

I got the first letter of the word with this line:
$firstLetter = substr($theWord, 0, 1);

It gets one letter from $theWord starting at the beginning of the word
(position 0). I then stored that value in the $firstLetter variable.

It's not much more complicated to get the rest of the word:

TRICK In addition to rtrim(), PHP has ltrim(), which trims excess white
space from the beginning of a string, and trim(), which cleans up both
ends of a string. Also, there's a variation of the trim commands that
allows you to specify exactly which characters are removed.

$restOfWord = substr($theWord, 1, strlen($theWord) -1);

Once again, I need to extract values from $theWord. This time, I'll begin at
character 1 (which humans would refer to as the second character). I don't
know directly how many characters to get, but I can calculate it. I should
grab one less character than the total number of characters in the word. The
strlen() function is perfect for this operation, because it returns the
number of characters in any string. I can calculate the number of letters I
need with strlen($theWord) - 1. This new decapitated word is stored
in the $restOfWord variable.

Using strstr() to Search for One String Inside
Another
The next task is to determine if the first character of the word is a vowel.
There are a number of approaches to this problem, but perhaps the easiest
is to use a searching function. I created a string with all the vowels
("aeiouAEIOU") and then I searched for the existence of the $firstLetter
variable in the vowel string. The strstr() function is perfect for this task. It
takes two parameters. The first parameter is the string you are looking for
(given the adorable name "haystack" in the online documentation). The
second parameter is the string you are searching in (called the "needle"). To
search for the value of the $firstLetter variable in the string constant
"aeiouAEIOU", I used the following line:
if (strstr("aeiouAEIOU", $firstLetter)){

The strstr() function returns the value FALSE if the needle was not found
in the haystack. If the needle was found, it returns the position of the needle
in the haystack parameter. In this case, all I'm really concerned about is
whether $firstLetter is found in the list of variables. If so, it's a vowel,
which will change the way I modify the word.

Using the Concatenation Operator
Most of the time in PHP you can use string interpolation to combine string
values. However, sometimes you still need to use a formal operation to
combine strings. The process of combining two strings is called
concatenation. (I love it when simple ideas have complicated names.) The
concatenation operator in PHP is the period (.). In pig Latin, if a word begins
with a vowel, it should simply end with the string "way." I used string
concatenation to make this work.
$newWord = $theWord . "way";

When the word begins with a consonant, the formula for creating the new
word is slightly more complicated, but is still performed with string
concatenation.
$newWord = $restOfWord . $firstLetter . "ay";

Finishing Up the Pig Latin Program
Once I created the new word, I added it and a trailing space to the

TRICK Recent testing has shown that the concatenation method of building
strings is dramatically faster than interpolation. If speed is an issue, you
might want to use string concatenation rather than string interpolation.

$newPhrase variable. When the foreach loop has finished executing,
$newPhrase will contain the pig Latin translation of the original phrase.

Translating Between Characters and ASCII Values
Although it isn't necessary in the pig Latin program, the word search program
will require the ability to randomly generate a character. I'll do this by
randomly generating an ASCII value (ASCII is the code used to store
characters as binary numbers in the computer's memory) and translating that
number to the appropriate character. The ord() function is useful in this
situation. The upper case letters are represented in ASCII by numbers
between 65 and 90. To get a random upper-case letter, I can use the
following code:
$theNumber = random(65, 90);
$theLetter = ord($theNumber);

Returning to the Word Search Creator
By now you've learned all the skills you need to create the word find builder
program that debuted at the beginning of this chapter. The program is stored
in three files. First, the user enters a word list and puzzle information into an
HTML page. This page will call the main wordFind.php program, which
analyzes the word list, creates the puzzle, and prints it out. Finally, the user
will have the opportunity to print an answer key, which is created by a simple
PHP program.

Getting the Puzzle Data from the User
The wordFind.html page is the user's entry point into the word find
system. This page is a standard HTML form with a number of basic elements
in it.
<html>
<head>
 <title>Word Puzzle Maker</title>
</head>
<body>
<center>
<h1>Word Puzzle Maker</h1>

<form action = "wordFind.php"
 method = "post">
<h3>Puzzle Name</h3>
<input type = "text"
 name = "name"
 value = "My Word Find">
height: <input type = "text"
 name = "height"
 value = "10"
 size = "5">
width: <input type = "text"
 name = "width"
 value = "10"
 size = "5">

<h3>Word List</h3>
<textarea rows=10 cols=60 name = "wordList"></textarea>

Please enter one word per row, no spaces

<input type="submit" value="make puzzle">
</form>
</center>
</body>
</html>

The action property of the form points to the wordFind.php program, which
is the primary program in the system. Notice that I used the post method to
send data to the program. This is because I expect to be sending large
strings to the program, and the get method allows only small amounts of
data to be sent to the server.

The form features basic text boxes for the puzzle name, height, and width.

This data will be used to determine how the puzzle is built. The wordList
text area is expected to house a list of words, which will be used to create
the puzzle.

Setting up the Response Page
The bulk of the work in the wordFind system happens in the
wordFind.php page. This program has a small amount of HTML to set the
stage, but the vast bulk of this file is made up of PHP code.
<html>
<head>
<title>
Word Find
</title>
</head>

<body>

<?
// word Find
// by Andy Harris, 2003
// for PHP/MySQL programming for the Absolute Beginner
// Generates a word search puzzle based on a word list
// entered by user. User can also specify the size of
// the puzzle and print out an answer key if desired

Notice the comments at the beginning of the code. Since the code for this
program is a little bit more involved than most of the programs you have
seen before in this book, I have decided to comment it more carefully. It's a
really good idea to add comments to your programs so you can more easily
determine what they do. You'll be amazed how little you understand your
own code after you've been away from it a couple of days. Good comments
can make it much easier to maintain your code, and make it easier for others
to fix and improve your programs later. My comments here basically lay out
the plan for this program.

Working with the Empty Data Set
For testing purposes, I wrote the word find PHP page before I worried about
the HTML. For that reason, I simply added in default values for a word list
and for the other main variables that determine the board's layout (height,
width, and name). In a production version of the program, I don't expect the
PHP code will ever be called without an HTML page, but I left the default
values in place so you could see how they work.
if ($wordList == NULL){
 //make default puzzle
 $word = array(
 "ANDY",
 "HEATHER",
 "LIZ",
 "MATT",
 "JACOB"
);
 $boardData = array(
 width => 10,
 height => 10,
 name => "Generic Puzzle"
);

This code builds two arrays, which define the entire program. The $word
array holds the list of words to hide in the puzzle, and the $boardData
array is an associative array holding critical information about how the board
is to be created.

Of course, these are not the values I expect to use, because most of the
time this program will be called from an HTML form which will generate the
values. The next section of code fills up these variables if the program is
called from the appropriate form.

Building the Main Logic for the Program
The main logic for the program begins by retrieving the word list and puzzle
parameters from the user's form. Then it tries to convert the list into an array.
This type of text analysis is sometimes called parsing.

The program then repeatedly tries to build the board until it succeeds. Once
the program has successfully created the board, it creates an answer key,
then adds in the random letters with the addFoils() function. Finally, the
program prints out the completed puzzle.
} else {
 //get puzzle data from HTML form
 $boardData = array(
 width => $width,
 height => $height,
 name => $name
);

 //try to get a word list from user input
 if (parseList() == TRUE){
 $legalBoard = FALSE;

 //keep trying to build a board until you get a legal result
 while ($legalBoard == FALSE){
 clearBoard();
 $legalBoard = fillBoard();
 } // end while

 //make the answer key
 $key = $board;
 $keyPuzzle = makeBoard($key);

 //make the final puzzle
 addFoils();
 $puzzle = makeBoard($board);

 //print out the result page
 printPuzzle();

 } // end parsed list if
} // end word list exists if

As you look over this code, you should be able to tell the general flow of the
program even if you don't understand exactly how things will happen. The
main section of a well-defined program should give you a bird's eye view of
the action. Most of the details are delegated to functions. Most of the
remaining chapter is devoted to explaining how these functions work. Try to
make sure you've got the basicgist of the program's flow; then you'll see how
all of it is done.

Parsing the Word List
One important early task involves analyzing the word list that comes from the
user. The word list comes as one long string separated by newline (\n)
characters. The parseList() function converts this string into an array of
words. It has some other important functions too, including converting each
word to upper case, checking for words that will not fit in the designated
puzzle size, and removing unneeded carriage returns.
function parseList(){
 //gets word list, creates array of words from it
 //or return false if impossible

 global $word, $wordList, $boardData;

 $itWorked = TRUE;

 //convert word list entirely to upper case
 $wordList = strtoupper($wordList);

 //split word list into array
 $word = split("\n", $wordList);

 foreach ($word as $currentWord){
 //take out trailing newline characters
 $currentWord = rtrim($currentWord);

 //stop if any words are too long to fit in puzzle
 if ((strLen($currentWord) > $boardData["width"]) &&
 (strLen($currentWord) > $boardData["height"])){
 print "$currentWord is too long for puzzle";
 $itWorked = FALSE;
 } // end if

 } // end foreach
 return $itWorked;
} // end parseList

The first thing I did was use the strtoupper() function to convert the
entire word list into upper case letters. Word search puzzles always seem to
use capital letters, so I decided to convert everything to that format.

The long string of characters with newlines is not a useful format for our
purposes, so I converted the long string into an array called $word. The
split() function works perfectly for this task. Note that I split on the string
"\n". This is the newline character, so it should convert each line of the text
area into an element of the new $word array.

The next task was to analyze each word in the array with a foreach loop.
When I tested this part of the program, it became clear that sometimes the
trailing newline character was still there, so I used the rtrim() function to
trim off any unnecessary trailing white space.

If the user enters a word that is larger than the height or width of the puzzle
board, it will be impossible to create the puzzle, so I check for this situation
by comparing the length of each word to the height and width of the board.
Note that if the word is too long, I simply set the value of the $itWorked
variable to FALSE. Earlier in this function, I initialized the value of
$itWorked to TRUE. By the time the function is finished, $itWorked will

still contain the value TRUE if all the words were small enough to fit in the
puzzle. If any of the words were too large to fit, the value of $itWorked will
be false, and the program will not proceed.

Clearing the Board
The word search uses a crude but effective technique to generate legal
game boards. It creates random boards repeatedly until it finds one that is
legal. While this may seem like a wasteful approach, it is much easier to
program than many more sophisticated attempts, and produces remarkably
good results for simple problems such as the word search puzzle.

IN THE REAL WORLD

Although this program does use a "brute force" approach to find a
good solution, you'll see a number of ways the code is optimized to
make a good solution more likely. One example of this you've seen
already is the way the program stops if one of the words is too long to
fit in the puzzle. This prevents a long processing time while the
program tries to fit a word in the puzzle when it cannot be done. As you
go through the code, you'll see a number of other places where I do
some work to steer the algorithm towards good solutions and away
from pitfalls. Because of these efforts, you'll find that the program is
actually pretty good at finding word search puzzles unless there are
too many words or the game board is too small.

The game board will often be re-created several times during one program
execution. I needed a function that could initialize the game board or clean it
out easily. The game board is stored in a two-dimensional array called
$board. When the board is "empty," each cell will contain the period (.)
character. I chose this convention because it would still give me something
visible in each cell, and would give a character that represents an empty cell.
The clearBoard() function sets or resets the $board array so that it
contains a period in every cell.
function clearBoard(){
 //initialize board with a . in each cell
 global $board, $boardData;

 for ($row = 0; $row < $boardData["height"]; $row++){
 for ($col = 0; $col < $boardData["width"]; $col++){
 $board[$row][$col] = ".";
 } // end col for loop
 } // end row for loop
} // end clearBoard

This code is the classic nested for loop so common to two-dimensional
arrays. Note that I used for loops rather than foreach loops because I
was interested in the indices of the loops. The outer for loop steps through
the rows. Inside each row loop, another loop steps through each column. I
assigned the value "." to the $board array at the current $row and $col
locations. Eventually, every cell in the array will contain the value "."

TRICK I determined the size of the for loops by referring to the $boardData
associative array. Although there are a number of ways I could have
done this, I chose the associative array for several reasons. The most
important is clarity. It's easy for me to see by this structure that I'm
working with the height and width related to board data information.
Another advantage of using an associative array in this context is

Filling the Board
Of course, the purpose of clearing the board is to fill it in with the words from
the word list. This happens in two stages. The fillBoard() function
controls the entire process of filling up the whole board, but the details of
adding each word to the board are relegated to the addWord() function
(which you'll see next.)

The board is only complete if each word is added correctly. Each word is
added only if each of its letters is added without problems. The program
repeatedly calls fillBoard() as often as necessary to get a correct
solution. Each time fillBoard() runs, it may call addWord() as many
times as necessary until each word is added. The addWord() function in
turn keeps track of whether it is able to successfully add each character to
the board.

The general plan of the fillBoard() function is to generate a random direction
for each word, then tell the addWord() function to place the specified word in
the specified direction on the board. The looping structure for the fillBoard()
function is a little unique, because the loop could exit in two different ways. If
any of the words cannot be placed in the requested manner, the puzzle
generation will stop immediately, and the function will return the value
FALSE. However, if the entire word list is successfully placed on the game
board, the function should also stop looping, but should report the value
TRUE. There are a number of ways to achieve this effect, but I prefer often to
use a special Boolean variable for this purpose. Boolean variables are
variables meant to contain only the values true and false. Of course, PHP is
pretty easy-going about variable types, but your can make a variable act like
a Boolean simply by assigning it only the values TRUE or FALSE. In the
fillBoard() function, look at how the $keepGoing variable is used. It is
initialized to TRUE, and the function's main loop keeps running as long as
this is the case. However, the two conditions that can cause the loop to exit
(the addWord() function failed to place a word correctly, or the entire word
list has been exhausted) both cause the $keepGoing variable to become
FALSE. When this happens, the loop will stop, and the function will shortly
exit.
function fillBoard(){
 //fill board with list by calling addWord() for each word
 //or return false if failed

 global $word;
 $direction = array("N", "S", "E", "W");
 $itWorked = TRUE;
 $counter = 0;
 $keepGoing = TRUE;
 while($keepGoing){
 $dir = rand(0, 3);
 $result = addWord($word[$counter], $direction[$dir]);
 if ($result == FALSE){
 //print "failed to place $word[$counter]";
 $keepGoing = FALSE;
 $itWorked = FALSE;
 } // end if

convenience. Since the height, width, and board name are all stored in
the $boardData array, I could make a global reference to the
$boardData variable and all its values would come along. It's like
having three variables for the price of one.

 $counter++;
 if ($counter >= count($word)){
 $keepGoing = FALSE;
 } // end if
 } // end while
 return $itWorked;

} // end fillBoard

The function begins by defining an array for directions. At this point, I
decided only to support placing words in the four cardinal directions,
although it would be easy enough to add diagonals. (Hey, that sounds like a
dandy end-of-chapter exercise!) The $direction array holds the initials of
the four directions I have decided to support at this time. The $itWorked
variable is a Boolean which reports whether the board has been successfully
filled. It is initialized to TRUE. If the addWord() function fails to place a word,
the value of $itWorked will be changed to FALSE.

The $counter variable will be used to count which word I'm currently trying
to place. I increment the value of $counter each time through the loop.
When $counter is larger than the size of the $word array, the function has
successfully added every word, and can exit triumphantly.

To choose a direction, I simply created a random value between 0 and 3,
and referred to the associated value of the $direction array.

The last line of the function returns the value of $itWorked. The
fillBoard() function is called by the main program repeatedly until it
succeeds. This success or failure is reported to the main program by
returning the value of $itWorked.

Adding a Word
The fillBoard() function handles the global process of adding the word
list to the game board, but the process of adding each word to the board is
performed by the addWord() function. This function expects two
parameters, the word to add, and a direction.

The function cleans up the word, and renders slightly different service based
on which direction the word will be placed. It places each letter of the word in
an appropriate cell while preventing it from being placed outside the
boundary of the game board. It also checks to make sure that the cell does
not currently house some other letter from another word (unless that letter
happens to be the one the function is already trying to place). The function
may look long and complex at first, but when you look at it more closely,
you'll find that it's extremely repetitive.
function addWord($theWord, $dir){
 //attempt to add a word to the board or return false if failed
global $board, $boardData;

//remove trailing characters if necessary
$theWord = rtrim($theWord);

$itWorked = TRUE;

switch ($dir){
 case "E":
 //col from 0 to board width - word width
 //row from 0 to board height

 $newCol = rand(0, $boardData["width"] - 1 - strlen($theWord));
 $newRow = rand(0, $boardData["height"]-1);

 for ($i = 0; $i < strlen($theWord); $i++){
 //new character same row, initial column + $i
 $boardLetter = $board[$newRow][$newCol + $i];
 $wordLetter = substr($theWord, $i, 1);

 //check for legal values in current space on board
 if (($boardLetter == $wordLetter) ||
 ($boardLetter == ".")){
 $board[$newRow][$newCol + $i] = $wordLetter;
 } else {
 $itWorked = FALSE;
 } // end if
 } // end for loop
 break;

 case "W":
 //col from word width to board width
 //row from 0 to board height
 $newCol = rand(strlen($theWord), $boardData["width"] -1);
 $newRow = rand(0, $boardData["height"]-1);
 //print "west:\tRow: $newRow\tCol: $newCol
\n";

 for ($i = 0; $i < strlen($theWord); $i++){
 //check for a legal move
 $boardLetter = $board[$newRow][$newCol - $i];
 $wordLetter = substr($theWord, $i, 1);
 if (($boardLetter == wordLetter) ||
 ($boardLetter == ".")){
 $board[$newRow][$newCol - $i] = $wordLetter;
 } else {
 $itWorked = FALSE;
 } // end if
 } // end for loop
 break;

 case "S":
 //col from 0 to board width
 //row from 0 to board height - word length
 $newCol = rand(0, $boardData["width"] -1);
 $newRow = rand(0, $boardData["height"]-1 - strlen($theWord));
 //print "south:\tRow: $newRow\tCol: $newCol
\n";

 for ($i = 0; $i < strlen($theWord); $i++){
 //check for a legal move
 $boardLetter = $board[$newRow + $i][$newCol];
 $wordLetter = substr($theWord, $i, 1);
 if (($boardLetter == $wordLetter) ||
 ($boardLetter == ".")){
 $board[$newRow + $i][$newCol] = $wordLetter;
 } else {
 $itWorked = FALSE;
 } // end if
 } // end for loop
 break;

 case "N":
 //col from 0 to board width

 //row from word length to board height
 $newCol = rand(0, $boardData["width"] -1);
 $newRow = rand(strlen($theWord), $boardData["height"]-1);

 for ($i = 0; $i < strlen($theWord); $i++){
 //check for a legal move
 $boardLetter = $board[$newRow - $i][$newCol];
 $wordLetter = substr($theWord, $i, 1);
 if (($boardLetter == $wordLetter) ||
 ($boardLetter == ".")){
 $board[$newRow - $i][$newCol] = $wordLetter;
 } else {
 $itWorked = FALSE;
 } // end if
 } // end for loop
 break;

 } // end switch
 return $itWorked;
} // end addWord

The main focus of the addWord() function is a switch structure based on
the word direction. The code inside each switch branch is similar in its
general approach.

Closely Examining the East Code
It's customary in Western languages to write from left to right, so the code for
"E," which indicates "write towards the East" is probably the most natural to
understand. I'll explain how that code works, then I'll show you how the other
directions differ. Here's the code fragment that attempts to write a word in
the Easterly direction:
case "E":
 //col from 0 to board width - word width
 //row from 0 to board height
 $newCol = rand(0,
 $boardData["width"] - 1 - strlen($theWord));
 $newRow = rand(0, $boardData["height"]-1);

 for ($i = 0; $i < strlen($theWord); $i++){
 //new character same row, initial column + $i
 $boardLetter = $board[$newRow][$newCol + $i];
 $wordLetter = substr($theWord, $i, 1);

 //check for legal values in current space on board
 if (($boardLetter == $wordLetter) ||
 ($boardLetter == ".")){
 $board[$newRow][$newCol + $i] = $wordLetter;
 } else {
 $itWorked = FALSE;
 } // end if
 } // end for loop
 break;

Determining Starting Values for the Characters
Essentially, the code steps through the word one letter at a time, placing
each letter in the next cell to the right. I could have chosen any random cell
and checked to see when the code got outside the range of the board, but
this would have involved some complicated and clunky code. A more elegant

solution is to carefully determine what the range of appropriate starting cells
are, and only choose cells within that range. For example, if I'm placing the
word "elephant" (with 8 letters) from left to right in a puzzle with a width of
ten, the only legal columns would be columns zero and one (remember,
computers usually start counting at zero). If I'm placing "elephant" in the
same puzzle but from right to left, the last two columns (8 and 9) are the only
legal options. Once I recognized this fact, I had to figure out how to encode
this idea so it could work with any size words in any size puzzle.

IN THE REAL WORLD

By far the most critical part of this code is the comments at the
beginning. Even though I'm a reasonably experienced programmer, it's
easy enough to get confused when you start solving problems of any
reasonable complexity. Just to remind myself, I placed these
comments to explain to myself exactly what the parameters of this
chunk of code are.

I referred back to these comments many times while I was writing and
debugging the code. If I hadn't given myself clear guidance on what I
was trying to do, I would have gotten so lost I probably wouldn't have
been able to write the program.

To figure out where to place each word, I need a random value for the row
and column, but that random value must be within an appropriate range
based on the word length and board width. By trial and error and some
sketches on a white board, I determined that $boardData["width"] - 1
is the largest column in the game board, and strlen($theWord) is the
length of the current word in characters. If I subtract the word length from the
board width, I'll get the largest legal starting value for a left-to-right
placement. That's how I got the slightly scary formula
$boardData["width"] - 1 - strlen($theWord)

The smallest legal starting value for this kind of placement is zero, because
column zero will always work when you're going right-to-left and when the
word is the same size or smaller than the puzzle (which has already been
established).

In an Eastward placement, the row number doesn't matter, because any row
in the puzzle will be legal, as all letters will be placed on the same row.

Once I know the largest and smallest legal starting places for the word, I can
randomly generate that starting point knowing that the entire word can be
placed there legally as long as it doesn't overlap any other words.

I used a for loop to pull one character at a time from the word using the
substr() function. Each character is placed at the same row as the starting
character, but at a column offset by the position in the word. Repeating the
"elephant" example, if the starting position chosen is column 1, the character
"E" will be placed in column 1, because "E" is at the 0th position in the word
"elephant," and 1 + 0 = 1. When the counter ($i) gets to the letter "L," it will
have the value 1, so it will be placed in column 2, and so on.

If the formula for choosing the starting place and the plan for placing
subsequent letters in place work correctly, it will be impossible to add a letter
outside the puzzle board. However, another bad thing could happen if a
character from a previously placed word is in a cell that the current word
wants. The code checks the current cell on the game board to see its current
status. If the cell contains the value ".", it is empty, and the new character
can be freely placed there. If the cell contains the value that the current word

wants to place in the cell, the program can likewise continue without
interruption. However, if the cell contains any other character, the loop will
need to exit, and the program will need reset the board and try again. This is
done by setting the value of $itWorked to FALSE.

Printing in the Other Directions
Once you understand how to print words when the direction is East, you'll
see that the other directions are similar. However, for each direction, I
needed to figure out what the appropriate starting values were, and what cell
to place each letter in. The table below summarizes these value

A little explanation of Table 5.2 is in order. Within the table, I identified the
minimum and maximum column for each direction, as well as the minimum
and maximum row. This was actually easiest to figure out by writing some
examples out on graph paper. The placement of each letter is based on the
starting row and column, with i standing for the position of the current letter
within the word. So, in direction W, I'd put the letter at position 2 of my word
into the randomly chosen starting row, but at the starting column minus two.
This will cause the letters to be printed from right to left. Work out the other
examples on graph paper so you can see how they worked out.

IN THE REAL WORLD

This is exactly where computer programming becomes mystical for
most people. Up to now, you've probably been following so far, but this
business of placing the characters has a lot of math in it, and you
didn't get to see me struggle with it. It might look to you as if I just
knew what the right formulas were. I didn't. I had to think about it
carefully withoutthe computer turned on. I got out a whiteboard (my
favorite programming tool) and some graph paper, and tried to figure
out what I meant mathematically when I said "write the characters from
bottom to top." This is hard, but you can do it. The main thing
beginners forget to do is turn off the computer. Get out some paper
and figure out what it is you're trying to tell the computer to do. Then
you can start writing code. You'll still get it wrong (at least I did). But, if
you've written down your strategy, you can compare what you
expected to happen with what did happen, and you're likely to be able
to solve even this kind of somewhat mathematical problem.

Table 5.2: SUMMARY OF PLACEMENT DATA

 E W S N

min
Col

0 word
width

0 0

max
Col

board width - 1
- word width

board
width -1

board width - 1 board
width - 1

min
Row

0 0 0 word
width

max
Row

board height -1 board
height - 1

board height - 1
- word width

board
height - 1

letter
col

start + i start - i start start

letter
row

start start start + i start - i

Making a Puzzle Board
By the time the fillBoard() function has finished calling addWord() to
add all the words, the answer key is actually complete. Each word is in
place, and any cell that does not contain one of the words still has a period.
The main program will copy the current $board variable over to the $key
array. The answer key is now ready to be formatted into a form the user can
use. However, rather than writing one function to print out the answer key
and another function to print out the finished puzzle, I wrote one function that
takes the array as a parameter and creates a long string of HTML code
placing that puzzle in a table.
function makeBoard($theBoard){
 //given a board array, return an HTML table based on the array
 global $boardData;
 $puzzle = "";
 $puzzle .= "<table border = 0>\n";
 for ($row = 0; $row < $boardData["height"]; $row++){
 $puzzle .= "<tr>\n";
 for ($col = 0; $col < $boardData["width"]; $col++){
 $puzzle .= " <td width = 15>{$theBoard[$row][$col]}</td>\n";
 } // end col for loop
 $puzzle .= "</tr>\n";
 } // end row for loop
 $puzzle .= "</table>\n";
 return $puzzle;
} // end printBoard;

Most of the function deals with creating an HTML table, which will be stored
in the variable $puzzle. Each row of the puzzle corresponds begins by
building an HTML <tr> tag, and creates a <td></td> pair for each
element in the table.

Adding the Foil Letters
The puzzle itself can be easily derived from the answer key. Once the words
in the word list are in place, all it takes to generate a puzzle is to replace the
periods in the puzzle with some other random letters. I call these other
characters "foil letters" because it is their job to foil the user. This is actually
quite easy compared to the process of adding the words.
function addFoils(){
 //add random dummy characters to board
 global $board, $boardData;
 for ($row = 0; $row < $boardData["height"]; $row++){
 for ($col = 0; $col < $boardData["width"]; $col++){
 if ($board[$row][$col] == "."){
 $newLetter = rand(65, 90);
 $board[$row][$col] = chr($newLetter);
 } // end if
 } // end col for loop
 } // end row for loop

TRAP Sometimes PHP has trouble correctly interpolating two-dimensional arrays. If you find
that an array is not being correctly interpolated, you can try two things. First, you can
simply surround the array reference in braces as I did in the code in makeBoard() Also,
you can forego interpolation and use concatenation instead. For example, you could have
built each cell with the following code:
$puzzle .= "<td> width = 15>" . $theBoard[$row][$col] . "</td>\n";

} // end addFoils

The function uses the standard pair of nested loops to cycle through each
cell in the array. For each cell that contains a period, it generates a random
number between 65 and 90. These numbers correspond to the ASCII
numeric codes for the capital letters. I then used the chr() function to
retrieve the letter that corresponds to that number, and stored the new
random letter in the array.

Printing Out the Puzzle
The last step in the main program is to print results to the user. So far, all the
work has been done behind the scenes. Now it is necessary to produce an
HTML page with the results. The printPuzzle() function performs this
duty. The actual puzzle and answer key tables have already been formatted
as HTML by the printBoard() function. The puzzle HTML is stored in the
$puzzle variable, and the answer key is stored in $keyPuzzle.
function printPuzzle(){
 //print out page to user with puzzle on it

 global $puzzle, $word, $keyPuzzle, $boardData;
 //print puzzle itself

 print <<<HERE
 <center>
 <h1>{$boardData["name"]}</h1>
 $puzzle
 <h3>Word List</h3>
 <table border = 0>

HERE;

 //print word list
 foreach ($word as $theWord){
 print "<tr><td>$theWord</td></tr>\n";
 } // end foreach
 print "</table>\n";
 $puzzleName = $boardData["name"];

 //print form for requesting answer key.
 //send answer key to that form (sneaky!)
 print <<<HERE

 <form action = "wordFindKey.php"
 method = "post">
 <input type = "hidden"
 name = "key"
 value = "$keyPuzzle">
 <input type = "hidden"
 name = "puzzleName"
 value = "$puzzleName">

 <input type = "submit"
 value = "show answer key">
 </form>
 </center>

HERE;

} // end printPuzzle

This function mainly deals with printing out standard HTML from variables
that have been created during the program's run. The name of the puzzle is
stored in $boardData["name"]. The puzzle itself is simply the value of the
$puzzle variable. I printed the word list by the simple expedient of a
foreach loop creating a list from the $word array.

The trickiest part of the code is working with the answer key. It would be
easy enough to print the answer key directly on the same HTML page. In
fact, this is exactly what I did as I was testing the program. However, the
puzzle won't be much fun if the answer is right there, so I allowed the user to
press a button to get the answer key. The key is related only to the currently
generated puzzle. If the same word list were sent to the wordfind program
again, it would likely produce a different puzzle with a different answer. The
secret is to store the current answer key in a hidden form element and pass
this element to another program. I created a form with two hidden fields. I
stored the name of the puzzle in a field called puzzleName and the entire
HTML of the answer key in a field called key. When the user presses the
Submit key, it will call a program called wordFindKey.

IN THE REAL WORLD

Passing the answer key to another program was a kind of dirty trick. It
worked for a couple of reasons. First, since the key field is hidden and
the form sends data through the post method, the user is unlikely to
know that the answer to the puzzle is literally under his nose. Since I
expect this program mainly to be used by teachers who would print out
the puzzle anyway, this is fine. Even without the secrecy concerns, it
would be necessary to pass the key data by post because it is longer
than the 256 characters allowed by the get method.

Sending the HTML-formatted answer key to the next program made the
second program quite simple, but there is another advantage to this
approach: It is very difficult to send entire arrays through form
variables, but by creating the HTML table, all the data in the array was
reduced to one string value, which can be easily passed to another
program through a form.

Printing Out the Answer Key
The wordFindKey program is actually very simplistic, because all the work
of generating the answer key was done by the word find program. All this
program has to do is retrieve the puzzle name and answer key from form
variables and print them out. Since the key has even been formatted as a
table, there is no need for any kind of heavy lifting by the wordFindKey
program.
<!doctype html public "-//W3C//DTD HTML 4.0 //EN">
<html>
<head>
<title>Word Find Answer Key</title>
</head>
<body>

<?
//answer key for word find
//called from wordFind.php

print <<<HERE
<center>
<h1>$puzzleName Answer key</h1>
$key
</center>

HERE;
?>
</body>
</html>

Summary
In this chapter you've started to see how important it is to put together data
in meaningful ways. You've looked at a number of more powerful kinds of
arrays and tools to manipulate them. You've learned how to use the
foreach loop to look at each element of an array in turn. You can use string
indices to generate associative arrays. You know how to make two-
dimensional arrays using both numeric and string indices. You've learned
how to do several kinds of string manipulation tricks including searching for
one string inside another, extracting substrings, and splitting a string into an
array. You put all these skills together in an interesting and non-trivial
application. You should be proud of your efforts so far.

Challenges
1. Add the ability to use diagonals in your puzzles. (Hint: All you'll

need to do is combine the formulas I've already established. You
don't need any new ones.)

2. Create a game of BattleShip for two players on the same
computer. The game will print out a grid. (Pre-set the location of
the fleets to make it easier.) Let the user choose a location on
the grid with a checkbox. Report the result of his firing back, and
then give the screen to the second user.

3. Write a version of Conway's Life. This program simulates cellular
life on a grid with three simple rules.

a. Each cell with exactly three neighbors will become or
remain alive.

b. Each cell currently alive with exactly two neighbors
remains alive.

c. All other cells will die off.

4. Randomly generate the first cell and let the user press a button
to generate the next generation.

Chapter 6: Working with Files

Overview
As your experience in programming grows, the relative importance of
data becomes increasingly apparent. You began your understanding of
data with simple variables, but learned how simple and more complex
arrays can make your programs more flexible and more powerful.
However, data stored in the computer's memory is transient, especially
in the server environment. It is often necessary to store information in
a form that is more permanent than the constructs you have learned so
far. PHP provides a number of powerful functions for working with text
files. With these skills, you will be able to create extremely useful
programs. Specifically, you will learn how to:

Open files for read, write, and append access.

Use file handles to manipulate text files.

Write data to a text file.

Read data from a text file.

Open an entire file into an array.

Modify text data on the fly.

Get information about all the files in a particular directory.

Get a subset of files based on filenames.

Previewing the Quiz Machine
The main program for this chapter is a fun and powerful tool that can be
used in many different ways. It is not simply one program, but a system of
programs that work together to let you create, administer, and grade multiple
choice quizzes automatically.

IN THE REAL WORLD

It would be reasonably easy to build an HTML page that presents a quiz
and a PHP program to grade only that quiz. However, if you will want
several quizzes, it might be worth the investment in time and energy to
build a system that can automate the creation and administration of
quizzes. The real power of programming comes into play not just when
you solve one particular immediate problem, but when you can
generate a general solution that can be applied to an entire range of
related problems. The quiz machine is an example of exactly such a
system. It takes a little more effort to build such a system in the
beginning, but the effort really pays off when you have a system you
can re-use many times.

Entering the Quiz Machine System
Figure 6.1 shows the main page of the system. The user will need a
password to take a test, and a different administrator password to edit a test.
In this case, I've entered the administrative password (it's "absolute" - like in
"absolute beginner's guide") into the appropriate password box, and I'm
going to edit the Monty Python quiz.

Figure 6.1: The user is an administrator, preparing to edit a
quiz.

Editing a Quiz
If the user has the correct password, the screen shown in Figure 6.2
appears, displaying the requested quiz in a special format on the screen.

Figure 6.2: The user has chosen to edit the Monty Python
quiz.

The quiz administrator can edit the quiz in a number of ways. Each quiz has
a name, instructor e-mail address, and a password. Each question is stored
in a single line with the question, four possible answers, and the correct
answer separated by colon (:) characters.

Taking a Quiz
Users with knowledge of the appropriate password can take any of the
quizzes known to the system. If a user chooses to take the Monty Python
quiz, the screen shown in Figure 6.3 appears.

Figure 6.3: The user is taking the Monty Python quiz. If you want to
become a serious programmer, you should probably rent this movie. It's
part of the culture.

Seeing the Results
When the user takes a quiz, the user's responses are sent to a program that
grades the quiz and provides immediate feedback, as shown in Figure 6.4

Figure 6.4: The grading program provides immediate feedback to the
user and stores the information in a file so the administrator can see it
later.

Viewing the Quiz Log
The system keeps a log file for each quiz so the administrator can tell the
scores of each person who took the quiz. Figure 6.5 shows how people have
done on the Monty Python quiz.

Figure 6.5: The log retrieval program presents an activity log for each
quiz.

Although the resulting log looks very simplistic, it is generated in a format
that can easily be imported into most gradebook programs and
spreadsheets. This is very handy if the quiz will be used in a classroom
setting.

Saving a File to the File System
Your PHP programs can access the server's file system to store and retrieve
information. Your programs can create new files, add data to files, and read
information from the files. You'll start by writing a program that creates a file
and adds data to it.

Introducing the saveSonnet.php Program
The saveSonnet.php program shown in the following code listing opens a
file on the server and writes one of Shakespeare's sonnets to that file on the
server.

<head>
<title>SaveSonnet</title>
</head>
<body>
<?

$sonnet76 = <<<HERE
Sonnet # 76, William Shakespeare

Why is my verse so barren of new pride,
So far from variation or quick change?
Why with the time do I not glance aside
To new-found methods, and to compounds strange?
Why write I still all one, ever the same,
And keep invention in a noted weed,
That every word doth almost tell my name,
Showing their birth, and where they did proceed?
O! know sweet love I always write of you,
And you and love are still my argument;
So all my best is dressing old words new,
Spending again what is already spent:
For as the sun is daily new and old,
So is my love still telling what is told.

HERE;

$fp = fopen("sonnet76.txt", "w");
fputs($fp, $sonnet76);
fclose($fp);

?>
</body>
</html>

Most of the code stores the content's of Shakespeare's 76th sonnet to a
variable called $sonnet76. The remaining three lines save the data in the
variable to a text file.

Opening a File with fopen()
The fopen() command is used to open a file. Note that you can only create

TRICK Normally I show you a screen shot of every program, but since this
particular program doesn't actually display anything on the screen, that
won't be useful to you. The next couple of programs will read this file and
display it on the screen, and I'll show you what they look like when the
time comes.

files on the Web server. You cannot directly create a file on the client
machine, because you do not have access to that machine's file system. (If
you did, any server-side program would be able to create viruses with
extreme ease.) However, as a server-side programmer, you already have
the ability to create files on the server. The programs you are writing are
themselves files. Your programs can write files as if they are you.

The first parameter of the fopen() function is the filename. This filename
can include directory information, or it can be a relative reference.

You can create a file anywhere on the server that you have access to. Your
files can be in the parts of your directory system open to the Web server
(usually subdirectories of public_html or htdocs). Sometimes, though,
you might not want your files to be directly accessible to users by typing a
URL. You can control access to these files by placing them outside the
public html space and by setting the permissions so they can be read by you
(and programs you create) but not by anyone else.

Creating a File Handle
When you create a file with the fopen() command, the function returns an
integer called a file handle (sometimes also called a file pointer). This special
number will be used to refer to the file in subsequent commands. You won't
usually be concerned about the actual value of this handle, but you will need
to store it in a variable (I usually use $fp) so that your other file access
commands know which file to work with.

Examining File Access Modifiers
The final parameter in the fopen() command is an access modifier. PHP
supports a number of access modifiers that determine how your program will
interact with the file. Files are usually opened for reading, writing, or
appending. You can also use a file for simultaneous input and output, but
such files are often not needed in PHP, because the relational database
techniques you'll learn in the next couple of chapters provide the same
capability with more flexibility and a lot less work. However, the other forms
of file access (read, write, and output) are extremely useful, because they
provide easy access to the file information. (See Table 6.1 for a list of file
access modifiers with descriptions.)

TRICK Actually the ownership of files created by your PHP programs can be a
little more complicated, depending on your operating system, server, and
PHP configurations. Generally, any file created by your program will be
owned by a special user called PHP or by the account you were in when
you wrote the program. This makes a big difference in an OS like UNIX
where file ownership is a major part of the security mechanism. The best
way to discover how this works is to write a program that creates a file
and then look at that file's properties.

TRAP You should always test your programs, especially if they use a relative
reference for a filename. It's possible that your current directory is not the
default directory. Also, the filename is based on the actual file system of
the server, rather than the URL of the file.

Table 6.1: FILE ACCESS MODIFIERS

Modifier Type Description

"r" read-only program can read from the file

The file access modifiers determine what you can do with the file. Read
mode opens a file for input, so your program can read information in from the
file. You cannot write data to a file that is opened in read mode. You'll see an
example of the read mode in action in the next section, "Loading a File from
the Drive System." Write mode allows you to open a file for output access. If
the file does not exist, PHP automatically creates it for you.

Append mode allows you to write to a file without destroying the current
contents. When you write to a file in append mode, all new data is added to
the end of the file.

IN THE REAL WORLD

The "r+" and "w+" modifiers are used for another form of file access,
called "random access," which allows simultaneous reading and
writing to the same file. While this is a very useful tool, I won't spend a
lot of time on it in this introductory book. The sequential access
methods you'll learn in this chapter are fine for simple file storage
problems, and the relational database functions that you'll learn in the
remainder of this book aren't any more difficult than the random
access model, and provide far more power.

Writing to a File
The saveSonnet program opens up the sonnet76.txt file for write
access. If there was already a file in the current directory, it is destroyed. The
file pointer for the text file is stored in the $fp variable. Once this is done, I
can use the fputs() function to actually write data to the file.

The fputs() function requires two parameters. The first is a file pointer.
This tells PHP where to write the data. The second parameter is the text to
write out to the file.

Closing a File
The fclose() function tells the system that your program is done working
with the file, and should close it up.

"w" write writes to the file, overwriting it if it already
exists

"a" append writes to the end of the file

"r+" "w+" read and
write

TRAP Be very careful about opening a file in write mode. If a file already exists
and you open it for write access, PHP will create a new file, overwriting the
old file and destroying its contents.

HINT You might be noticing a trend here. Most of the file access functions begin
with the letter f (fopen(), fclose(), fputs(), fgets(), feof().)
This is a convention inherited from the C language. It can sometimes help
you remember that a particular function works with files. Of course, every
statement in PHP that begins with f isn't necessarily a file function
(foreach is a good example), but most of the function names in PHP that
begin with f are file-handling commands.

TRICK Drive systems are much slower than computer memory, and they take a
long time to spool up to speed. For that reason, when a program
encounters an fputs() command, it doesn't always immediately save
the data to a file on the disk. Instead, it adds the data to a special buffer
and only writes the data when a sufficient amount is on the buffer or the
program encounters an fclose() command. This is why it's important
to close your files. If the program ends without encountering an fclose
() statement, PHP is supposed to automatically close the file for you, but
what's supposed to happen and what actually happens are often two very
different things.

Loading a File from the Drive System
It is important that you can also retrieve information from the file system. If
you open a file with the "r" access modifier, you will be able to read
information from the file.

Introducing the loadSonnet.php Program
The loadSonnet.php program, shown in Figure 6.6 loads up the sonnet
saved by saveSonnet.php and displays it as befits the work of the Bard.

Figure 6.6: The file has been loaded from the drive system and prettied
up a bit with some CSS tricks.

The code for the loadSonnet program follows:
<html>
<head>
<title>LoadSonnet</title>
<style type = "text/css">
body{
 background-color:darkred;
 color:white;
 font-family:'Brush Script MT', script;
 font-size:20pt
}
</style>

</head>
<body>
<?
$fp = fopen("sonnet76.txt", "r");

//first line is title
$line = fgets($fp);
print "<center><h1>$line</h1></center>\n";

print "<center>\n";
//print rest of sonnet
while (!feof($fp)){
 $line = fgets($fp);
 print "$line
\n";

} // end while

print "</center>\n";

fclose($fp);

?>

</body>
</html>

Using CSS to Beautify the Output
The best way to improve the appearance of text is with CSS styles. By
setting up a simple stylesheet, I was able to very quickly improve the
appearance of the sonnet without changing the actual text of the sonnet at
all. Notice especially how I indicated multiple fonts in case my preferred font
was not installed on the user's system.

Using the "r" Access Modifier
In order to read from a file, you must get a file pointer by opening that file for
"r" access. If the file does not exist, you will get the result FALSE rather than
a file pointer.

I opened "sonnet76.txt" with the fopen() command using the "r" access
modifier, and again copied the resulting integer to the $fp file pointer
variable.

Checking for the End of the File with feof()
When you are reading data from a file, your program doesn't generally know
how long the file will be. The fgets() command that you will frequently use
to get data from a file reads one line of the file at a time. Since you can't be
sure how many lines are in a file until you read it, PHP provides a special
function called feof(), which stands for file end of file (apparently named
by the department of redundancy department). This function returns the
value FALSE if there are any more lines of data left in the file, and TRUE
when the program is at the end of the data file. Most of the time when you
read data from the file, you'll use a while loop that continues as long as
feof() is not true. The easiest way to set up this loop is with a statement
like this:
while (!feof($fp)){

The feof() function requires a file pointer as its sole parameter.

Reading Data from the File with fgets()
The fgets() function gets one line of data from the file, returns that value
as a string, and moves a special pointer to the next line of the file. Usually
this function is called inside a loop that continues until feof() is true.

TRICK You can actually open files anywhere on the Internet for read access. If
you supply a URL as a filename, you will be able to read the URL as if it
were a local file. However, you cannot open URL files for output.

Reading a File into an Array
It is often useful to work with a file as an array of data in memory. Frequently
you might find yourself doing some operation on each line of an array. PHP
provides a couple of features that simplify this type of operation. The
cartoonifier.php program demonstrates one way of manipulating an
entire file without using a file pointer.

Introducing the cartoonifier.php Program
The cartoonifier.php program illustrated in Figure 6.7 is a truly serious
and weighty use of advanced server technology.

Figure 6.7: The cartoonifier program shows what would happen if
Shakespeare were a cartoon character.

This program loads the entire sonnet into an array, steps through each line
of the poem, and converts it to a unique cartoon dialect by performing a
search and replace operation.
<html>
<head>
<title>Cartoonify</title>
</head>
<body>
<?
$fileName = "sonnet76.txt";

$sonnet = file($fileName);
$output = "";

foreach ($sonnet as $currentLine){
 $currentLine = str_replace("r", "w", $currentLine);
 $currentLine = str_replace("l", "w", $currentLine);
 $output .= rtrim($currentLine) . "
\n";
} // end foreach
 $output .= "You wascally wabbit!
\n";

print $output;

?>
</body>

</html>

Loading the File into an Array with file()
There are also some shortcut file handling tricks that do not require you to
create a file pointer. You might recall the readFile() command from the
first chapter of this book. That file simply reads a file and echoes it to the
output. The file() command is similar, because it does not require a file
pointer. It opens a file for input and returns an array, with each line of the file
occupying one element of the array. This can be an extremely easy way to
work with files, because you can then use a foreach loop to step through
each line of the file and perform modifications on it.

Using str_replace() to Modify File Contents
Inside the foreach loop, it's a simple matter to convert all occurrences of "r"
and "l" to the letter "w" with the str_replace() function. The resulting
string is then added to the $output variable which will ultimately be printed
to the screen.

IN THE REAL WORLD

This particular application is silly and pointless, but the ability to
replace all occurrences of one string with another in a text file is very
useful in a variety of circumstances. For example, you could replace
every occurrence of the left brace (<) character in an HTML document
with the < sequence. This would result in a source code listing that
could be directly viewed on the browser. Also, you might use such
technology for form letters, where you take information in a text
template and replace it with values pulled from the user or from
another file.

TRAP Reading an file into an array is attractive because it's easy and because
once the file is in memory, you can work with it very quickly. The problem
comes when you are working with very large files. The computer's memory
is finite, and large files can quickly cause you problems. For larger data
files, you'll probably want to use a one-line at a time approach using the
fgets() function inside a loop.

Working with Directory Information
When you are working with file systems, you often also need to work with the
directory structure that contains the files. PHP contains several commands
that assist in the manipulation of directories.

Introducing the imageIndex.php Program
The imageIndex.php program featured in Figure 6.8 is a simple utility that
generates an index of all jpg and gif image files in a particular directory.

Figure 6.8: This HTML file was automatically created by
imageIndex.php.

When the user clicks on any thumbnail image, a full version of the image will
be displayed. The techniques used to display the image files can be used to
get selected sets of files from any directory.
<html>
<head>
<title>imageIndex</title>
</head>
<body>

<?
// image index
// generates an index file containing all images in a particular directory

//point to whatever directory you wish to index.
//index will be written to this directory as imageIndex.html
$dirName = "C:\csci\mm";
$dp = opendir($dirName);
chdir($dirName);

//add all files in directory to $theFiles array
while ($currentFile !== false){
 $currentFile = readDir($dp);
 $theFiles[] = $currentFile;
} // end while

//extract gif and jpg images
$imageFiles = preg_grep("/jpg$|gif$/", $theFiles);

$output = "";
foreach ($imageFiles as $currentFile){
 $output .= <<<HERE

 <img src = "$currentFile"
 height = 50
 width = 50>

HERE;

} // end foreach

//save the index to the local file system
$fp = fopen("imageIndex.html", "w");
fputs ($fp, $output);
fclose($fp);
//readFile("imageIndex.html");
print "image index\n";

 ?>

</body>
</html>

Creating a Directory Handle with openDir()
Of course directory operations focus on a particular directory. It's often smart
to store a directory name in a variable so it can be easily changed, as
directory conventions change when you migrate your programs to different
systems. In the imageIndex program, I stored the target directory in a
variable called $dirName. The directory can be stored as a relative
reference (in which case it will be located in reference to the current
program's directory) or absolute (in the current file system).

Getting a List of Files with readdir()
The readdir() function is used to read a file from a valid directory pointer.
Each time you call the readdir() function, it returns the name of the next
file it finds, until there are no files left. If the function cannot find another file,
it will return the value FALSE. I find it very useful to store all the files of a
directory into an array, so I'll usually use a loop like this:
while ($currentFile !== false){
 $currentFile = readDir($dp);
 $theFiles[] = $currentFile;
} // end while

This loop keeps going until the $currentFile variable is false, which will
happen when there are no files left in the directory. Each time through the
loop, it uses the readdir() function to load a new value into
$currentFile, then adds the value of $currentFile to the $theFiles
array. Note that when I assign a value to an array without specifying the
index, the item is simply placed at the next available index value. This is an
easy way to load up an array in PHP.

TRICK The special !== operator is a little bit different than the comparison
operators you have seen before. It is used here to prevent a very specific

Selecting Particular Files with preg_grep()
Once all the files from a particular directory are stored in an array, you'll
often want to select a subset of those files to work with. In this particular
case, I'm interested in graphic files, which end with the characters "gif" or
"jpg." The oddly-named preg_grep() function is perfect for this type of
situation. It borrows some clever ideas from UNIX shells and the perl
programming language. Grep is the name of a UNIX command that allows
you to filter files according to a pattern. The "preg" part indicates that this
form of grep uses perl-style regular expressions. Regardless of the funny
name, the function is very handy. If you look back at the code in
imageIndex.php, you'll see the line
$imageFiles = preg_grep("/jpg$|gif$/", $theFiles);

This code selects all the files that end with "jpg" or "gif" and copies them to
another array called $imageFiles.

Using Basic Regular Expressions
While it would be possible to use string manipulation functions to determine
which files to copy to the new array, there are many situations where you
might want the ability to work with string data in a more detailed way. In this
particular situation, I wanted all the files with "gif" or "jpg" in them. There isn't
an easy way to compare for two possible values with normal string
manipulations. Also, I didn't want any filename containing these two values,
but only those filenames that end with "gif" or "jpg." Regular expressions are
a special convention often used to handle exactly this kind of situation, and
much more. To illustrate, I'll explain how the "/jpg$|gif$/" expression
works. Regular expressions are usually marked by slashes at the beginning
and the end. The first and last characters of the expression are these
slashes. The pipe (|) character indicates or, so I'm looking for "jpg" or "gif."
The dollar sign ($) indicates the end of a string in the context of regular
expressions, so "jpg$" will only match on the value "jpg" if it's at the end of a
string. So, the expression "/jpg$|gif$/" will match on any string that
ends with "jpg" or "gif."

Regular expressions are extremely powerful if a bit cryptic. PHP supports a
number of special functions that use regular expressions in addition to
preg_grep . Look in the online help under "Regular Expression Functions -
Perl compatible" for a list of these functions as well as more details on how
regular expressions work in PHP. If you find regular expressions baffling,
you can usually find a string manipulation function or two that will do the
same general job. (See Table 6.2 for a list of basic regular expressions.)

type of error. It's possible that the user might have a file actually called
"false" in the directory. If that's the case, the more normal condition
$currentFile != false would give a strange result, because PHP
could confuse a file named "false" with the actual literal value false.
The !== operator specifies a comparison between actual objects rather
than values, and it will work correctly in this particular odd circumstance.

Table 6.2: SUMMARY OF BASIC REGULAR EXPRESSION OPERATORS

operator description sample
pattern

matches doesn't
match

. any character
but newline

. e \n

Storing the Output
Once the $imageFiles array is completed, the program uses the data to
build an HTML index of all images, and stores that data to a file. Since it's
been a few pages since you've seen that code, I'll reproduce a piece of it
here.
foreach ($imageFiles as $currentFile){
 $output .= <<<HERE

 <img src = "$currentFile"
 height = 50
 width = 50>

HERE;

} // end foreach

^ beginning of
string

^a apple banana

$ end of string a$ banana apple

[characters] any
characters in
braces

[abcABC] a d

[char
range]

describe
range of
characters

[a-zA-z] r 9

\d any digit \d\d\d-
\d\d\d\d

123–4567 the-
thing

\b word
boundary

\bthe\b the theater

+ one or more
occurrences
of preceding
character

\d+ 1234 text

* zero or more
occurrences
of preceding
character

[a-zA-z]\d*

{digit} repeat
preceding
character that
many times

\d{3}-\d{4} 123–4567 999-99-
9999

| or operator apple|banana apple,
banana

peach

(pattern
segment)

store results
in pattern
memory
returned with
numeric code

(^.).*/1 gig, blab
(any word
that starts
and ends
w/ same
letter)

any
other
word

//save the index to the local file system
$fp = fopen("imageIndex.html", "w");
fputs ($fp, $output);
fclose($fp);

print "image index\n";

I used a foreach loop to step through each element of the $imageFiles
array. I added the HTML to generate a thumbnail version of each image to a
variable called $output. Finally, I opened a file called imageIndex.html
in the current directory for writing, put the value of $output to the file, and
closed the file handle. Finally, I added a link to the file.

TRAP You might be tempted to use a readFile() command to immediately
view the contents of the file. (I was.) This may not work correctly, because
the Web browser is assuming the imageList.php directory is the current
directory. Inside the program, I changed to another directory within the
local file system, but the Web browser has no way of knowing that. When I
did a readFile(), the HTML was full of broken links, because all of the
relative links in the HTML page were pointing towards files in another
directory. When I add a link to the page instead, the Web browser itself
can find all the images, because it's being sent to the correct directory.

Working with Formatted Text
Text files are easy to work with, but they are extremely unstructured.
Sometimes you might want to impose a little bit of formatting on a text file in
order to work with data in the file. You'll learn some more formal data
management skills in the next couple of chapters, but with a few simple
tricks you can do quite a lot with plain text files.

Introducing the mailMerge.php Program
To illustrate how text files can be used for basic data storage, I created a
simple mail merge program. The results of this program are shown in Figure
6.9.

Figure 6.9: The program created several form letters from a list of
names and e-mail addresses.

You can see that the same letter was used repeatedly, but each time it used
a different name and e-mail address. The name and e-mail information was
pulled from a file.

Determining a Data Format
The data file (shown in Figure 6.10) for this program is simply a file created
in Notepad. Each line consists of a name and an e-mail address, separated
by a tab character.

Figure 6.10: The data file for this program was created in
Notepad.

Examining the mailMerge.php Code
The basic strategy for the mailMerge program is very simple. Take a look at
the code for the program, and you might be surprised at how easy it is.
<html>
<head>
<title>Mailing List</title>
</head>
<body>
<form>

<?
//Simple Mail merge
//presumes tab-delimited file called maillist.dat

$theData = file("maillist.dat");

foreach($theData as $line){
 $line = rtrim($line);
 print "<h3>$line</h3>";
 list($name, $email) = split("\t", $line);
 print "Name: $name";

 $message = <<<HERE
TO: $email:
Dear $name:

Thanks for being a part of the spam afficionado forum. You asked to
be notified whenever a new recipe was posted. Be sure to check our web
site for the delicious 'spam flambe with white sauce and cherries' recipe.

TRICK This particular format (one line per record, each field separated by tabs)
is called a tab-delimited file, and it is extremely popular, because you can
easily create it in a text editor, spreadsheet, or any other kind of program
you wish. It's also quite easy to use another character as a separator.
Spreadsheet programs often save in a comma-delimited format (CSV for
comma-separated values) but string data does not work well in this
format because it might already have commas embedded in it.

Sincerely,

Sam Spam,
Host of Spam Afficionados.

HERE;

 print "<pre>$message</pre>";

} // end foreach

?>
</body>
</html>

Loading the Data with the file() Command
The first step is to load the data into the form. Instead of using the file pointer
technique from earlier in the chapter, I used a special shortcut that can be
extremely handy. The file() command takes a filename and automatically
loads that file into an array. Each line of the file becomes an element of the
array. This is especially useful when your text file contains data, because
each line in my data file represents one individual's data.

Splitting a Line into an Array to Scalar Values
You might recall the split() function from Chapter 5, "Better Arrays and
String Handling." This function is used to separate elements of a string
based on some delimiter. I used the split() function inside a foreach
loop to break each line into its constituent values. However, I really didn't
want an array in this situation. Instead, I wanted the first value on the line to
be read into the $name variable, and the second value should be stored in
$email. The list() function allows you to take an array and distribute its
contents into scalar (non-array) variables. In this particular situation, I never
stored the results of the split() function in an array at all, but immediately
listed the contents into the appropriate scalar variables. Once the data is
in the variables, it can be easily interpolated into a mail-merge message.

IN THE REAL WORLD

The next obvious step for this program would be to automatically send
each message as an e-mail. PHP provides a function called mail()
which makes it quite easy to add this functionality. However, the way
the function works is very dependent on how the server is set up, and
it won't work with equal reliability on every server.

Also, there are good reasons to send e-mail through a program, and
reasons that aren't so good. It's completely legitimate to send e-mails
to people when they request it, or to have a program send you e-mails
when certain things happen. For example, my own more secure version
of the tester program sends me an e-mail to alert when certain

TRAP The file() command is so easy you might be tempted to use it all the
time, but it loads the entire file into memory, so you should only use it for
relatively small files. When you use the fgets() technique, you only need
to have one line from the file in memory at a time, so the fgets() method
can be effectively used on any size file without affecting performance.
Using file() on a very large file can be extremely slow.

conditions that might indicate cheating occur. A program that sends
unsolicited e-mail to people is rude, and will cause bad feelings about
your site.

Creating the Quiz Machine Program
The quiz tool from the beginning of this chapter is actually an entire system
of programs designed to work together, in this case, five different programs
Each quiz is stored in two separate files, which are automatically generated
by the programs. Figure 6.11 is a flow diagram that illustrates how the
various programs fit together.

Figure 6.11: This diagram illustrates a user's movement through the
quiz machine system.

The QuizMachine.php program is the entry point into the system for both
the test administrator and the person who will be taking the quiz. It
essentially consists of three forms that allow access to the other parts of the
program. To ensure a minimal level of security, all other programs in the
system require some sort of password access. The QuizMachine program
primarily serves as a gateway to the other parts of the system. If the user
has administrative access (determined by a password), he or she can select
an exam and call the editQuiz.php page. This page loads up the actual
master file of the quiz (if it already exists) or sets up a prototype quiz, and
places the quiz data in a Web page as a simple editor. The editQuiz
program calls the writeQuiz.php program, which takes the results of the
editQuiz form, and writes it to a master test file as well as an HTML page.

If the user wants to take a quiz, the system moves to the takeQuiz.php
page, which checks the user's password and presents the quiz if authorized.
When the user indicates he or she is finished, the gradeQuiz.php program
grades the quiz and stores the result in a text file.

Finally, the administrator can examine the log files resulting from any of the
quizzes by indicating a quiz from the QuizMachine page. The
showLog.php program will display the appropriate log file.

Building the QuizMachine.php Control Page
The heart of the quiz system is the quizMachine.php page. This is the
only page that the user will enter directly. All the other parts of the system
will be called from this page or from one of the pages it calls. The purpose of
this page is to act as a control panel. It consists of three parts, corresponding
to the three primary jobs that can be done with this system: Writing or editing
quizzes, taking quizzes, and analyzing the results of quizzes. In each of
these cases, the user will have a particular quiz in mind, so the control panel
automatically provides a list of appropriate files in each segment. Also, each
of these tasks requires a password, to provide at least some level of
security.

The main part of the QuizMachine.php program simply sets up the
opening HTML and calls a series of functions, which will actually do all the

real work.
<html>
<head>
<title>Quiz Machine</title>
</head>
<body>
<center>
<h1>Quiz Machine</h1>

<?

getFiles();
showTest();
showEdit();
showLog();

The program will call getFiles() first. This function will examine a
directory and get a list of the files in that directory. This list of filenames will
be used in the other functions. The next three functions all generate HTML
forms. Each of these forms contains a select list that is dynamically
generated from the file list. The button corresponding to each form submits
the form to the appropriate PHP page in the system.

Getting the File List
Since most of the code in the QuizBuilder program works with a list of
files, the getFiles() function is charged with that important task.
function getFiles(){
 //get list of all files for use in other routines

 global $dirPtr, $theFiles;

 chdir(".");
 $dirPtr = openDir(".");
 $currentFile = readDir($dirPtr);
 while ($currentFile !== false){
 $theFiles[] = $currentFile;
 $currentFile = readDir($dirPtr);
 } // end while

} // end getFiles

The first thing this function does is to change the file system so it is pointing
at the current directory, and set up a pointer variable to that directory.

TRICK You might want to make another version of this main page for the people
who will take your test. On that page, you wouldn't even show the
administrative options. It's very easy to make such a page. Simply copy
the QuizBuilder.php program to another file, and comment out the
calls to the showEdit() and showLog() functions.

TRAP The directory that holds the PHP programs is open for anybody to see.
You might want to have your test files not so conspicuous. To simplify this
example, I kept all the test files in the same directory as the program itself,
but you can keep all the data files in a different directory if you wish. For
security reasons, you might choose to store all the data files in a part of
your directory that is not available to the Web (away from your
public_html structure, for instance) so that people can't see the answer
key by browsing to it. If you choose to do this, you'll need to change each
directory reference throughout the system.

I then created an array called theFiles, which holds the name of every file
in the directory. The theFiles variable is global, so it will be shared with
the program and other functions that declare a reference to it.

Showing the "Take a Test" List
Most of your users will not be creating or editing quizzes. Instead, they will
be taking them. In order to take a test, the user must choose a test and have
the password associated with that test. To simplify choosing a test, the
showTest() function grabs all the HTML files in the quiz directory and
places them in a select list. The password goes in an ordinary password
field. The code in showTest() creates a form that calls the takeQuiz.php
program when it is submitted.
function showTest(){
 //print a list of tests for user to take

 global $theFiles;
 print <<<HERE
<form action = "takeQuiz.php"
 method = "post">

<table border = 1
 width = 400>
<tr>
 <td colspan = 2><center>
 <h3>Take a quiz</h3>
 </td>
</tr>

<tr>
 <td>Quiz Password</td>
 <td>
 <input type = "password"
 name = "password">
 </td>
</tr>

<tr>
 <td>Quiz</td>
 <td>
 <select name = "takeFile">

HERE;

 //select only quiz html files
 $testFiles = preg_grep("/html$/", $theFiles);

 foreach ($testFiles as $myFile){
 $fileBase = substr($myFile, 0, strlen($myFile) - 5);
 print " <option value = $fileBase>$fileBase</option>\n";
 } // end foreach

 print <<<HERE
 </select>
 </td>
</tr>

<tr>
 <td colspan = 2><center>

 <input type = "submit"
 value = "go">
 </center></td>
</tr>
</table>

</form>

HERE;

} // end showTest

Although the code is long, almost all of it is pure HTML. The only part that's
really PHP code is the part that selects HTML files and places them in the
select group.

This code fragment uses the preg_grep() to select filenames ending in
"HTML" and creates an option tag for that file. Note that I stripped out
the .html part of the filename, because I won't really need it, and it would
complicate some of the code coming up in the takeQuiz program.

Showing the Edit List
The showEdit() function works a lot like showTest(). This function is
used to display a list of the master files on the system. Although it will often
be exactly the same as the list of tests, it won't always be the same, because
there can be master files that haven't yet been made into HTML files.
function showEdit(){
 // let user select a master file to edit

 global $theFiles;
 //get only quiz master files
 $testFiles = preg_grep("/mas$/", $theFiles);

 //edit a quiz
 print <<<HERE
<form action = "editQuiz.php"
 method = "post">
<table border = 1
 width = 400>
<tr>
 <td colspan = 2><center>
 <h3>Edit a quiz</h3>
 </center></td>
</tr>

<tr>
 <td>Administrative Password</td>
 <td>
 <input type = "password"
 name = "password"
 value = "">
 </td>
</tr>

<tr>
 <td>Quiz</td>
 <td>
 <select name = "editFile">
 <option value = "new">new quiz</option>

HERE;
 foreach ($testFiles as $myFile){
 $fileBase = substr($myFile, 0, strlen($myFile) - 4);
 print " <option value = $myFile>$fileBase</option>\n";
 } // end foreach

 print <<<HERE
 </select>
 </td>
</tr>

<tr>
 <td colspan = 2><center>
 <input type = "submit"
 value = "go">
 </center></td>
</tr>
</table>
</form>

HERE;

} // end showEdit

The showEdit() function is just like showQuiz() but the form points to the
editQuiz.php program, and the file list is based on those files ending in
"mas."

There's one other subtle but important difference. Look at the code for the
select element and you'll see I added a "new quiz" option. If the user
chooses this option, the editQuiz() function won't try to load a quiz file
into memory, but will set up for a new quiz instead.

Showing the Log List
The last segment is meant for the quiz administrator. It allows the user with
admin access to view the log of any quiz on the system. This will show who
has taken the test, where and when they took it, and the score. When the
user clicks on the Submit button associated with this part of the page, the
showLog.php program will take over.
function showLog(){

 //let user choose from a list of log files
 global $theFiles;

 print <<<HERE

<form action = "showLog.php"
 method = "post">
<table border = 1
 width = 400>
<tr>
 <td colspan = 2><center>
 <h3>Show a log file</h3>
 </td>
</tr>

<tr>

 <td>Administrative Password</td>
 <td>
 <input type = "password"
 name = "password"
 value = "">
 </td>
</tr>

<tr>
 <td>Quiz</td>
 <td>
 <select name = "logFile">

HERE;

 //select only log files
 $logFiles = preg_grep("/log$/", $theFiles);
 foreach ($logFiles as $myFile){
 $fileBase = substr($myFile, 0, strlen($myFile) - 4);
 print " <option value = $myFile>$fileBase</option>\n";
 } // end foreach

 print <<<HERE
 </select>
 </td>
</tr>

<tr>
 <td colspan = 2><center>
 <input type = "submit"
 value = "go">
 </td>
</tr>
</table>
</form>

HERE;
} // end showLog

?>

</center>
</body>
</html>

I decided that all log files would end with .log, so the program can easily
get a list of log files to place in the select group.

Editing a Test
For simplicity's sake I decided on a very simple test format. The first three
lines of the test file will contain the test's name, the instructor's e-mail
address, and a password for the test. The test data itself will follow. Each
problem will take up one line (although it can wrap freely— a line is defined
by a carriage return character). The problem will have a question followed by
four possible answers and the correct answer. Each of these elements will
be separated by the colon (:) character.

IN THE REAL WORLD

If you think there are too many rules for how the questions are
formatted, I agree. This is a limitation of the sequential file access
technique you are using to store the data in this chapter. In later
chapters, you'll learn some other ways to work with data that aren't
quite so picky. However, this is a relatively easy way to store your data,
so I wrote the program to assist the process as much as practical. In
general, you'll want to write your program so the user never has to
know the underlying data structure.

The editQuiz.php program is designed to assist the user in creating and
editing quizzes. It's actually a very simple program, because the real work
will happen after the user is finished editing and presses the Submit button.

Getting Existing Test Data
The first chore is to determine which quiz the user is requesting. Remember
that the value "new" indicates that the user wants to build a new test, so that
value is treated specially. Any other value will be the foundation of a test
filename, so I open the appropriate master file and load its values into the
appropriate elements on the form.
<html>
<head>
<title>Quiz Builder</title>
</head>
<body>
<?

if ($password != "absolute"){
 print <<<HERE

Invalid Password!

HERE;
} else {
 //check to see if user has chosen a form to edit
 if ($editFile == "new"){
 //if it's a new file, put in some dummy values
 $quizName = "sample test";
 $quizEmail = "root@localhost";
 $quizData = "q:a:b:c:d:correct";
 $quizPwd = "php";
 } else {
 //open up the file and get the data from it
 $fp = fopen($editFile, "r");
 $quizName = fgets($fp);
 $quizEmail = fgets($fp);
 $quizPwd = fgets($fp);
 while (!feof($fp)){
 $quizData .= fgets($fp);
 } // end while
 fclose($fp);
} // end 'new form' if

I decided to code the value "absolute" (from the name of this book series) as
an administrative password. Each test will have its own password, and the

administrative functions (like editing a quiz) have their own password. If the
password field has any other value besides my chosen password, the
program will indicate a problem and refuse to move forward.

Once you know the user is authorized to edit tests, you need to determine if
it's a new test or an existing quiz. If the quiz is new, I simply add some
sample data to variables, which will be used for the upcoming form. If the
user wants to see an existing test, I open the file for read access, and grab
the first three lines, which will correspond to the $quizName, $quizEmail,
and $quizPwd fields.

I then use a foreach loop to load up the rest of the file into the $quizData
variable.

Printing Out the Form
Once the variables are loaded with appropriate values, it's a simple matter to
print up an HTML form to let the user edit the quiz. The form is almost all
pure HTML with the quiz variables interpolated into the appropriate places.
print <<<HERE

<form action = "writeQuiz.php"
 method = "post">

<table border = 1>
<tr>
 <th>Quiz Name</th>
 <td>
 <input type = "text"
 name = "quizName"
 value = "$quizName">
 </td>
</tr>

<tr>
 <th>Instructor email</th>
 <td>
 <input type = "text"
 name = "quizEmail"
 value = "$quizEmail">
 </td>
</tr>

TRAP This use of an administrative password will keep casual snoops out of your
system, but it's nowhere near bullet-proof security. This system is not
appropriate for situations where you must be absolutely certain that the
tests are secure.

TRICK You might wonder why the quiz needs a password field if it already took a
password to get to this form. The quiz system has multiple levels of
security. Anybody can get to the quizBuilder.php page. However, in
order to move to one of the other pages, the user has to have the right
kind of password. Only an administrator should go to the editPage and
showLog programs, so these programs require special administrative
password access. Each quiz also has a password associated with it. The
password is stored in the quiz master file so that you can associate a
different password for each quiz. In this way, the users authorized to take
one test won't be taking other tests (and adding confusion to your log
files).

<tr>
 <th>Password</th>
 <td>
 <input type = "text"
 name = "quizPwd"
 value = "$quizPwd">

<tr>
 <td rowspan = 1
 colspan = 2>
 <textarea name = "quizData"
 rows = 20
 cols = 60>
$quizData</textarea>
 </td>
</tr>

<tr>
 <td colspan = 2><center>
 <input type = "submit"
 value = "make the quiz">
 </center></td>
</tr>

</table>
</form>
HERE;
} // end if

?>
</body>
</html>

Writing the Test
Once the administrator has finished editing a quiz file, that quiz file must be
stored to the file system, and an HTML page for the quiz needs to be
generated. The writeQuiz.php program performs these duties.

Setting up the Main Logic
The first job is to create two files. The quiz name can be the foundation of
the filename, but many file systems choke at spaces within filenames, so I
use the str_replace() function to replace all spaces in $quizName to
underscore characters (_). Then I create a filename for the master file
ending in .mas and another filename for the actual quiz ending in .html. To
create the HTML file, I open it up for write output. Then I use the buildHTML
() function (which will be described shortly) to build the HTML code, and I
write that code out to the html file and close the file.

The master file is built in pretty much the same way, except it calls the
buildMas() function in order to create the appropriate text for the file.
<html>
<head>
<title>Write Quiz</title>
</head>
<body>
<?
//given a quiz file from editQuiz,

//generates a master file and an HTML file for the quiz

//open the output file
$fileBase = str_replace(" ", "_", $quizName);
$htmlFile = $fileBase . ".html";
$masFile = $fileBase . ".mas";

$htfp = fopen($htmlFile, "w");
$htData = buildHTML();
fputs($htfp, $htData);
fclose($htfp);

$msfp = fopen($masFile, "w");
$msData = buildMas();
fputs($msfp, $msData);
fclose($msfp);

//preview the actual master file
print <<<HERE
<pre>
$msData
</pre>

HERE;

To make sure things were going well, I added a check to the end of the page
that prints out the actual contents of the master file. The output of this
program lets the administrator check to see that the test is working correctly.
The administrator can actually take the test and submit it to the grading
program from this page. If there is a problem with the test, it's convenient to
have the actual contents of the .mas file visible on the page. Of course, the
final HTML page will not contain this data, because it holds the answers.

Building the Master File
The master file routine is very straightforward.
function buildMas(){
 //builds the master file
 global $quizName, $quizEmail, $quizPwd, $quizData;
 $msData = $quizName . "\n";
 $msData .= $quizEmail . "\n";
 $msData .= $quizPwd . "\n";
 $msData .= $quizData;
 return $msData;
} // end buildMas

The critical part of this file is remembering the file structure rules, so any
program that reads this file doesn't get confused. The quiz name should go
on the first line, followed by a newline character. The $quizEmail and
$quizPwd variables follow on their own lines, and finally all the $quizData
(which will usually be several lines) should go to the end of the file. Note that
the function doesn't actually store the data to the file, but returns it to the
main program. This allows a little more flexibility, so I can write the data to
both the file and the page.

Building The HTML File
The function that creates the HTML is a little more involved, but it still isn't
too hard. The basic strategy is this: Build an HTML form containing all the

questions. For each line of the master file, build a radio group. Place the
question and all the possible answers in a set of nested elements. At
the end of the page, there should be one Submit button. When the user
clicks on the Submit button, the system will call the gradeQuiz.php page,
which will evaluate the user's responses.
function buildHTML(){
 global $quizName, $quizData;
 $htData = <<<HERE
<html>
<head>
<title>$quizName</title>
</head>
<body>

HERE;

 //get the quiz data
 $problems = split("\n", $quizData);
 $htData .= <<<HERE
<center>
<h1>$quizName</h1>
</center>

<form action = "gradeQuiz.php"
 method = "post">

Name
<input type = "text"
 name = "student">

HERE;
 $questionNumber = 1;

 foreach ($problems as $currentProblem){
 list($question, $answerA, $answerB, $answerC, $answerD, $correct) =
 split (":", $currentProblem);
 $htData .= <<<HERE

 $question
 <ol type = "A">

 <input type = "radio"
 name = "quest[$questionNumber]"
 value = "A">
 $answerA

 <input type = "radio"
 name = "quest[$questionNumber]"
 value = "B">
 $answerB

 <input type = "radio"
 name = "quest[$questionNumber]"

 value = "C">
 $answerC

 <input type = "radio"
 name = "quest[$questionNumber]"
 value = "D">
 $answerD

HERE;
 $questionNumber++;

 } // end foreach
 $htData .= <<<HERE

<input type = "hidden"
 name = "quizName"
 value = "$quizName">

<input type = "submit"
 value = "submit quiz">

</form>

HERE;

 print $htData;
 return $htData;
} // end buildHTML

?>
</body>
</html>

Most of the critical information this function needs is stored in $quizData.
Each line of $quizData stores one question, so I use a split() function
to break $quizData into an array called $problems. I use a foreach loop
to step through each problem. Each problem contains a list of values, which
is separated into a series of scalar variables with the combination of split
() and list().

Within the foreach loop, I also added the HTML code necessary to print
out the current question's information. Take a careful look at the code for the
radio buttons. Recall that radio buttons that will operate as a group should all
have the same name. I did this by calling them all quest
[$questionNumber]. The $questionNumber variable will contain the
current question number, and this value will be interpolated before the HTML
code is written. Question number 1 will have four different radio buttons
called quest[1]. The gradeQuiz program will see this as an array called
$quest.

At the end of the HTML, I added the quiz name as a hidden field, and the

Submit button.

Taking a Quiz
The point of all this work is to have a set of quizzes your users can take, so
it's good to have a program to present the quizzes. Actually, since the
quizzes are saved as HTML pages, you could simply provide a link to a quiz
and be done with it, but I wanted a little more security. I wanted the ability to
store my quiz files outside the normal public_html file space, and I
wanted to have basic password protection so people won't take a quiz until I
know it's ready. (I won't release the password until I'm ready for people to
take the quiz.) Also, I can easily turn a quiz "off" by simply changing the
password.

The only real job of the takeQuiz page is to check the user's password
against the password of the indicated test, and allow access to the quiz if
appropriate.
<?
//takeQuiz.php
//given a quiz file, prints out that quiz

//get the password from the file
$masterFile = $takeFile . ".mas";
$fp = fopen($masterFile, "r");
//the password is the third line, so get the first two lines, but ignore them
$dummy = fgets($fp);
$dummy = fgets($fp);
$magicWord = fgets($fp);
$magicWord = rtrim($magicWord);
fclose($fp);

if ($password == $magicWord){
 $htmlFile = $takeFile . ".html";
 //print out the page if the user got the password right
 readFile($htmlFile);
} else {
 print <<<HERE
 <font color = "red"
 size = +3>
Incorrect Password.

You must have a password in order to take this quiz

HERE;
} // end if
?>

The password associated with a test is stored in the test file, so once I know
which test the user wants to take, I can open that file and extract the
password from it. The password is stored in the third line of the file, and the
only way to get to it with a sequential access file like this is to load the first
two lines into a dummy variable and then load the password into a variable
called $magicWord. If the user indicated a password that matches
$magicWord, I use the readFile() function to send the contents of the
quiz HTML page to the browser. If not, I send a message indicating the
password was not correct.

TRICK This would also be a dandy place to set up a little more security. In a
production version of this system, I keep a log file of every access, so I'll
know if somebody has been trying to get at my system 1,000 times from

Grading the Quiz
One advantage of this kind of system is the potential for instantaneous
feedback for the user. As soon as the user clicks the Submit button, the quiz
will be automatically graded by the gradeQuiz.php program, which also
stores a log of the student's results for the administrator.

Opening the Files
The gradeQuiz program, like all the programs in this system, relies on files
to do all its important work. In this case, the program will use the master file
to get the answer key for the quiz, and will write to a log file.
<?
print <<<HERE
<html>
<head>
<title>Grade for $quizName, $student</title>
</head>
<body>

</body>
<h1>Grade for $quizName, $student</h1>
HERE;

//open up the correct master file for reading
$fileBase = str_replace(" ", "_", $quizName);
$masFile = $fileBase . ".mas";
$msfp = fopen($masFile, "r");

$logFile = $fileBase . ".log";

//the first three lines are name, instructor's email, and password
$quizName = fgets($msfp);
$quizEmail = fgets($msfp);
$quizPwd = fgets($msfp);

The master file is opened with read access. The first three lines are
unimportant, but I must still read them in to get to the quiz data.

Creating an Answer Key
I start by generating an answer key from the master file. I'll step through
each question in the file, and extract all the normal variables from it
(although all I'm really interested in is the $correct variable). I then store
the value of $correct into an array called $key. At the end of this loop, the
$key array will hold the correct answer for each question in the quiz.
//step through the questions building an answer key
$numCorrect = 0;
$questionNumber = 1;
while (!feof($msfp)){

the same machine within a second (sure sign of some kind of automated
attack) or other mischief. I can also check to see that later on when a
page has been submitted, it comes from the same computer that
requested the file in the first place. If I want, I can also check the times of
request and submission in order to reject quizzes that have been out
longer than some time limit.

 $currentProblem = fgets($msfp);

 list($question, $answerA, $answerB, $answerC, $answerD, $correct) =
 split (":", $currentProblem);
 $key[$questionNumber] = $correct;
 $questionNumber++;
} // end while
fclose($msfp);

Checking the User's Response
The user's responses will come from the HTML form as an array called
$quest. The correct answers are in an array called $key. To grade the test,
I can simply step through both arrays at the same time, comparing the user's
response with the correct response. Each time these values are the same,
the user has gotten an answer correct. When the values are not the same,
the user was incorrect (or there was a problem with the test itself-don't
discount that as a possibility).
//Check each answer from user
for ($questionNumber = 1; $questionNumber <= count($quest); $questionNumber++){
 $guess = $quest[$questionNumber];
 $correct = $key[$questionNumber];
 $correct = rtrim($correct);
 if ($guess == $correct){
 //user got it right
 $numCorrect++;
 print "problem # $questionNumber was correct
\n";
 } else {
 print "problem # $questionNumber was incorrect
\n"
 } // end if
} // end for

I chose to give a certain amount of feedback telling whether the question
was correct or not, but I decided not to display the right answer. You might
wish to give the user more or less information, depending on how you're
using the quiz program.

Reporting the Results to Screen and Log File
After checking each answer, the program reports the results to the user as a
raw score and a percentage. The program also opens up a log file for
append access and adds the current data to it. Append access is just like
write access, but rather than overwriting an existing file, it adds any new data
to the end of it.
print "you got $numCorrect right
\n";
$percentage = ($numCorrect /count($quest)) * 100;
print "for $percentage percent
\n";

$today = date ("F j, Y, g:i a");
//print "Date: $today
\n";
$location = getenv("REMOTE_ADDR");
//print "Location: $location
\n";

//add results to log file
$lgfp = fopen($logFile, "a");
$logLine = $student . "\t";
$logLine .= $today . "\t";
$logLine .= $location . "\t";
$logLine .= $numCorrect . "\t";
$logLine .= $percentage . "\n";

fputs($lgfp, $logLine);
fclose($lgfp);

?>

</html>

I added a few more elements to the log file that might be useful to a test
administrator. Of course, I added the student's name and the current date.
You might want to look at the online help for the date() function to see all
the various ways you can display the current date. I also added a location
variable, which uses the $REMOTE_ADDR environment variable to indicate
which machine the user was on when he or she submitted the exam. This
can be useful information, because it can alert you to certain kinds of
hacking. (A person taking the same quiz several times on the same machine
but with a different name, for example.) The gradeQuiz program adds the
number correct and the percentage to the log file as well, then closes the file.
Notice that the data in the log file is delimited with tab characters. This is
done so an analysis program could easily work with the file using the split
command. Also, most spreadsheet programs can readily read a tab-
delimited file, so the log file can be easily imported into a spreadsheet for
further analysis.

Viewing the Log
The showLog.php program is actually very similar to the takeQuiz
program. It checks the password to ensure the user has admin access, then
opens up the log using the file() function. It prints out the results of the
file inside a <pre></pre> pair, so the tab characters will be preserved.
<?
//showLog.php
//shows a log file
//requires admin password

if ($password == "absolute"){
 $lines = file($logFile);
 print "<pre>\n";
 foreach ($lines as $theLine){
 print $theLine;
 } // end foreach
 print "</pre>\n";

} else {
 print <<<HERE
<font color = "red"
 size = +2>
You must have the appropriate password to view this log

HERE;
} // end if

TRICK You could really improve the logging functionality if you wanted to do
some in-depth test analysis. For example, you could easily store each
user's response to each question in the quiz. This would give you a
database of performance on every question, so you could easily
determine which questions are causing difficulty.

?>

You could improve this program by writing the data into an HTML table.
However, not all spreadsheets can easily work with HTML table data, so I
prefer the tab format. It wouldn't be difficult to add some data analysis to the
log viewer, including mean scores, standard deviation, and suggested curve
values.

Summary
This chapter has explored the use of sequential files as a data storage and
retrieval mechanism. You have learned how to open files in read, write, and
append modes. You know how file pointers are used to refer to a file. You
have written data to a file and loaded data from a file with appropriate
functions. You have learned how to load an entire file into an array. You can
examine a directory and determine which files are in the directory. You've
learned how to use basic regular expressions in the preg_greq() function
to display a subset of files in the directory. Finally, you've put all this together
in a multi-program system that allows multiple levels of access to an
interesting data set. You should be proud of your accomplishments.

Challenges
1. Improve the quiz program in one of the ways I've suggested

throughout the chapter. Add the ability to e-mail test results, put
in some analysis of test scores, improve the quiz editing page,
or try something of your own.

2. A couple of values in this system should be global among each
of the PHP programs. The root directory of the files and the
administrative password are obvious candidates. Write a
program that stores these values in an .ini file and modify the
quiz programs to get these values from that file when needed.

3. Create a source code viewer. Given a filename, the program
should read in the file and convert each instance of < into <,
then save this new file to another name. This will allow you to
show your source code to others.

4. Create a simple guest book. Let the user enter information into a
form, and when she clicks the Submit button, add her comment
to the bottom of the page. You can use one or two files for this.

Chapter 7: Using MySQL to Create
Databases

Overview
When you began programming in PHP, you started with very simple
variables. Soon you learned how to do more interesting things with
arrays and associative arrays. You added the power of files to gain
tremendous new skills. Now you'll learn how relational databases can
be used to manage data. In this chapter you'll learn how to build a
basic database and how to hook it up to your PHP programs.
Specifically, you'll learn:

How to start the MySQL executable.

How to build basic databases.

The essential data definition SQL statements.

How to return a basic SQL query.

How to use SQLyog to manage your databases.

How to incorporate databases into PHP programs.

Introducing the Adventure Generator Program
Databases are a serious tool but they can be fun, too. The adventure
generator program shown in Figures 7.1 through 7.4 shows how a database
can be used to fuel an adventure game generator. The adventure generator
is a system that allows users to create and play simple "multiple choice"
adventures. This style of game consists of several nodes. Each node
describes some sort of decision. In each case, the user will be able to
choose from up to three choices. The user's choice leads to a new decision.
If the user makes a sequence of correct choices, he or she will win the
game.

This program is interesting as a game, but the really exciting part is how the
user can modify this game. A user can use the same system to create and
modify adventures. Figure 7.3 shows the data behind the enigma game.
Note that you can edit any node of the game by clicking on the appropriate
button from this screen.

If the user chooses to edit a segment, the page shown in Figure 7.4 appears.

Figure 7.1: The user can choose an option. Let's hop onto that
sub...

Figure 7.2: Maybe the warehouse would have been a better choice after
all.

Figure 7.3: This page provides information about each segment in the
game, including links to directly edit each segment.

Figure 7.4: From this screen it is possible to change everything about a
node. All the nodes that have been created so far are available as new
locations.

As you can see, the structure of the data is the most important element of
this game. You already know some ways to work with data, but this chapter
introduces the notion of relational database management systems (RDBMS).
An RDBMS is a system that helps programmers work with data. The
adventure generator program uses a database to store and manipulate all
the data.

Using a Database Management System
Data is such an important part of modern programming that entire
programming languages are devoted to manipulating databases. The
primary standard for database languages is Structured Query Language
(SQL). SQL is a standardized language for creating databases, storing
information into databases and retrieving this information. Special
applications and programming environments specialize in interpreting SQL
data and acting on it.

Often a programmer will begin by creating a data structure in SQL, then will
write a program in some other language (such as PHP) to allow access to
that data. The PHP program can then formulate requests or updates to the
data, which are passed on to the SQL interpreter. This approach has a
couple of advantages. First, once you learn SQL, you can apply it easily to a
new programming language. Also, you can easily add multiple interfaces to
an existing data set because many programming languages have ways to
access an SQL interpreter. Many relational database management systems
are available, but the MySQL environment is especially well suited to
working with PHP. However, the basic concepts of SQL remain the same no
matter what type of database you are working on. Most of the SQL
commands described in this chapter work without modification in Microsoft
Access, Microsoft SQL Server, and Oracle, as well as a number of other
RDBMS packages.

I'll begin this chapter by explaining how to create a simple database in
MySQL. There are a number of ways to work with this package, but I'll start
by showing you how to write a script that builds a database in a text file. I'll
use the SQL language, which is different in syntax and style from PHP. Then
I'll show you SQLyog, a wonderful front-end package for working with
MySQL databases. In Chapter 8, "Connecting to Database Within PHP," I'll
show you how to contact and manipulate your MySQL database from within
PHP.

Working with MySQL
There are a number of RDBMS packages available. These programs vary in
power, flexibility, and price. However, they all work in essentially the same
way. For this book, most examples will use the MySQL database. This
program is very frequently paired with PHP for a number of reasons. First,
MySQL is a very powerful program in its own right. It handles a large subset
of the functionality of the most expensive and powerful database packages.
It uses a standard form of the well-known SQL data language. MySQL is
released under an open source license, and is available for free. It works on
many operating systems, and with many languages. It works very quickly
and works well even with large data sets. PHP ships with a number of
functions designed to support MySQL databases.

Installing MySQL
If you used PHPTriad to install Apache and PHP, you probably also installed
MySQL as well. If you are working on a Web server you do not control, you'll
need to check with your server administrator to see if MySQL is installed. If
your server supports PHP, it's very likely that it also supports MySQL, as
these two programs are frequently installed together.

Using the MySQL Executable
MySQL is actually a number of programs. It has a server component that is
always running, as well as a number of utility programs. The MySQL
command line console shown in Figure 7.5 is a basic program run from the
command line. It isn't a very pretty program, but it provides powerful access
to the database engine.

Figure 7.5: The MySQL program connecting to a
database.

There are a number of ways to use MySQL, but the basic procedure involves
connecting to a MySQL server, choosing a database, and then using the
SQL language to control the database by creating tables, viewing data, and
so on.

The MySQL.exe console shipped with MySQL is the most basic way to work
with the MySQL database. Although it won't win any user interface awards,
the program offers low-level access to the database. This interface is
important to learn, however, because it is very much like the way your

programs will interface with the database system.

Creating a Database
Databases are described by a very specific organization scheme. To
illustrate database concepts, I will create and view a simple phone list. The
basic structure of the phone list is shown in Table 7.1.

The phone list shows a very typical simple data table. Database people like
to give special names to the parts of the database, so I'll use this simple
phone list to illustrate. Each row of the table is called a record. Records
describe discrete entities. The list of records is called a table. Each record in
a table has the same elements, which are called fields, (or sometimes simply
columns). Every record in the table has the same field definitions, but
records can have different values in the fields. The fields in a table are
defined in specific ways. Because of the way database tables are stored in
files, the computer must always know how much room to allocate for each
field, so the size and type of each field is important. This particular database
is defined with five fields. The id field is an integer. All the other fields
contain string data.

Creating a Table
RDBMS programs use a special language called Structured Query
Language(SQL) to create and manipulate databases. SQL is usually pretty
easy to understand, compared to full-blown programming languages. You
can usually guess what's going on even without a lot of knowledge. As an
example, look at the following SQL code:
USE chapter7;

CREATE TABLE phoneList (
 id INT PRIMARY KEY,
 firstName VARCHAR(15),
 lastName VARCHAR (15),
 email VARCHAR(20),
 phone VARCHAR(15)
);

DESCRIBE phonelist;

This code is an SQL script. It is like a PHP program in the sense it is a set of
instructions for the computer to follow. However, the PHP interpreter doesn't
directly interact with the SQL language. Instead, these commands are sent
to another program. As a PHP programmer, you'll also be able to write code
that sends commands to a database language. Just as your PHP code often
writes code in HTML format for the browser to interpret, you'll be writing SQL
code for the MySQL interpreter to use.

ADVANTAGES OF SQL

Databases have been an important part of programming since the
beginning, but the process of working with data has gone through
several evolutions. The advent of a common language that can be used
in many applications was a very important step. SQL is a fourth-

Table 7.1: PHONE LIST SUMMARY

id firstName lastName e-mail phone

0 Andy Harris <aharris@cs.iupui.edu> 123-4567

1 Joe Slow <jslow@myPlace.net> 987-6543

generationlanguage. In general, these languages are designed to solve
a particular type of problem. Some fourth generation languages (like
SQL) aren't full-blown programming languages, because they don't
support data structures like branches and loops. Still, these languages
can serve a very useful purpose. SQL is handy because it's widely
supported. The SQL commands you will learn in this chapter will apply to
most modern database programs with little to no modification. You can
take the script you'll learn shortly in MySQL and send the same code to
an Oracle or MS SQL Server database (two other very common
choices), and all three data programs will build the same database. If
you choose to upgrade to a more powerful data package, you can use
your existing scripts to manipulate the data. Perhaps the most powerful
reason to have a scripting language to control databases relates to
programming in traditional languages. You can write a program in any
language (like PHP, for example) that generates SQL code. You can
then use that code to manipulate the database. This allows you to have
complete flexibility, and lets your program act as the interface to your
database.

When this code is sent to an SQL-compliant database program (such as
MySQL) it will create the database structure shown in Table 7.1.

Using a Database
It is possible that you will have several database projects working in the
same relational database system. In my case, each chapter of this book that
uses SQL has its own database. Sometimes your system administrator will
assign you a database. In any case, you will probably need to invoke that
database with the USE command.

Creating a Table
To create a table, you must indicate the name of the table as well as each
field in the table. For each field, you must list what type of data is held in the
field, and (at least for text data) how many characters long the field will be.
As an example, the following code creates the phoneList table:
CREATE TABLE phoneList (
 id INT PRIMARY KEY,
 firstName VARCHAR(15),
 lastName VARCHAR (15),
 email VARCHAR(20),
 phone VARCHAR(15)
);

You can think of fields as being much like variables, but while PHP is easy-

TRICK The syntax of SQL is not exactly like that of PHP. SQL has a different
culture, and it makes sense to respect the way SQL code has historically
been written. SQL is generally not case-sensitive, but most SQL coders
put all SQL commands in all uppercase. Also, when a bunch of SQL
commands are placed in a file as this code will be, you usually end each
line with a semicolon.

TRICK If you don't already have a database to USE, you can create one with the
CREATE command. For example, to create a database called "myStuff,"
use these commands:
CREATE DATABASE mystuff;
USE mystuff;

going about what type of data is in a variable, SQL is very picky about the
type of data in fields. In order to create an efficient database, MySQL needs
to know exactly how many bytes of memory to set aside for every single field
in the database. The primary way it does this is to require the database
designer to specify the type and size of every field in each table. Table 7.2
lists a few of the primary data types supported by MySQL.

You might notice that it is not necessary to specify the length of numeric
types (although you can determine a maximum size for numeric types as
well as the number of digits you want stored in float and double fields). The
storage requirements for numeric variables are based on the type itself.

Working with String Data in MySQL
Text values are usually stored in VARCHAR fields. These fields must include
the number of characters allocated for the field. Both CHAR and VARCHAR
fields have fixed lengths. The primary difference between them is what
happens when the field contains a value shorter than the specified length. If
you declare a CHAR field to have a length of 10 with
firstName VARCHAR(10);

and then later store the value 'Andy' into the field, the field will actually
contain 'Andy ' (that is, Andy followed by six spaces). CHAR fields pad
any remaining characters with spaces. The VARCHAR field type removes
any padded spaces. Usually you will use the VARCHAR field type to store all
your string data.

DETERMINING THE LENGTH OF A VARCHAR FIELD

Data design is both a science and an art. Determining the appropriate
length for your text fields is one of the oldest problems in data.

If you don't allocate enough room for your text data, you can cause a lot
of problems for your users. I once taught a course called CLT SD WEB
PRG because the database that held the course names didn't have

Table 7.2: COMMON DATA TYPES IN MYSQL

Data type Description

INT Standard integer 2 billion (roughly)

BIGINT Big integer 9 x 10 ^18th

FLOAT Floating point decimal number 38 digits

DOUBLE Double precision floating point 308 digits

CHAR(n) text with n digits. If actual value is less than n, field will be
padded with trailing spaces

VARCHAR
(n)

Text with n digits. Trailing spaces will automatically be
culled

DATE Date in YYYY-MM-DD format

TIME Time in HH:MM:SS format

YEAR Year in YYYY format

TRICK While the data types listed in Table 7.2 are by far the most commonly
used, MySQL supports many other data types as well. Look in the online
help that ships with MySQL if you need a more specific data type. Other
databases will have a very similar list of data types.

enough room for the actual name of the course (Client-Side Web
Programming). My students renamed it the "Buy a Vowel" course.

However, you can't simply make every text field a thousand characters
long, either, because this would be wasteful of system resources. If you
have a field that will usually contain only five characters and you allocate
one hundred characters, you will still require room on the drive for the
extra 95 characters. If your database has thousands of entries, this can
be a substantial cost in drive space. In a distributed environment, you'll
also have to wait for those unnecessary spaces to come across limited
bandwidth. It takes experimentation and practice to determine the
appropriate width for your string fields. You'll need to test your
application with real users before you can really be sure if you've made
the right decision.

Finishing up the CREATE TABLE Statement
Once you understand field data types, the CREATE TABLE syntax makes a
lot of sense. There are only a few more details to understand. Once you
specify CREATE TABLE, use a pair of parentheses to indicate the field list.
Each field has a name followed by its type (and length, if it's a CHAR or
VARCHAR). The fields are separated by commas. You do not have to put
each field on its own line or indent the field definitions, but I prefer to do so,
because these practices make the code much easier to read and debug.

Creating a Primary Key
You might be curious about the very first field in the phone list database.
Just to refresh your memory, the line that defines that field looks like this:
id INT PRIMARY KEY,

Most database tables have some sort of field like this that holds a numeric
value. This special field is called the primary key.

IN THE REAL WORLD

A very simple database like the phone list could theoretically go
without a primary key, but such fields are so important to more
sophisticated databases that you might as well start putting them into
even your first table. It's traditional to put a primary key in every table.
In Chapter 9 "Data Normalization," you'll learn more about the
relational data model. In that discussion you'll learn how keys are used
to build powerful databases, and you'll learn more about creating
proper primary keys. In fact, the adventure program you've already
seen heavily relies on a key field even though there's only one table in
the database.

The code presented so far can be entered directly into the MySQL program.
You can see the code and its results in Figure 7.6.

Figure 7.6: The MySQL command line tool after I created the phonelist
table.

Using the DESCRIBE Command to Check the Structure of a
Table
It can be useful to check the structure of a table, especially if somebody else
created it or you don't remember exactly what types or sizes of fields are in
the table. The DESCRIBE command lets you view the structure of a table.

Inserting Values
Once you've created a table, you can begin to add data to it. The primary
tool for adding records to a table is the INSERT command.
INSERT INTO phoneList
VALUES (
 0, 'Andy', 'Harris', 'aharris@cs.iupui.edu', '123-4567'
);

The INSERT statement allows you to add a record into a database. The
values must be listed in exactly the same order the fields were defined. Each
value is separated by a comma, and all VARCHAR and CHAR values must be
enclosed in single quotes.

If you have a large amount of data to load into a database, you can also use
the LOAD DATA command. This command accepts a tab-delimited text file
with one row per record and fields separated by tabs. It then loads that entire
file into the database. This is often the fastest way to load a database with
test data. The following line loads data from a file called "addresses.txt" into
the phoneList table:
LOAD DATA LOCAL INFILE "addresses.txt" INTO TABLE phonelist;

Figure 7.7 shows the MySQL tool after I have added one record to the table.

Figure 7.7: MySQL tells you the operation succeeded, but you don't get
a lot more information.

IN THE REAL WORLD

As you are building a database, you will need to populate the database
with test values. You don't want to use actual data at this point,
because your database will not work correctly until you've messed with
it for some time. However, your test values should be reflective of the
kinds of data your database will actually house. This will help you spot
certain problems like field lengths that are too small or fields that are
missing.

Selecting Results
Of course, you'll want to see the results of all your table-building activities. If
you want to see the data in a table, you can use the SELECT command. This
is perhaps the most powerful command in SQL, but its basic use is quite
simple. To see all of the data in the phonelist database, use this
command:
SELECT * FROM phonelist

This command grabs all fields of all records of the phonelist database and
displays them in a table format.

Figure 7.8 shows what happens after I add a SELECT statement to get the
results of the phone list.

Figure 7.8: The result of the SELECT statement is a table just like the
original plan.

Writing a Script to Build a Table
It is very important to understand how to create tables by hand in SQL,
because your programs will have to do this same work. However, it's very
tedious to write your SQL code in the MySQL window directly. When you
create real data applications, you'll often have to build and rebuild your data
tables several times before you are satisfied with them, and this would be
awkward directly in the command line interface. Also, as you are writing
programs that work with your database, you will likely make mistakes that
corrupt the original data. It's good to have a script ready that can easily
rebuild the database with test data even if something goes wrong. Most
programmers create a script of SQL commands with a text editor (you can
use the same editor that you write your PHP code in) and use the SOURCE
command to load that code in. Below is an SQL script for creating the
phonelist database.
build phone list
for mySQL

USE chapter7;
DROP TABLE IF EXISTS phoneList;

CREATE TABLE phoneList (
 id INT PRIMARY KEY,
 firstName VARCHAR(15),
 lastName VARCHAR (15),
 email VARCHAR(20),
 phone VARCHAR(15)
);

INSERT INTO phoneList
VALUES (
 0, 'Andy', 'Harris', 'aharris@cs.iupui.edu', '123-4567'
);

SELECT * FROM phoneList;

This code isn't exactly like the code I used in the interactive session,
because there are a few more features that are especially handy when you
create SQL code in a script.

Creating Comments in SQL
SQL is actually a language. Although it isn't technically a programming
language, it has many of the same features. Like PHP and other languages,
SQL supports several types of comment characters. The # sign is often used
to signify a comment in SQL. Comments are especially important when you
save a group of SQL commands in a file for later reuse. These comments
can help you remember what type of database you were trying to build. It's
critical to put basic comments in your scripts so you will understand what
they should do later.

Dropping a Table
It may seem strange to talk about deleting a table from a database before
you've built one, but often (as in this case) a database is created using a
script. Before you create a new table, you should check to see if it already
exists, and if it does, delete it with the DROP command. The
DROP TABLE IF EXISTS phoneList;

command does exactly that. If the phoneList table currently exists, it will
be deleted, so there will be no confusion.

Running a Script with SOURCE
You can create an SQL script with any text editor. It is common to save SQL
scripts with the .sql extension. Inside MySQL, you can use the SOURCE
command to load and execute an external script. Figure 7.9 shows MySQL
after I ran the buildPhonelist.sql script.

Figure 7.9: The SOURCE command allows you to read in SQL
instructions from a file.

TRAP In Windows I often drag a file from a directory view into a command line
program like MySQL. Windows will copy the entire filename over, but it will
include double quotes, which will cause problems for the MySQL
interpreter. If you drag a filename into MySQL, you will need to edit out the
quote characters so that MySQL will read the file correctly.

Working with a Database in SQLyog
It's critical to understand the SQL language, but sometimes you may want a
more visual way to build and view your databases. If you are running
Windows, you can use an excellent front end called SQLyog. This freeware
program makes it much easier for you to create, modify, and manipulate
databases.

IN THE REAL WORLD

SQLyog is so cool that you'll be tempted to use it all the time. That's
fine, but be sure you understand the underlying SQL code, because
your PHP programs will have to work with plain text SQL commands.
It's fine to use SQLyog while you are building and manipulating your
data, but your users won't be using this program. Your application will
be the user's interface to your database, so you need to be able to do
all commands in plain text from within PHP. I use SQLyog, but I also
make sure I always look at the code it produces, so I can write it
myself.

SQLyog basically adds the visual editing tools of a program like Microsoft
Access to the MySQL environment. It also adds some wonderful tools for
adding records, viewing your data structure, and exporting data to a number
of useful formats.

Connecting to a Server
MySQL is a client-server application. The MySQL server will usually be
running on a Web server where your PHP programs reside. You can connect
a MySQL client to any MySQL server. Figure 7.10 shows me connecting to
my local MySQL server.

Figure 7.10: This screen helps you connect to a data
server.

It's important to recognize that you can connect to any data server you have
permission to use. This data server doesn't need to be on the same physical
machine you are using. This would be useful if you wanted to use SQLyog to
view data on a remote Web server you are maintaining, for example.
However, many of these remote Web servers do not like this kind of access,
so you should still know how to work with the plain MySQL console.

Creating and Modifying a Table
SQLyog provides visual tools to help you create and modify your tables. The
phone list is way too mundane for my tastes, so I'll build a new table to
illustrate the features of SQLyog. This new table contains a number of

randomly generated super heroes. Figure 7.11 shows the dialog used to
create a table or alter its structure.

Figure 7.11: It's easy to create a table and modify its structure with
SQLyog.

With SQLyog you can choose variable types from a drop-down list, and
many field properties are available as checkboxes. Most of those options are
not important for now. Note that id is set up as the primary key. When you
are finished creating or modifying the table, the proper SQL code to perform
the transaction will be automatically generated and executed for you.

Editing Table Data
You can use SQLyog to edit your table in a format much like a spreadsheet.
Figure 7.12 illustrates this capability.

Figure 7.12: You can edit a number of records easily in the edit
view.

TRICK Special thanks to Lee Seitz and his hysterical Super-Hero generator at
http://home.hiwaay.net/~lkseitz/comics/herogen/.

Check this site out sometime when you're bored.

To edit a table in SQLyog, select the table in the table list on the left-hand
side of the SQL screen. You can then either press F11 to edit the table, or
choose Insert/Update Data from the Table menu. Once you're done
editing the data, you can hit the Done button, and SQLyog automatically
creates and runs the SQL code needed to modify the table data. If you type
data in the last row, you will get a new record.

Exporting a Table
Some of SQLyog's most interesting features involve ways to export
information about your tables. You can generate formats that show the data
in a number of formats. Once you've gotten a view of a table (by selecting
the table and pressing the Enter key) you can go to the tools menu and
select "Export Result Set." You will see a dialog like the one featured in
Figure 7.13.

Figure 7.13: The export result set dialog allows you to save table data in
a number of formats.

You can easily generate an HTML summary of your data by selecting the
HTML option and specifying a filename. Figure 7.14 shows the HTML output
of the hero data table.

Figure 7.14: You can easily print HTML summaries of your data
results.

You might prefer to have your results saved in some sort of delimited format
such as those discussed in Chapter 6, "Working with Files." You can easily
generate such a format by choosing the CSV (Comma-Separated Value)
option, and choosing what your delimiters will be. This is a good choice if
you want your data to be readable by a spreadsheet or if you are writing a
program that can handle such a format but cannot do direct database

access. Figure 7.15 illustrates the CSV version of the hero data set.

Figure 7.15: I set up the phone list data as a tab delimited file and read
it into Excel.

You can also set up an XML file to hold the data. As you can see from the
illustration in Figure 7.16, XML is much like HTML, and it describes the
information in a self-documenting form.

Figure 7.16: The XML form of the data generates HTML-like tags to
describe the fields in the table.

When you start to write more complex databases, you'll quickly learn the
value of descriptions of each table. You can use the "Create Schema"
command under the "DB" menu to generate an HTML description of your
table. This schema can be an important part of your programming and
documentation strategy. Figure 7.17 shows the schema of the hero table.

Figure 7.17: The schema for a table describes important information
about the table's structure.

One last very useful tool is the "export as batch script" function found on the
"DB" menu. You can use this tool to automatically generate an SQL script for
creating and populating a table. This is very useful if you choose to use the
visual tools for creating and editing a table, but then want to be able to
recreate the table through a script. The dialog box shown in Figure 7.18
illustrates the various options for this tool.

Figure 7.18: From this dialog box you can generate code that will
manufacture replicas of any database created or viewed with
SQLyog.

You can specify whether the resulting script generates the table structure
alone or adds the data. You can also specify whether the resulting script
contains code to select a database, drop the specified table if it already
exists, and the filename of the resulting script.

TRAP The ability to automatically generate SQL scripts is incredibly powerful. It
can be a great time-saver and you can learn a lot by examining the scripts
written with such a feature. However, you are still the programmer, and
you are responsible for code in your projects, even if you didn't write it
directly. You must still understand what the code being generated does.
Most of the code you'll see so far is stuff I've already described, but you

may have to look up advanced features. As I've said before, you still have
to know how to do this stuff by hand.

Creating More Powerful Queries
So far, the tables you've created haven't really been any more powerful than
HTML tables, and they're a lot more trouble. The excitement of databases
comes when you use the information to solve problems. Ironically, the most
important part of database work isn't usually getting the data, but filtering the
data in order to solve some sort of problem. You might want to get a listing of
all heroes in your database who's last name begins with an "E," or perhaps
somebody parked a Yak Dirigible in your parking space and you need to
know who the driver is. You may also want your list sorted by special power,
or you may only want a list of vehicles. All these (admittedly contrived)
examples involve grabbing a subset of the original data. The workhorse of
SQL is the SELECT statement. You've seen the simplest form of this
command used to get all the data in a table, like this:
SELECT * FROM hero;

Figure 7.19 shows this form of the SELECT statement operating on the hero
table.

Figure 7.19: The SELECT query is in the top right section, and the
results are shown underneath.

The SELECT statement is extremely powerful because it can be used to grab
a subset of a data set that can return only the requested fields and records.
This process of asking questions of the database is commonly called a
query.

Limiting Columns
There are many times when you might not want all of the fields (or columns)
in a table. For example, you might just want a list of the name and weapon of
everyone on your list. You can specify this by using the following SELECT
statement (illustrated in Figure 7.20).

TRICK SQLyog is a wonderful tool for experimenting with SELECT statements
because you can write the actual SQL by hand, and then you can see the
results immediately in a very clean format. To use SQLyog in this way,
type in SQL code in the SQL editor, then press Shift+F5. If you don't want
to use SQLyog, you can do the same experiments directly in MySQL. It
will still work, but the results will be formatted as text, and not always as
easy to see.

Figure 7.20: This Query returns only the names and
weapons.

SELECT name, weapon
FROM hero;

This may seem like a silly capability for such a simple database as the hero
list, but you'll often run into extremely complicated tables with many fields,
and you'll need to filter only a few fields. For example, I use a database to
track the students I advise. Each student's information contains lots of data,
but I might just want a list of names and e-mail addresses. The ability to
isolate only the fields I need is one way to get useful information from a
database.

The results of a query look a lot like a new table. You can think of a query
result as a temporary table.

Limiting Rows with the WHERE Clause
In addition to limiting the columns returned in a query, you are often
interested in limiting the number of rows. For example, you might run across
an evil villain who can only be defeated by a laser pointer. The query shown
in Figure 7.21 illustrates a query that solves exactly this dilemma.

Figure 7.21: If you know how to set up the query, you can get very
specific results. In this case, the query selects only heroes with a laser
pointer.

SELECT *
 FROM hero
 WHERE weapon = 'Laser Pointer';

returns only the rows matching a specific condition.

Adding a Condition with a WHERE Clause
You can add a WHERE statement to a query to specify which row or rows
you want to see. This clause allows you to specify a condition. The database
manager will check every record in the table. If the condition is true for that
record, it will be included in the result set. The conditions in a WHERE clause
are similar to those in PHP code, but they are not exactly the same. In SQL,
the single equal sign (=) is used for equality. Also, text elements are encased
in single quotes. ('). You can also use <, >, and <= or >= and != conditions
to limit your search.

Using the LIKE Clause for Partial Matches
Often you will not know the exact value of a field you are trying to match.
The LIKE clause allows you to specify partial matches. For example, you
might wish to know which heroes have some sort of super power. This query
SELECT *
 FROM hero
 WHERE power LIKE 'Super%';

will return back each hero whose power begins with the value "Super." The
percent sign (%) can be used as a wild card to indicate any number of
characters. You can use a variation of the LIKE clause to find information
about all heroes with a transportation scheme that starts with the letter "B."
SELECT name, transportation
 FROM hero
 WHERE transportation LIKE 'B%';

You can also use the underscore character (_) to specify one character.

TRICK The usage of comparison operators is pretty easy to understand for
numeric data, such as integers and real numbers. It's not quite so
obvious how a language will treat text comparisons. SQL has developed
some standard rules, but each implementation might be somewhat
different. SQL generally works in a case-insensitive way, so "Yak-Bot"
would match "yak-bot" or "yAK-bOT." Also, the < and > operators refer to
alphabetic order, so
SELECT *
 FROM hero
 WHERE name < 'D';

will select all the records where the hero's name starts with "A," "B," or
"C."

TRICK The simple wildcard character support in SQL is sufficient for many
purposes. If you like regular expressions, you can use the REGEXP
clause to specify whether a field matches a regular expression. This is a
very powerful tool, but it is an extension to the SQL standard. It works
fine in MySQL, but it is not supported in all SQL databases.

Generating Multiple Conditions
You can combine conditions with AND, OR, and NOT keywords for more
complex expressions. For example,
SELECT *
 FROM hero
 WHERE transportation LIKE 'B%'
 AND power LIKE '%super%';

selects those heroes whose transportation starts with "B" and who have a
power with "super" in its name.

This capability to create compound expressions will be very useful as you
build more complex databases with multiple tables.

Using the ORDER BY Clause to Sort Results
One more nifty feature of the SELECT statement is the ability to sort the
results by any field. Figures 7.22 and 7.23 illustrate how the ORDER BY
clause can determine how tables are sorted.

Figure 7.22: This query shows the entire database sorted by the
weapon name.

Figure 7.23: This query sorts by the power in descending (reverse
alphabetical) order.

The ORDER BY clause allows you to determine how the data is sorted. You
can specify any field you wish as the sorting field. As you can see in Figure
7.23, the DESC clause specifies that data should be sorted in descending
order.

Changing the Data with the UPDATE Statement
You can also use SQL to modify the data in a database. The key to this
behavior is the UPDATE statement. An example will help it make sense.
UPDATE hero
 SET power = 'Super Electric Toe'
 WHERE name = 'Lightning Guardian';

This code upgrades Lightning Guardian's power to the Super Electric Toe
(which is presumably a lot better than the ordinary Electric Toe).

Generally, you will want to update only once record at a time. You can use a
WHERE clause to select which record in the table will be updated.

Returning to the Adventure Game
The adventure generator featured at the beginning of this chapter uses a
combination of MySQL and PHP code. You'll learn more about the PHP part
in Chapter 8, "Connecting to Databases Within PHP." For now though, you
have enough information to start building the data structure that forms the
core of the game.

Designing the Data Structure
The adventure game is entirely about data. It has an incredibly repetitive
structure. The same code operates over and over, but it operates on
different parts of the database. I started the program by sketching out the
primary play screen and thinking about what data elements I would need for
each screen of the game. I ended up building a table that looks like Table
7.3.

Table 7.3: DATA STRUCTURE OF ENIGMA ADVENTURE

id name description north east south west

0 -nothing- You cannot go
that way!

1 0 0 0

1 start over You are at a
submarine yard,
looking for the
famous Enigma
code machine

0 3 0 2

2 sub deck As you step on
the submarine
deck, a guard
approaches
you. Your only
choice is to
jump off the sub
before you are
caught.

15 15 15 15

3 warehouse You wait inside
the warehouse.
You see a
doorway to the
east and a box
to the south.

0 4 5 0

4 doorway You walked
right into a
group of guards.
It does not look
good...

0 19 0 15

5 box You crawl inside
the box and
wait. Suddenly,
you feel the box
being picked up
and carried
across the
wharf!

6 0 0 7

6 wait ..You wait until
the box settles
in a dark space.
You can move
forward or aft...

8 0 9 0

7 jump out You decide to
jump out of the
box, but you are
cornered at the
end of the
wharf.

15 19 15 15

8 forward As you move
forward, two
rough sailors
grab you and
hurl you out of
the conning
tower.

15 15 15 15

9 aft In a darkened
room, you see
the enigma
device. How will
you get it out of
the sub?

13 11 10 12

10 signal on
enigma

You use the
enigma device
to send a signal.
Allied forces
recognize your
signal and
surround the
ship when it
surfaces.

14 0 0 0

11 shoot your
way out

A gunfight on a
submerged sub
is a bad idea...

19 0 0 0

12 wait with
enigma

You wait, but
the sailors
discover that
enigma is
missing and
scour the sub
for it. You are
discovered and
cast out in the
torpedo tube.

15 0 0 0

13 replace
enigma
and wait

You put the
enigma back in
place and wait
patiently, but
you never get
another chance.
You are
discovered
when the sub

19 0 0 0

As you examine the chart, you can see that I simplified the game so that
each possible choice in the game boils down to seven elements. Each node
(or decision point) in the game consists of an id (or room number), a room
name, and a description of the current circumstances. Each node also has
pointers that describe what happens when the user chooses to go in various
directions from that node. For example, if the user is in the warehouse (node
3) and chooses to go east, he will go to node 4, which represents the
doorway. Going south from node three takes the user to node 5, which is the
box. I carefully thought about the game so the data structure represents all
the places the user can go in this game. I chose to think of winning and
losing as nodes, so everything in the game can be encapsulated in the table.

It's critical to understand that creating the table on paper is the first step.
Once you've decided what kind of data your program needs, you can think
about how you will put that data together. As you'll see, choosing a database
gives me an incredible amount of control, and makes it pretty easy to work
with the data. Perhaps the most amazing thing is this program can handle an
entirely different game simply by changing the database. I don't have to
change a single line of code to make the game entirely different. All I have to
do is point to a different database or change the database.

Once I decided on the data structure, I built an SQL script to create the first
draft of the database. That script is shown here.
build Adventure SQL File
for MySQL
Andy Harris

DROP TABLE IF EXISTS adventure;

CREATE TABLE ADVENTURE (
 id int PRIMARY KEY,
 name varchar(20),
 description varchar(200),
 north int,
 east int,
 south int,
 west int
);

pulls in to
harbor.

14 Win Congratulations!
You have
captured the
device and
shortened the
war!

1 0 0 0

15 Water You are in the
water. The sub
moves away. It
looks bad...

19 0 0 0

16 0 0 0 0

17 0 0 0 0

18 0 0 0 0

19 Game
Over

The game is
over. You lose.

1 0 0 0

INSERT INTO adventure values(
 0, 'lost', 'You cannot go that way!',
 1, 0, 0, 0
);

INSERT INTO adventure values(
 1, 'start', 'You are at a submarine yard, looking for the famous Enigma code mach
 0, 3, 0, 2
);

INSERT INTO adventure values(
 2, 'sub deck', 'As you step on the submarine deck, a guard approaches you. Your o
to jump off the sub before you are caught.',
 15, 15, 15, 15
);

INSERT INTO adventure values(
 3, 'warehouse', 'You wait inside the warehouse. You see a doorway to the south an
the east.',
 0, 4, 5, 0
);

INSERT INTO adventure values(
 4, 'doorway', 'You walked right into a group of guards. It does not look good...
);

INSERT INTO adventure values(
 5, 'box', 'You crawl inside the box and wait. Suddenly, you feel the box being pi
carried across the wharf!', 6, 0, 0, 7
);

INSERT INTO adventure values(
 6, 'wait', '..You wait until the box settles in a dark space. You can move forwar
8, 0, 9, 0
);

INSERT INTO adventure values(
 7, 'jump out', 'You decide to jump out of the box, but you are cornered at the en
wharf.', 15 ,19, 15, 15
);

INSERT INTO adventure values(
 8, 'forward', 'As you move forward, two rough sailors grab you and hurl you out o
tower.', 15 ,15, 15, 15
);

INSERT INTO adventure values(
 9, 'aft', 'In a darkened room, you see the enigma device. How will you get it out
13 ,11, 10, 12
);

INSERT INTO adventure values(
 10, 'signal on enigma', 'You use the enigma device to send a signal. Allied force
your signal and surround the ship when it surfaces', 14 ,0, 0, 0
);

INSERT INTO adventure values(
 11, 'shoot your way out', 'A gunfight on a submerged sub is a bad idea...', 19 ,0
);

INSERT INTO adventure values(
 12, 'wait with enigma' ,'You wait, but the sailors discover that enigma is missin
the sub for it. You are discovered and cast out in the torpedo tube.', 15 ,0, 0, 0
);

INSERT INTO adventure values(
 13, 'replace enigma and wait','You put the enigma back in place and wait patientl
never get another chance. You are discovered when the sub pulls in to harbor.', 19
);

INSERT INTO adventure values(
 14, 'Win', 'Congratulations! You have captured the device and shortened the war!
);

INSERT INTO adventure values(
 15, 'Water', 'You are in the water. The sub moves away. It looks bad...', 19 ,0,
);

INSERT INTO adventure values(
 16,'','', 0, 0, 0, 0
);

INSERT INTO adventure values(
 17,'','', 0, 0, 0, 0
);

INSERT INTO adventure values(
 18,'','', 0, 0, 0, 0
);

INSERT INTO adventure values(
 19, 'Game Over' ,'The game is over. You lose.', 1, 0, 0, 0
);

SELECT id, name, north, east, south, west FROM adventure;
SELECT id, description FROM adventure;

I actually wrote this code by hand, but I could have designed it with SQLyog
just as well. Note that I created the table, inserted values into it, and wrote a
couple of SELECT statements to check the values. I like to have a script for
creating a database even if I built it in a tool like SQLyog, because I
managed to mess up this database several times as I was writing the code
for this chapter. It was very handy to have a script that could instantly rebuild
the database without any tears.

Summary
Although you didn't write any PHP at all in this chapter, you did learn how to
create a basic data structure using the SQL language. You learned how to
work with the MySQL console to create, and use databases. You learned
how to return data from your database using the SELECT statement. You
know how to modify the SELECT statement to get more specific results. You
learned how SQLyog can simplify the creation and manipulation of MySQL
databases. You built a data structure for an adventure game.

Challenges
1. Design a basic database. Start with something simple like a

phone list.

2. Create your database in SQL.

3. Write a batch program to create and populate your database.

4. Use SQLyog to manipulate your database and view its results in
other formats.

Chapter 8: Connecting to Databases
Within PHP

Overview
After all this talk of databases, you might be eager to connect a
database to your PHP programs. PHP is well known for its seamless
integration of databases, especially MySQL. It's actually quite easy to
connect to a MySQL database from within PHP. Once you've
established the connection, you'll be able to send SQL commands to
the database and receive the results as data you can use in your PHP
program. By the end of this chapter, you'll build the adventure game
featured at the beginning of Chapter 7, "Using MySQL to Create
Databases." As you'll see, if the data is designed well, the
programming isn't very hard. Specifically, you'll learn how to:

Get a connection to a MySQL database from within PHP.

Use a particular database.

Send a query to the database.

Parse the query results.

Check for data errors.

Build HTML output from data results.

Connecting to the Hero Database
To show how this works, I'll build a simple PHP program that returns all the
values in the hero database you created in Chapter 7. Figure 8.1 illustrates
the Show Hero PHP program.

Figure 8.1: This HTML table is generated by a PHP program reading the
database.

The code that generates this page is shown below:
<body>
<h1>Show Heros</h1>
<?
//make the database connection
$conn = mysql_connect("localhost", "", "");
mysql_select_db("chapter7", $conn);

//create a query
$sql = "SELECT * FROM hero";
$result = mysql_query($sql, $conn);

print "<table border = 1>\n";

//get field names
print "<tr>\n";
while ($field = mysql_fetch_field($result)){
 print " <th>$field->name</th>\n";
} // end while
print "</tr>\n\n";

//get row data as an associative array
while ($row = mysql_fetch_assoc($result)){
 print "<tr>\n";

HINT I decided to go back to this simpler database rather than the more complex
adventure game. When you're learning new concepts, it's best to work with
the simplest environment you can at first, and then move to more complex
situations. The adventure database has a lot of information in it, and the
way the records point to each other is a little complicated. I wanted to start
with a simpler database to be sure I understood the basics of data
connection before working with a production database that is bound to
have complexities of its own.

 //look at each field
 foreach ($row as $col=>$val){
 print " <td>$val</td>\n";
 } // end foreach
 print "</tr>\n\n";
}// end while

print "</table>\n";
?>
</body>
</html>

Glance over the code, and you'll see it's mostly familiar except for a few new
functions that begin with "mysql_" These functions are designed to allow
access to MySQL databases. If you look through the PHP documentation,
you'll see very similar functions for several other types of databases,
including Oracle, Informix, mSQL, and ODBC. You'll find the process for
connecting to and using other databases are pretty much the same no
matter which database you're using.

Getting a Connection
The first job is to get a connection between your PHP program and your
MySQL server. You can connect to any server you have permission to use.
The mysql_connect function arranges the communication link between
MySQL and PHP. Here's the connect statement from the showHero
program:
$conn = mysql_connect("localhost", "", "");

The mysql_connect() function requires three parameters: server name,
username, and password. The server name is the name or URL of the
MySQL server you wish to connect to (this will be localhost if your PHP
and MySQL servers reside on the same machine, which is frequently the
case). The username refers to the username in MySQL. Most database
packages have user accounts.

You can use the same username and password you use to log into MySQL,
and your program will have all the same access you do. Of course, you may
want more restricted access for your programs, so you may want to create a
special account, which has only the appropriate permissions, for users of
your program.

IN THE REAL WORLD

Database security is an important and challenging issue.

There are a few easy things you can do to protect your data from most
hackers. The first thing is to obscure your username and password
information whenever you publish your code. I removed my username
and password from the code shown here. In a practice environment,
you can leave these values blank, but you should ensure you don't
have wide open code that allows access to your data. If you need to
post your code (for example in a class situation) be sure to change the
password to something besides your real password.

TRAP You will probably have to change the userName and password fields if you
are running this code on a server somewhere. I used default values that
work fine on an isolated test server, but you'll need to change to your
username and password if you try this code on a production server.

The mysql_connect() function returns an integer referring to the
database connection. You can think of this identifier much like the file
pointers you learned in Chapter 6 "Working with Files." The data connection
should be stored in a variable (I usually use something like $conn) because
many of the other database functions will need to access the connection.

Choosing a Database
A data connection can have a number of databases connected to it. The
mysql_set_db() function lets you choose a database. It works just like the
USE command inside SQL. The mysql_set_db() function requires the
name of a database and a data connection. This function returns the value
FALSE if it was unable to connect to the specified database.

Creating a Query
Creating a query is very easy. The relevant code from showHero.php is
reproduced here:
//create a query
$sql = "SELECT * FROM hero";
$result = mysql_query($sql, $conn);

You begin by placing SQL code inside a variable.

The mysql_query() function allows you to pass an SQL command through
a connection to a database. You can send any SQL command to the
database with mysql_query(), including table creation statements,
updates, and queries. It returns a special element called a result set. If the
SQL command was a query, the result variable will hold a pointer to the
data, which we'll take apart in the next step. If it's a data definition command
(the commands used to create, and modify tables) the result object will
usually contain the string related to the success or failure of the operation.

Getting the Field Names
I'll be printing the data out in an HTML table. I could create the table
headings by hand, because I know what all the fields are, but it's better to
get the field information directly from the query, because you won't always
know which fields are being returned by a particular query. The next chunk
of code manages this task.
print "<table border = 1>\n";

//get field names
print "<tr>\n";
while ($field = mysql_fetch_field($result)){
 print " <th>$field->name</th>\n";
} // end while
print "</tr>\n\n";

The mysql_fetch_field() function expects a query result as its one

TRAP When you entered SQL commands into the SQL console or SQLyog, the
commands required a semicolon. When your PHP program sends a
command to the DBMS, the semicolon will automatically be added, so you
should notend your SQL commands with semicolons. Of course, you'll be
assigning these commands within a line of PHP code, which still has its
own semicolon. (Sheesh!)

parameter. It then fetches the next field and stores it in the $field variable.
If there are no fields left in the result, the function returns the value FALSE.
This allows the field function to also be used as a conditional statement.

The $field variable is actually an object. You haven't used PHP objects
yet, but they're really not too difficult. The $field object in this case is much
like an associative array. It has a number of properties (which can be
thought of as the attributes of the field). The field object has a number of
attributes, listed in Table 8.1.

By far the most common use of the field object is to determine the names of
all the fields in a query. The other attributes can be useful in certain
situations. You can see the complete list of attributes in the MySQL online
help.

You use a slightly new syntax to refer to the properties of an object. Notice
that I printed $field->name to the HTML table. This syntax simply refers to
the name property of the field object. For now if you want to think of it as a
fancy associative array, that would be reasonably accurate.

Parsing the Result Set
The rest of the code examines the result set. I'll reproduce it here so you can
refresh your memory.
//get row data as an associative array
while ($row = mysql_fetch_assoc($result)){
 print "<tr>\n";
 //look at each field
 foreach ($row as $col=>$val){
 print " <td>$val</td>\n";
 } // end foreach
 print "</tr>\n\n";
}// end while

The mysql_fetch_assoc() function fetches the next row from a result
set. It requires a result pointer as its parameter, and it returns an associative
array.

Table 8.1: COMMONLY USED PROPERTIES OF THE FIELD OBJECT

Property Attribute

max_length How long the field is (Especially important in VARCHAR
fields)

name The name of the field

primary_key TRUE if the field is a primary key

table Name of table this field belongs to

type Data type of this field

TRICK There are a number of other related functions for pulling a row from a
result set. mysql_fetch_object() stores a row as an object much like
the mysql_fetch_fields() function does. The
mysql_fetch_array() function fetches an array that can be treated
as a normal array, an associative array, or both. I tend to use
mysql_fetch_assoc() because I think it's the most straightforward
approach for those unfamiliar with object-oriented syntax. Of course, you
should feel free to investigate these other functions and use them if they

If there are no rows left in the result set, mysql_fetch_assoc() will return
the value FALSE. It is often used as a condition in a while loop as I did here
to fetch each row in a result set. Each row will represent a row of the
eventual HTML table, so I print the HTML code to start a new row inside the
while loop.

Once you've gotten a row, it's stored as an associative array. You can parse
this array using a standard foreach loop. I chose to assign each element to
$col and $val variables. I actually don't need $col in this case, but it can
be handy to have. Inside the foreach loop I placed code to print out the
current field in a table cell.

make more sense to you.

Returning to the Adventure Game Program
Recall at the end of Chapter 7 you created a database for the adventure
game. Now that you know how to connect a PHP program to a MySQL
database, you're ready to begin writing the game itself.

Connecting to the Adventure Database
Once I had built the database, the first PHP program I wrote tried to do the
simplest possible connection to the database. I wanted to ensure I got all the
data correctly. Here's the code for that program:
<html>
<head>
<title>Show Adventure</title>
</head>
<body>

<?
$conn = mysql_connect("localhost", "", "");
mysql_select_db("chapter7", $conn);
$sql = "SELECT * FROM adventure";
$result = mysql_query($sql);
while ($row = mysql_fetch_assoc($result)){

 foreach($row as $key=>$value){
 print "$key: $value
\n";
 } // end foreach
 print "<hr>\n";

} // end while

?>
</body>
</html>

This simple program was used to establish the connection and to ensure that
everything was stored as I expected. Whenever I write a data program, I
usually write something like this that quickly steps through my data to ensure
everything is working correctly. There's no point in moving on until you know
you have the basic connection.

I did not give you a screenshot of this program because it isn't very pretty,
but I did include it on the CD-ROM so you can run it yourself. The point here
is to start small and then turn your basic program into something more
sophisticated one step at a time.

Displaying One Segment
The actual gameplay consists of repeated calls to the showSegment.php
program. This program takes a segment id as its one input and then uses
that data to build a page based on that record of the database. The only
surprise is how simple the code is for this program.
<html>
<head>
<title>Show Segment</title>
<style type = "text/css">
body {
 color:red

}
td {
 color: white;
 background-color: blue;
 width: 20%;
 height: 3em;
 font-size: 20pt
}
</style>
</head>
<body>
<?
if (empty($room)){
 $room = 1;
} // end if

//connect to database
$conn = mysql_connect("localhost", "", "");
$select = mysql_select_db("chapter7", $conn);
$sql = "SELECT * FROM adventure WHERE id = '$room'";
$result = mysql_query($sql);
$mainRow = mysql_fetch_assoc($result);

$theText = $mainRow["description"];
$northButton = buildButton("north");
$eastButton = buildButton("east");
$westButton = buildButton("west");
$southButton = buildButton("south");
$roomName = $mainRow["name"];

print <<<HERE
<center><h1>$roomName</h1></center>
<form method = "post">
<table border = 1>
<tr>
 <td></td>
 <td>$northButton</td>
 <td></td>
</tr>

<tr>
 <td>$eastButton</td>
 <td>$theText</td>
 <td>$westButton</td>
</tr>

<tr>
 <td></td>
 <td>$southButton</td>
 <td></td>
</tr>

</table>
<center>
<input type = "submit"
 value = "go">
</center>
</form>

HERE;

function buildButton($dir){
 //builds a button for the specified direction
 global $mainRow, $conn;
 $newID = $mainRow[$dir];
 //print "newID is $newID";
 $query = "SELECT name FROM adventure WHERE id = $newID";
 $result = mysql_query($query, $conn);
 $row = mysql_fetch_assoc($result);
 $roomName = $row["name"];

 $buttonText = <<< HERE
 <input type = "radio"
 name = "room"
 value = "$newID">$roomName

HERE;

 return $buttonText;

} // end build button
?>
</body>
</html>

Creating a CSS Style
I began the HTML with a CSS style. My program is visually unappealing, but
placing a CSS style here is the answer to my visual design disability. All I
need to do is get somebody with an actual sense of style to clean up my
CSS and I have a good-looking page.

Making the Data Connection
As usual, the program begins with some housekeeping. If the user hasn't
specifically chosen a segment number, I'll start them out in room number 1,
which will be the starting room.
if (empty($room)){
 $room = 1;
} // end if

//connect to database
$conn = mysql_connect("localhost", "", "");
$select = mysql_select_db("chapter7", $conn);
$sql = "SELECT * FROM adventure WHERE id = '$room'";
$result = mysql_query($sql);
$mainRow = mysql_fetch_assoc($result);
$theText = $mainRow["description"];

I then make an ordinary connection to the database and choose the record
pertaining to the current room number. That query is stored in the $mainRow
variable as an associative array.

Generating Variables for the Code
Most of the program writes the HTML for the current record to the screen. To
make things simple, I decided to create some variables for anything that
might be tricky.
$theText = $mainRow["description"];
$roomName = $mainRow["name"];

$northButton = buildButton("north");
$eastButton = buildButton("east");
$westButton = buildButton("west");
$southButton = buildButton("south");

I stored the description field of the current row into a variable named
$theText. I made a similar variable for the room name.

IN THE REAL WORLD

It isn't strictly necessary to store the description field in a variable, but
I'll be interpolating this value into HTML code, and I've found that
interpolating associative array values can be a little tricky. In general, I
like to copy an associative value to some temporary variable if I'm
going to interpolate it. It's just a lot easier that way.

The button variables are a little different. I decided to create an HTML option
button to represent each of the places the user could go. I'll use a custom
function called buildButton() to make each button.

Writing the buildButton() Function
The procedure for building the buttons was repetitive enough to warrant a
function. Each button is a radio button corresponding to a direction. The
radio button will have a value that comes from the corresponding direction
value from the current record. If the north field of the current record is 12
(meaning if the user goes North load up the data in record 12), the radio
button's value should be 12. The trickier thing is getting the appropriate label.
All that's stored in the current record is the id of the next room. If you want to
display the room's name, you have to make another query to the database.
That's exactly what the buildButton() function does.
function buildButton($dir){
 //builds a button for the specified direction
 global $mainRow, $conn;
 $newID = $mainRow[$dir];
 //print "newID is $newID";
 $query = "SELECT name FROM adventure WHERE id = $newID";
 $result = mysql_query($query, $conn);
 $row = mysql_fetch_assoc($result);
 $roomName = $row["name"];

 $buttonText = <<< HERE
 <input type = "radio"
 name = "room"
 value = "$newID">$roomName

HERE;

 return $buttonText;

} // end build button

The function borrows the $mainRow array (which holds the value of the main
record this page is about) and the data connection in $conn. I pull the ID for
this button from the $mainRow array and store it in a local variable. The
buildButton() function requires a direction name sent as a parameter.
This direction should be the field name for one of the direction fields.

I repeat the query creation process, building a query that requests only the

row associated with the new ID. I then pull the room name from that array.
Once that's done, it's easy to build the radio button text. The radio button is
called room, so the next time this program is called, the $room variable will
correspond to whichever radio button the user selected.

Finishing the HTML
All that's left is to add a Submit button to the form and close up the form and
HTML. The amazing thing is, that's all you need. This code alone is enough
to let the user play this game. It takes some effort to set up the data
structure, but then all you have to do is provide a link to the first record (by
calling showSegment.php without any parameters) and the program will
keep calling itself.

Viewing and Selecting Records
I suppose you could stop there, because the game is working, but the really
great thing about this structure is how flexible it is. It won't take much more
work to create an editor that allows you to add and modify records however
you wish.

This actually requires a couple of PHP programs. The first (shown in Figure
8.2) prints out a summary of the entire game, and allows the user to edit any
node.

Figure 8.2: The listSegments program lists all the data and allows the
user to choose a record for editing.

The code for the listSegments.php program is actually quite similar to
the showAdventure.php program you saw before. It's simply cleaned up a
bit to put the data in tables, and has a form to call an editor when the user
selects a record to modify.
<html>
<head>
<title>List Segments</title>
<style type = "text/css">
body {
 color:red
}
td, th {
 color: white;
 background-color: blue;

}
</style>
</head>
<body>

<?
$conn = mysql_connect("localhost", "", "");
$select = mysql_select_db("chapter7", $conn);
$sql = "SELECT * FROM adventure";
$result = mysql_query($sql);
print <<<HERE
<form action = "editSegment.php"
 method = "post">

HERE;

while ($row = mysql_fetch_assoc($result)){
 print "<table border = 1 width = 80%>\n";

 foreach($row as $key=>$value){
 //print "$key: $value
\n";
 $roomNum = $row["id"];
 print <<<HERE
 <tr>
 <th width = 10%>$key</th>
 <td>$value</td>
 </tr>

HERE;

 } // end foreach
 print <<<HERE
 <tr>
 <td colspan = 2><center>
 <input type = "radio"
 name = "room"
 value = "$roomNum">
 Edit this room
 <input type = "submit"
 value = "go">
 </center></td>
 </tr>
</table>

HERE;

} // end while

?>
<center>
<input type = "submit"
 value = "edit indicated room">
</center>
</form>
</body>
</html>

The entire program is contained in a form, which will call
editSegment.php when activated. The program opens a data connection

and pulls all elements from the database. It builds an HTML table for each
record. Each table contains a radio button called "room" with the value of the
current room number. Each table also has a copy of the Submit button so
the user doesn't have to scroll all the way to the bottom of the page to submit
the form.

Editing the Record
When the user has chosen a record from listSegments.php, the
editSegment.php program (shown in Figure 8.3) will swing into action.

Figure 8.3: The edit record program displays data from a requested
record and lets the user manipulate that data.

It's important to understand that the editSegment program doesn't actually
change the record in the database. Instead, it pulls up a form containing the
requested record's current values and allows the user to determine what the
new values should be. The editSegment page is another form. When the
user submits this form, control is passed to one more program which actually
modifies the database. The code for editSegment is actually very similar to
the code used to display a segment in play mode. The primary difference is
that all the record data goes into editable fields.

Take a careful look at how the game developer can select a room to go into
for each position. A drop-down list box shows all the existing room names.
This device allows the game developer to work directly with room names
even though the database will be much more concerned with room numbers.
<html>
<head>
<title>Edit Segment</title>
<style type = "text/css">
body {
 color:red
}
td {
 color: white;
 background-color: blue;
 width: 20%;
 height: 5em;
 text-align: center;
}

</style>
</head>
<body>
<?
if (empty($room)){
 $room = 0;
} // end if

//connect to database
$conn = mysql_connect("localhost", "", "");
$select = mysql_select_db("chapter7", $conn);

$sql = "SELECT * FROM adventure WHERE id = '$room'";
$result = mysql_query($sql);
$mainRow = mysql_fetch_assoc($result);
$theText = $mainRow["description"];
$roomName = $mainRow["name"];
$northList = makeList("north", $mainRow["north"]);
$westList = makeList("west", $mainRow["west"]);
$eastList = makeList("east", $mainRow["east"]);
$southList = makeList("south", $mainRow["south"]);
$roomNum = $mainRow["id"];

print <<<HERE

<form action = "saveRoom.php"
 method = "post">
<table border = 1>
<tr>
 <td colspan = 3>
 Room # $roomNum:
 <input type = "text"
 name = "name"
 value = "$roomName">
 <input type = "hidden"
 name = "id"
 value = "$roomNum">
 </td>
</tr>

<tr>
 <td></td>
 <td>$northList</td>
 <td></td>
</tr>

<tr>
 <td>$westList</td>
 <td>
 <textarea rows = 5 cols = 30 name = "description">$theText</textarea>
 </td>
 <td>$eastList</td>
</tr>

<tr>
 <td></td>
 <td>$southList</td>
 <td></td>
</tr>

<tr>
 <td colspan = 3>
 <input type = "submit"
 value = "save this room">
 </td>

</table>

</form>

HERE;

function makeList($dir, $current){
 //make a list of all the places in the system

 global $conn;
 $listCode = "<select name = $dir>\n";
 $sql = "SELECT id, name FROM adventure";
 $result = mysql_query($sql);
 $rowNum = 0;
 while ($row = mysql_fetch_assoc($result)){
 $id = $row["id"];
 $placeName = $row["name"];
 $listCode .= " <option value = $id\n";

 //select this option if it's the one indicated
 if ($rowNum == $current){
 $listCode .= " selected\n";
 } // end if

 $listCode .= ">$placeName</option>\n";
 $rowNum++;
 } // end while
 return $listCode;
} // end makeList

?>

</body>
</html>

Generating Variables
After the standard database connection, the code creates a number of
variables. Some of these variables ($theText, $roomName, and $roomNum)
are simplifications of the associative array. Another set of variables are
results of the makeList() function. The job of this function is to return an
HTML list box containing the room names of every segment in the database.
The list box will be set up so that whatever room number is associated with
the indicated field will be selected as the default.

Printing the HTML Code
The central part of the program consists of a large print statement that
develops the HTML code. The code in this case is a large table enclosed in
a form. Every field in the record has a form element associated with it. When
the user submits this form, it should have all the data necessary to update a
record in the database. The one element the user should not be able to
directly edit is the room number. This is stored in a hidden field. The

directional room numbers are encoded in the list boxes. All other data is in
appropriately named text boxes.

Creating the List Boxes
The list boxes require a little bit of thought to construct.

The makeList() function expects two parameters. The $dir parameter
holds the direction field name of the current list box. The $current
parameter holds information about which room is currently selected for this
particular field of the current record. The data connection handler $conn is
the only global variable. The variable $listCode will hold the actual HTML
code of the listbox that will be returned to the main program.

The function makes a query to the database to request all the room names.
Each name is added to the list box code at the appropriate time with the
corresponding numeric value. Whenever the record number corresponds to
the current value of the record, HTML code specifies that this should be the
selected item in the list box.

Committing Changes to the Database
One more program is necessary. The editSegment.php program allows
the user to edit the data, but when the user is finished with this task, he or
she will submit the form, which will call the saveRoom.php program. I won't
repeat the screen shot for this program, because the visuals are
unimportant. However, this is the program that actually updates the
database with whatever values the user has chosen.
<head>
<title>SaveRoom.php</title>
</head>
<body>

<?
//Once a room has been edited by editSegment, this program
//updates the database accordingly.

//connect to database
$conn = mysql_connect("localhost", "", "");
$select = mysql_select_db("chapter7", $conn);

$sql = <<<HERE
UPDATE adventure
SET
 name = '$name',
 description = '$description',
 north = $north,
 east = $east,
 south = $south,
 west = $west
WHERE
 id = $id

HERE;

//print $sql;
$result = mysql_query($sql);
if ($result){
 print "<h3>$name room updated successfully</h3>\n";

 print "view the rooms\n";
} else {
 print "<h3>There was a problem with the database</h3>\n";
} // end if

?>
</body>
</html>

This program begins with standard data connections. It then constructs an
UPDATE SQL statement. The statement is quite simple, because all the work
is done in the previous program. I then simply applied the query to the
database and checked the result. An UPDATE statement won't return a
recordset like a SELECT statement. Instead, it will return the value FALSE if it
was unable to process the command. If the update request was successful, I
let the user know and provide a link back to the listSegments program. If
there was a problem, I provide some (not very helpful) feedback to the user.

Summary
In this chapter you began to use external programs to manage data. You
learned how MySQL can be used to interpret basic SQL statements for
defining and manipulating data. You created a database directly in the
MySQL console, and you also learned how to build and manipulate
databases with SQLyog. You combined these skills to create an interesting
and expandable game.

Challenges
1. Add a 'new room' command to the adventure generator. HINT:

Think about how I created a new test in the quiz machine
program from Chapter 6.

2. Write PHP programs to view, add, and edit records in the phone
list.

3. Write a program that asks a user's name and searches the
database for that user.

4. Create a front-end for another simple database.

Chapter 9: Data Normalization

Overview
In the last two chapters you learned how to create a basic database
and connect it to a PHP program. PHP and MySQL are wonderful for
working with basic databases. However, most real-world problems
involve data that is too complex to fit in one table. Database designers
have developed some standard techniques for handling complex data
that reduce redundancy, improve efficiency, and provide flexibility. In
this chapter you will learn how to use the relational model to build
complex databases involving multiple entities. Specifically, you will
learn:

How the relational model works.

How to build use-case models for predicting data usage.

How to construct entity-relationship diagrams to model your data.

How to build multi-table databases.

How joins are used to connect tables.

How to build a link table to model many-to-many relationships.

How to optimize your table design for later programming.

Introducing the Spy Database
In this chapter you will build a database to manage your international spy
ring. (You do have an international spy ring, don't you?) Saving the world is a
complicated task, so you'll need a database to keep track of all your agents.
Secret agents are assigned to various operations around the globe, and
certain agents have certain skills. The examples in this chapter will take you
through the construction of such a database. You'll see how to construct the
database in MySQL. In the final chapter, you'll use this database to make a
really powerful spymaster application in PHP.

The spy database reflects a few facts about my spy organization (called the
Pantheon of Humanitarian Performance, or PHP):

Each agent has a code name.

Each agent can have any number of skills.

More than one agent can have the same skill.

Each agent is assigned to one operation at a time.

More than one agent can be assigned to one operation.

The location of a spy is determined by the operation.

Each operation has only one location.

This list of rules helps to explain some characteristics of the data. In
database parlance, they are called business rules. I'll need to design the
database so that these rules are enforced.

IN THE REAL WORLD

I set up this particular set of rules in a somewhat arbitrary way because they
help make my database as simple as possible while still illustrating most of
the main problems you'll encounter in data design. Usually you don't get to
make up business rules. Instead, you'll need to learn them by talking to
those who use the data every day.

The badSpy Database
As you learned in Chapter 7 "Using MySQL to Create Databases," it isn't
difficult to build a data table, especially if you have a tool like SQLyog. Figure
9.1 illustrates the schema of my first pass at the spy database.

Figure 9.1: The badSpy database schema looks reasonable
enough.

At first glance, the design of the badSpy database seems like it ought to
work, but as soon as you begin adding data to the table, you'll begin to see
some problems. Figure 9.2 shows the results of the badSpy data after I
started entering information about some of my field agents.

Figure 9.2: The badSpy database after I added a few
agents.

Once you start entering data into the table, you'll see a few problems crop
up. Look carefully at Figure 9.2 and you'll see some potential issues.

Inconsistent Data Problems
Gold Elbow's record indicates that operation Dancing Elephant is about
infiltrating a suspicious zoo. Falcon's record indicates that the same

operation is about infiltrating a suspicious circus. For the purpose of this
example, I'm expecting that an assignment has only one description, so one
of these descriptions is wrong. There's no way to know whether it's a zoo or
a circus by looking at the data in the table, so both records are suspect.
Likewise, it's hard to tell if operation Enduring Angst takes place in Lower
Volta or Lower Votla, because the two records that describe this mission
have different spellings. The circus/zoo inconsistency and the Volta/Votla
problem share a common cause. In both cases the data entry person
(probably a low-ranking civil servant, because international spy masters are
far too busy to do their own data entry) had to type the same data into the
database multiple times. This kind of inconsistency causes all kinds of
problems. If you require a data entry person to enter the same data
repeatedly, you will see inconsistencies in the results. Different people will
choose different abbreviations. You may see multiple spellings of the same
term. Some people will simply not enter data if it's too difficult. When this
happens, you cannot rely on the data (is it a zoo or a circus?). You also can't
search the data with confidence. (If I look for all operatives in Lower Volta, I'll
miss Blackford, because he's listed as being in Lower Votla.) If you look
carefully, you'll notice that I misspelled "sabatoge." It will be very difficult to
find all places this word is misspelled and fix them all.

Problem with the Operation Information
There's another problem with this database. If for some reason Agent Rahab
were dropped from the database (maybe she was a double agent all along),
the information regarding Operation Raging Dandelion would be deleted
along with her record, because the only place it is stored is as a part of her
record. The operation's data somehow needs to be stored separately from
the agent data.

Problems with Listed Fields
The specialty field brings its own troubles to the database. This field can
contain more than one entity, because spies should be able to do more than
one thing. (My favorite combination is explosives and flower arranging.)
Fields with lists in them can be problematic. For one thing, it's much harder
to figure out what size to make a field that may contain several entities. If
your most talented spy has ten different skills, you would need enough room
to store all ten skills in every spy's record. It can be difficult to search on
fields that contain lists of data. You might be tempted to put several different
skill fields (maybe a skill1, skill2, and skill3 field, for example) but
this doesn't completely solve the problem. It would be better to have a more
flexible system that can accommodate any number of skills. The flat file
system you've seen in this badSpy database is not capable of that kind of
versatility.

Designing a Better Data Structure
The spy master database isn't really all that complicated, but the badSpy
database shows you a number of ways even a simple database can go
wrong. This is a pretty important database, because it will be used to save
the free world, so it deserves a little more thought. Fortunately, data
developers have come up with a number of ways to think about the structure
of data. It is usually best to back away from the computer and think carefully
about how data is used before you write a single line of code.

Defining Rules for a Good Data Design
Data developers have come up with a list of rules for creating well-behaved
databases:

Break your data into multiple tables.

No field can have a list of entries.

Do not duplicate data.

Make each table describe only one entity.

Create a single primary key field for each table.

A database that follows all these rules will avoid most of the problems
evident in the badSpy database. Fortunately, there are some well-known
procedures for improving a database so it can follow all these rules.

Normalizing Your Data
Data programmers try to prevent the problems evident in the badSpy
database through a process called data normalization. The basic concept of
normalization is to break down a database into a series of tables. If each of
these tables is designed correctly, the database will be less likely to have the
sorts of problems described so far in this chapter. Entire books have been
written about data normalization, but the process breaks down into three
major steps, called normal forms.

First Normal Form: Eliminate Repetition
The goal of the first normal form (sometimes abbreviated 1NF) is to eliminate
repetition in the database. The primary culprit in the badSpy database is the
specialty field. One solution would be to have two different tables, one
for agents, and another for specialties.

The two tables would look somewhat like Tables 9.1 and 9.2.

TRICK Data designers seem to play a one-string banjo. The solution to almost
every data design problem is to create another table. As you'll see, there
still is quite an art form to what should be in that new table.

Table 9.1: AGENT TABLE IN 1NF

agentID name Assignment Description Location

1 Rahab Raging
Dandelion

Plant Crabgrass Sudan

2 Gold
Elbow

Dancing
Elephant

Infiltrate
suspicious zoo

London

Note that I did not include all data in these example tables, just enough to
give you a sense of how these tables would be organized. Also, there isn't
really a good way to connect these tables back together yet, but you'll learn
that later in this chapter.

Second Normal Form: Eliminate Redundancies
Once all your tables are in the first normal form, the next step is to deal with
all the potential redundancy issues. These mainly occur because data is
entered more than one time. To fix this, you need to (you guessed it) build
new tables. The agent table could be further improved by moving all data
about operations to another table. Figure 9.3 shows a special diagram called
an Entity Relationship diagram, which illustrates the relationships between
these tables:

Figure 9.3: A basic entity-relationship diagram for the spy
database.

An Entity Relationship diagram (ER diagram) is used to diagram the
relationships between data elements. In this situation, I thought carefully
about the data in the spy database. As I thought about the data, three
distinct entities emerged. By separating the operation data from the
agent data, I have removed redundancy, because the user will only enter
operational data one time. This will eliminate several of the problems in the
original database. It will also fix the situation where an operation's data was
lost because a spy turned out to be a double agent. (I'm still bitter about that
defection.)

Third Normal Form: Ensure Functional Dependency
The third normal form concentrates on the elements associated with each
entity. In order for a table to be in the third normal form, that table must have

3 Falcon Dancing
Elephant

Infiltrate
suspicious circus

London

Table 9.2: SPECIALTY TABLE IN 1NF

specialtyID name

1 electronics

2 counterintelligence

3 sabotage

a single primary key, and every field in the table must relate only to that key.
For example, the description field is a description of the operation, not
the agent, so it belongs in the operation table. In the third phase of
normalization, you look through each piece of data in your table and ensure
that it directly relates to the table it is placed in. If not, you need to either
move it to a more appropriate table or build a new table for it.

IN THE REAL WORLD

You might notice that my database fell into third normal form
automatically when I put it in second normal form. This is not unusual
for very small databases, but rare with the large complex databases
used to describe real-world enterprises. Even if your database seems
to be in the third normal form already, go through each field to see if it
relates directly to its table.

Defining Types of Relationships
The easiest way to normalize your databases is with a stylized view of them.
ER diagrams are commonly used as a data design tool. Take another look at
the ER diagram for the spy database in Figure 9.4.

Figure 9.4: The entity-relationship diagram for the spy
database.

This diagram illustrates the three entities in the spy database (at least up to
now) and the relationships between them. Each entity is enclosed in a
rectangle, and the lines between the entities represent the relationships
between the entities. Take a careful look at the relationship lines. They have
crow's-feet on them to indicate some special characteristics of the
relationship. There are essentially three kinds of relationships (at least in this
simplistic overview of data modeling).

Recognizing One-to-One Relationships
One-to-one relationships happen when each instance of entity A has exactly
one instance of entity B. A one-to-one entity is described as a simple line
between two entities with no special symbols on either end.

TRICK One-to-one relationships are actually rare, because usually if the two
entities are that closely related, they can be combined into one table
without any penalty. There are no one-to-one relationships in the spy ER
diagram shown in Figure 9.4.

Describing Many-to-One Relationships
One-to-many (and many-to-one) relationships happen when one entity can
contain more than one instance of the other. For example, each operation
can have many spies, but (for the sake of this example) each agent can only
be assigned to one mission at a time. Thus the agent-to-operation
relationship is considered a many-to-one relationship, because a spy can
have only one operation, but one operation can relate to many agents. In this
very simplistic version of ER notation, I'm using crow'sfeet to indicate the
many side of the relationship.

Recognizing Many-to-Many Relationships
The final type of relationship shown in the spy ER diagram is a many-to-
many relationship. This type of relationship occurs when each entity can
have many instances of the other. Agents and skills have this type of
relationship, because one agent can have any number of skills, and each
skill can be used by any number of agents. A many-to-many relationship is
usually shown by crow's-feet on each end of the connecting line.

It's important to generate an ER diagram of your data including the
relationship types, because there are different strategies for creating each
type of relationship. You'll see these strategies emerge as I build the SQL for
the improved spy database.

IN THE REAL WORLD

Professional programmers often use expensive software tools to help
build data diagrams, but you don't need anything more than paper and
pencil to draw ER figures. I do my best data design with a partner
drawing on a white board. I like to talk through designs out loud and
look at them in a large format. Once I've got a sense of the design, I
usually use a vector-based drawing program to produce a more formal
version of the diagram. This type of drawing tool is useful because it
allows you to connect elements together, already has the crow's-feet
lines available, and allows you to move elements around without
disrupting the lines between them. Dia is an excellent open-source
program for drawing all kinds of diagrams. I used it to produce all the
ER figures in this chapter. A copy of Dia is on the CD that accompanies
this book.

TRICK There are actually several different kinds of one-to-many relationships,
each with a different use and symbol. For this overview, we'll treat them
all the same and use the generic crow's-feet symbol, but once you start
writing more involved databases, you'll want to investigate data
diagramming more closely by looking into books on data normalization
and software engineering. Likewise, data normalization is a far more
involved topic than the brief discussion in this introductory book. At some
point you'll want to study the topic more carefully.

Building Your Data Tables
Once you have designed the data according to the rules of normalization,
you are ready to actually build sample data tables in SQL. It pays to build
your tables carefully to avoid problems. I prefer to build all my tables in an
SQL script so I can easily rebuild my database if (okay, when) my programs
mess up the data structure. Besides, enemy agents are always lurking about
preparing to sabotage my operations.

I also add plenty of sample data in the script. You don't want to work with
actual data early on, because you are guaranteed to mess up somewhere
during the process. However, it is a good idea to work with sample data that
is a copied subset of the actual data. Your sample data should anticipate
some of the anomalies that might occur in actual data (for example, what if a
person doesn't have a middle name?). My entire script for the spy database
is available on the CD-Rom as buildSpy.sql. All SQL code fragments
shown in the rest of this chapter come from that file.

Setting Up the System
I began my SQL script with some comments that describe the database and
a few design decisions I made when building the database.
######################################
buildSpy.sql
builds and populates all databases for spy examples
uses mysql -should adapt easily to other rdbms
by Andy Harris for PHP/MySQL for Abs. Beg
######################################

######################################
conventions
######################################
primary key = table name . ID
primary key always first field
all primary keys autonumbered
all field names camel-cased
only link tables use underscore
foreign keys indicated although mySQL does not enforce
every table used as foreign reference has a name field
######################################

######################################
#housekeeping
######################################

use chapter9;
DROP TABLE IF EXISTS badSpy;
DROP TABLE IF EXISTS agent;
DROP TABLE IF EXISTS operation;
DROP TABLE IF EXISTS specialty;
DROP TABLE IF EXISTS agent_specialty;
DROP TABLE IF EXISTS spyFirst;

Notice that I specified a series of conventions. These self-imposed rules will
help make my database easier to manage when things get complicated.
Some of the rules might not make sense yet (because I haven't identified
what a foreign key is, for instance), but the important thing is I have clearly
identified some rules that will help me later on.

The code then specifies the chapter9 database, and deletes all tables if

they already existed. This behavior ensures I'll start with a fresh version of
the data.

Creating the agent Table
The normalized agent table is actually quite simple. The actual table is
shown in Table 9.3.

The only data remaining in the agent table is the agent's name and a
numerical field for the operation. The operationID field is used as the glue
that holds together the agent and operation tables.

I've added a few things to improve the SQL code for creating the agent
table to ensure that it behaves well.
CREATE TABLE agent (
 agentID int(11) NOT NULL AUTO_INCREMENT,
 name varchar(50) default NULL,
 operationID int(11) default NULL,
 PRIMARY KEY (agentID),
 FOREIGN KEY (operationID) REFERENCES operation (operationID)
);

Recall that the first field in a table is usually called the primary key.
Primary keys must be unique and each record must have one. I've also
chosen to name each primary key according to a special convention.
Primary key names will always begin with the table name and end with "ID." I
added this convention because it will make things easier later on when I
write programs to work with this data. The NOT NULL modifier ensures that
all records of this table must have a primary key. The AUTO_INCREMENT
identifier is a special tool that allows MySQL to pick a new value for this field
if no value is specified. This will ensure that all entries are unique.

I've added an indicator at the end of the CREATE TABLE statement to
indicate that agentID is the primary key of the agent table.

Creating a Reference to the operation Table
Take a careful look at the operationID field. This field contains an integer,
which will be used to refer to a particular operation. I also added an indicator
specifying operationID as a foreign key reference to the operation
table. The operationID field in the agent table will contain a reference to
the primary key of the operation table. This type of field is referred to as a
foreign key.

Table 9.3: THE AGENT TABLE

agentID name operationID

1 Bond 1

2 Falcon 1

3 Cardinal 2

4 Blackford 2

TRAP Not all databases use the AUTO_INCREMENT feature in the same way.
You might need to look up some other way to automatically generate key
fields if you aren't using MySQL.

TRICK Some DBMS systems require you to specify primary and foreign keys.

Inserting a Value into the agent Table
The INSERT statements for the agent table have one new trick made
possible by the AUTO_INCREMENT designation of the primary key.
INSERT INTO agent VALUES(
 null, 'Bond', 1
);

The primary key is initialized with the value null. This might be surprising
because primary keys are explicitly designed to never contain a null value.
Since the agentID field is set to AUTO_INCREMENT, the null value is
automatically replaced with an unused integer. This trick ensures that each
primary key value will be unique.

Building the operation Table
The new operation table contains information referring to an operation.
(See Table 9.4 for descriptions of some operation IDs.)

Each operation gets its own record in the operation table. All the data
corresponding to an operation is stored in the operation record. Each
operation's data is stored only one time. This has a number of positive
effects:

It's only necessary to enter operation data once per op, saving time on
data entry.

Since there's no repeated data, you won't have data inconsistency
problems (like the circus/zoo problem).

The new database will take less space, because there's no repeated
data.

The operation is not necessarily tied to an agent, so you won't
accidentally delete all references to an operation by deleting the only
agent assigned to that mission (remember, this could happen with the
original data design).

If you need to update operation data, you don't need to go through every
agent to figure out which ones were assigned to that operation (again,
you would have had to do this with the old database design).

MySQL currently does not require this, but it's a good idea to do so
anyway for two reasons. First, it's likely that future versions of MySQL will
require these statements, because they are used to improve the reliability
of a database. Second, it's very good to specify in the code when you
wish a field to have a special purpose, even if the DBMS doesn't do
anything with that information.

Table 9.4: THE OPERATION TABLE

operationID name description location

1 Dancing
Elephant

Infiltrate suspicious
zoo

London

2 Enduring
Angst

Make bad guys feel
really guilty

Lower
Volta

3 Furious
Dandelion

Plant crabgrass in
enemy lawns

East Java

The SQL used to create the operation table is much like that used for the
agent table:
CREATE TABLE operation (
 operationID int(11) NOT NULL AUTO_INCREMENT,
 name varchar(50) default NULL,
 description varchar(50) default NULL,
 location varchar(50) default NULL,
 PRIMARY KEY ('OperationID')
);

INSERT INTO operation VALUES(
 null, 'Dancing Elephant',
 'Infiltrate suspicious zoo', 'London'
);

As you can see, the operation table conforms to the rules of
normalization, and it also is much like the agent table. Notice that I'm being
very careful about how I name things. SQL is (theoretically) case-insensitive,
but I've found that this is not always true (especially in MySQL, where the
Windows versions appear not concerned about case, but UNIX versions will
treat operationID and OperationID as different field names). I specified
that all field names will use 'camel-case' (just like you've been doing with
your PHP variables). I have also named the key field according to my own
formula (table name followed by "ID").

Using a Join to Connect Tables
The only downside to disconnecting the data tables is the necessity to
somehow rejoin the data when needed. The user really doesn't care that the
operation and the agent are in different tables, but he or she still will want the
data to be visible as if they were on the same table. The secret to re-
attaching tables is a tool called the inner join. Take a look at the following
SELECT statement in SQL:
SELECT agent.name AS agent, operation.name AS operation
FROM agent, operation
WHERE agent.operationID = operation.operationID
ORDER BY agent.name;

At first glance this looks like an ordinary query, but it is a little different
because it joins up data from two different tables. Table 9.5 illustrates the
results of this query.

Creating Useful Joins

Table 9.5: COMBINING TWO TABLES

agent operation

Blackford Enduring Angst

Bond Dancing Elephant

Cardinal Enduring Angst

Falcon Dancing Elephant

Rahab Furious Dandelion

An SQL query can pull data from more than one table. To do this, there a
couple of basic rules.

First, you might need to specify the field names more formally. Notice that
the SELECT statement specifies agent.name rather than simply name.
This is necessary because both tables contain a field called name. Using the
table.field syntax is much like using a person's first and last name. It's not
necessary if there's no chance of confusion, but in a larger environment the
more complete naming scheme can avoid confusion.

Also, note the use of the AS clause. This provides an alias for the column
and provides a nicer output.

The FROM clause up to now has only specified one table. In this example, it's
necessary to specify that data will be coming from two different tables.

Examining a Join Without a WHERE Clause
The WHERE clause helps to clarify the relationship between the two tables.
As an explanation, consider the following query:
SELECT
 agent.name AS 'agent',
 agent.operationID as 'agent opID',
 operation.operationID as 'op opID',
 operation.name AS 'operation'
FROM agent, operation
ORDER BY agent.name;

This query is much like the earlier query, except it includes the
operationID field from each table and it omits the WHERE clause. You
might be surprised by the results.

Adding a WHERE Clause to Make a Proper Join
Without a WHERE clause, all possible combinations are returned. The only
records we're concerned with are those where the operationID fields in
the agent table and in the operation table have the same value. The
WHERE clause returns only these values joined by a common operation ID.

The secret to making this work is the operationID fields in the two tables.
You've already learned that each table should have a primary key. The
primary key field is used to uniquely identify each record in a database. In
the agents table, agentID is the primary key. In operations,
operationID is the primary key. (You might note my unimaginative but
very useful naming convention here) I was able to take all data that refers to
the operation out of the agent table by replacing those fields with a field that
points to the primary key of the operations table. A field that references
the primary key of another table is called a foreign key. Primary and
foreign keys cement the relationships between tables. See Table 9.6.

Table 9.6: JOINING AGENT AND OPERATION WITHOUT A WHERE
CLAUSE

agent agent opID op opID operation

Blackford 1 1 Dancing Elephant

Blackford 1 2 Enduring Angst

Adding a Condition to a Joined Query
Of course, you can still use the WHERE clause to limit which records are
shown. Use the AND structure to build compound conditions. For example,
this code:
SELECT
 agent.name AS 'agent',
 operation.name AS operation
FROM agent, operation
WHERE agent.operationID = operation.operationID
 AND agent.name LIKE 'B%';

will return the code name and operation name of every agent whose code
name begins with "B."

THE TRUTH ABOUT INNER JOINS

You should know that the syntax I provided here is a convenient shortcut
supported by most DBMS systems. The formal syntax of the inner join
looks like this:
SELECT agent.name, operation.name
FROM
 agent INNER JOIN operation
 ON agent.OperationID = operation.OperationID
ORDER BY agent.name;

Many data programmers prefer to think of the join as part of the WHERE
clause and use the WHERE syntax. A few SQL databases (notably many
offerings from Microsoft) do not allow the WHERE syntax for inner joins,
and require the INNER JOIN to be specified as part of the FROM clause.
When you use this INNER JOIN syntax, the ON clause indicates how
the tables will be joined.

Blackford 1 3 Furious Dandelion

Bond 1 1 Dancing Elephant

Bond 1 2 Enduring Angst

Bond 1 3 Furious Dandelion

Cardinal 2 2 Enduring Angst

Cardinal 2 3 Furious Dandelion

Cardinal 2 1 Dancing Elephant

Falcon 1 1 Dancing Elephant

Falcon 1 2 Enduring Angst

Falcon 1 3 Furious Dandelion

Rahab 3 1 Dancing Elephant

Rahab 3 2 Enduring Angst

Rahab 3 3 Furious Dandelion

Building a Link Table for Many-Many Relationships
Once you've created an ER diagram, you can create new tables to handle all
the one-to-many relationships. It's a little less obvious what to do with many-
to-many relationships such as the link between agents and skills. Recall that
each agent can have many skills, and several agents can use each skill. The
best way to handle this kind of situation is to build a special kind of table.

Enhancing the ER Diagram
Figure 9.5 shows a new version of the ER diagram that eliminates all many-
many relationships.

Figure 9.5: This newer ER diagram includes a special table to handle
the many-many relationship

The ER diagram featured in Figure 9.5 improves on the earlier version in a
number of ways. First, I added (PK) to the end of every primary key. I also
added (FK) to the end of every foreign key. The placements of the lines in
the diagram are now much more important. I now draw a line only between a
foreign key reference and the corresponding primary key in the other table.
Every relationship should go between a foreign key reference in one table
and a primary key in the other. The other main improvement is the addition
of the agent_specialty table. This table is interesting because it contains
nothing but primary and foreign keys. Each entry in this table represents one
link between the agent and specialty tables.

All the actual data referring to the agent or specialty are encoded in other
tables. This arrangement provides a great deal of flexibility.

Creating the specialty Table
The specialty table is actually extremely simple, as shown in Table 9.7.

TRICK Most tables in a relational database are about entities in the data set, but
link tables are about relationships between entities.

Table 9.7: THE SPECIALTY TABLE

specialtyID name

0 Electronics

1 Counterintelligence

2 Sabotage

3 Doily Design

4 Explosives

5 Flower Arranging

As you can see, there is nothing in the specialty table that connects it
directly with any particular agent. Likewise, you'll find no references to
specialties in the agent table. The complex relationship between these two
tables is handled by the new agent_specialty table. This special kind of
table is called a link table because it is used to manage the relationships
between other tables. Table 9.8 shows a sample set of data in the
agent_specialty table.

Interpreting the agent_specialty Table with a Query
Of course, the agent_specialty table is not directly useful to the user,
because it contains nothing but foreign key references. You can translate the
data to something more meaningful with an SQL statement:
SELECT agent_specialtyID,
 agent.name AS 'agent',
 specialty.name AS 'specialty'
FROM agent_specialty,
 agent,
 specialty
WHERE agent.agentID = agent_specialty.agentID
 AND specialty.specialtyID = agent_specialty.specialtyID;

It requires two comparisons to join the three tables. It is necessary to forge
the relationship between agent and agent_specialty by common
agentID values. It's also necessary to secure the bond between
specialty and agent_specialty by comparing the specialtyID
fields. The results of such a query show that the correct relationships have
indeed been joined, as you can see in Table 9.9.

Table 9.8: THE AGENT_SPECIALTY TABLE

agent_specialty_ID agentID specialtyID

1 1 2

2 1 3

3 2 1

4 2 6

5 3 2

6 4 4

7 4 5

Table 9.9: QUERY INTERPRETATION OF AGENT_SPECIALTY TABLE

agent_specialtyID agent specialty

1 Bond Sabotage

2 Bond Doily Design

3 Falcon Counterintelligence

5 Cardinal Sabotage

6 Blackford Explosives

7 Blackford Flower Arranging

The link table provides the linkage between tables that have many-many
relationships. Each time you want a new relationship between an agent and
a specialty, you add a new record to the agent_specialty table.

Creating Queries That Use Link Tables
Whenever you want to know about the relationships between agents and
specialties, the data is available in the agent_specialty table. For
example, if you need to know which agents know flower arranging, you can
use the following query:
SELECT
 agent.name
FROM
 agent,
 specialty,
 agent_specialty
WHERE agent.agentID = agent_specialty.agentID
 AND agent_specialty.specialtyID = specialtiy.specialtyID
 AND specialty.name = 'Flower Arranging';

This query looks a little scary, but it really isn't as bad as it looks. This query
requires data from three different tables. The output will need the name from
the agent table. I don't want to remember what specialty number is
associated with "Flower Arranging," so I'll let the query look that up from the
specialty table. Since I need to know which agent is associated with a
particular specialty, I'll use the agent_specialty table to link up the other
two tables. The WHERE clause simply provides the joins. The phrase
agents.agentID = agent_specialty.agentID

cements the relationship between agents and agent_specialty.
Likewise,
agent_specialty.specialtyID = specialties.specialtyID

ensures the connection between specialties and agent_specialty.
The last part of the WHERE clause is the actual conditional part of the query
that only returns records where the specialty is flower arranging. (You know,
flower arrangement can be a deadly art in the hands of a skilled
practitioner...)

Summary
In this chapter you have moved beyond programming to an understanding of
data, the real fuel of modern applications. You learned how to take a poorly
designed table and convert it into a series of well-organized tables that can
avoid a lot of data problems. You've learned about three stages of
normalization. You've learned how to build an Entity-Relationship diagram.
You can recognize three kinds of relationships between entities. You can
build normalized tables in SQL, including pointers for primary and foreign
keys. You can connect normalized tables with INNER JOIN SQL
statements. You know how to simulate a many-to-many relationship by
building a link table. The civilized world is safer for your efforts.

Challenges
1. See if you can locate ER diagrams for data you work with every

day. (Check with your firm's CIS department.) Examine these
documents and see if you can make sense of them.

2. Examine a database you use regularly. Determine if it follows the
requirements stated in this chapter for a well-designed data
structure. If not, explain what might be wrong with the data
structure and how it could be corrected.

3. Diagram an improved data structure for the database you
examined in the last question. Create the required tables in SQL
and populate them with sample data.

4. Design a database for data you use every day. (Be warned, most
data problems are a LOT more complex than they first appear.)
Create a data diagram, then build the tables and populate with
sample data.

Chapter 10: Building a Three-Tiered
Data Application

Overview
You began this book looking at HTML pages, which are essentially
static documents. You then learned how to generate dynamic pages
with the powerful PHP language. In the last few chapters, you learned
how to use a database management system such as MySQL to build
powerful data structures. This last chapter will tie together the PHP
programming and data programming aspects to build a full-blown data
management system for the spy database. The system you will learn
can easily be expanded to any kind of data project you can think of,
including e-commerce applications. Specifically, you will learn how to:

Design a moderate-to-large data application.

Build a library of reusable data functions.

Optimize functions for use across data sets.

Include library files in your programs.

There isn't really much new PHP or MySQL code to learn in this
chapter. The focus is on how to build a larger project with minimum
effort.

Introducing the Spy Master Program
The Spy Master program is a suite of PHP programs that allows access to
the spy database created in Chapter 9, "Data Normalization." While the
database created in that chapter is flexible and powerful, it is not easy to use
unless you know SQL. Even if your users do understand SQL, you don't
want them to have direct control of a database, because too many things
can go wrong. You need to build some sort of front-end application to the
database. In essence, there are three levels to this system. The client
computer handles communication with the user. The database server
(MySQL) manages the actual data. The PHP program sits between the client
and the database acting as an interpreter. PHP provides the bridge between
the HTML language of the client and the SQL language of the database.
This kind of arrangement is frequently called a three-tier-architecture. As you
examine the Spy Master program throughout this chapter you'll learn some
of the advantages of this particular approach.

Viewing the Main Screen
Start by looking at the program from the user's point of view as shown in
Figure 10.1.

Figure 10.1: The entry point to the Spy Master Database is clean and
simple.

The main page has two sections. The first is a series of data requests. Each
of these requests maps to a query.

Viewing the Results of a Query
When the user selects a query and presses the Submit button, a screen like
the one in Figure 10.2 appears.

Figure 10.2: The results of the query are viewed in an HTML
table.

The queries are all pre-built. This means the user cannot make a mistake by
typing in inappropriate SQL code, but it also limits the usefulness of the
database. Fortunately, there is a system for adding new queries, as you will
see.

Viewing Table Data
The other part of the main screen (shown again in Figure 10.3) allows the
user to directly manipulate data in the tables. Since this is a more powerful
(and thus dangerous) enterprise, access to this part of the system is
controlled by a password.

Figure 10.3: From the main screen you can also access the table data
with a password.

As an example, if I select the agent table, I'll see a screen like Figure 10.4.

Figure 10.4: The editTable screen displays all the information in a
table.

From this screen, the user can see all the data in the chosen table. The page
also gives the user links to add, edit, or delete records from the table.

Editing a Record
If the user chooses to edit a record, a screen similar to Figure 10.5 will
appear.

Figure 10.5: The user is editing a record in the agent
table.

The "Edit Record" page has some important features. First, the user cannot
directly change the primary key. If the user could do so, it would have
profound destabilizing consequences on the database. Also note the way the
operationID field is presented. The field itself is a primary key with an
integer value, but it would be very difficult for a user to manipulate the
integer values directly. Instead, the program provides a drop-down list of
operations. When the user chooses from this list, the appropriate numerical
index will be sent to the next page.

Confirming the Record Update
When the user clicks the button, a new screen appears and announces the
successful update as in Figure 10.6.

Figure 10.6: The user can see the newly updated
record.

Deleting a Record
The user can also choose to delete a record from the "Edit Table" page. This
action results in the basic screen shown in Figure 10.7.

Figure 10.7: It's very easy to delete a record.

Adding a Record

TRICK You can tell from this example why it's so important to have a script for
generating sample data. I had to delete and modify records several times
when I was testing the system. After each test I easily restored the
database to a stable condition by reloading the buildSpy.sql file with
the MySQL SOURCE command.

Adding a record to the table is a multi-step process much like editing a
record. The first page (shown in Figure 10.8) allows you to enter data in all
the appropriate fields.

Figure 10.8: The add screen includes list boxes for foreign key
references.

Like the "Edit Record" screen, the "Add Record" page does not allow the
user to enter a primary key directly. This page also automatically generates
drop-down SELECT boxes for foreign key fields like operationID.

Processing the Add
When the user chooses to process the add, another page appears
confirming the add (or of course describing the failure if it cannot add the
record for some reason). This page is shown in Figure 10.9.

Figure 10.9: The user has successfully added an
agent.

Building the Design of the SpyMaster System
It can be intimidating to think of all the operations in the "Spy Master"
system. The program has a lot of functionality. It could be overwhelming to
start coding this system without some sort of strategic plan.

Creating a State Diagram
There are many approaches to complex programming problems. For this
particular problem I decided to concentrate on the flow of data through a
series of modules. Figure 10.10 shows my overall strategy for the program.

Figure 10.10: A state diagram of the "Spy Master"
system.

The illustration in Figure 10.10 is sometimes called a state diagram. This
kind of illustration is used to identify what particular problems need to be
solved and indicate modules which might be able to solve these problems. I
began the process by thinking about everything that a data management
system should be able to do. Each major idea is broken into a "module." A
module often represents a single screen. Often (although not always) each
model will be supported by a PHP program.

The "View Query" Module
Obviously, users should be able to get queries from the database. This will
be one of the most common tasks of the system. I decided that the "View
Query" module should be able to view any query sent to it and display an
appropriate result.

The "Edit Table" Module
The other primary task in a data system is data definition, which includes
adding new records, deleting records, and updating information. This kind of
activity can be destructive, so it should be controlled using some kind of
access system. All data definition is based on the underlying table structure
of the database, so it is important to allow the three main kinds of data
definition (editing, deletion, and updating) on each table. The "Edit Table"
module provides the interface to these behaviors. It shows all the current
records in a table and lets the user edit or delete any particular record. It also
has a button that allows the user to add a new record to this table. It's
important to see that "Edit Table" doesn't actually cause anything to change
in the database. Instead, it serves as a gateway to several other editing
modules.

The "Edit Record" and "Update Record" Modules
If you look back at the state diagram, you'll see the "Edit Table" module
leads to three other modules. The "Edit Record" module shows one record
and allows the user to edit the data in the record. However, the database

isn't actually updated until the user submits changes, so editing a record
actually requires a two-step process. After the user determines changes in
the "Edit Record" module, program control moves on to the "Update Record"
module, which actually processes the request and makes the change to the
database.

The "Add Record" and "Process Add" Modules
Adding a record is similar to editing, as it requires two passes. The first
module ("Add Record") generates a form that allows the user to input the
details of the new record. Once the user has determined the record data, the
"Process Add" module does the actual SQL necessary to incorporate the
new record in the table.

The "Delete Record" Module
Deleting a record is actually a simple process. There's no need for any other
user input, so it requires only one module to process a deletion request.

Designing the System
The state diagram is very helpful, because it allows you to see an overview
of the entire process. More planning is still necessary, however, because the
basic state diagram leaves a lot of questions unanswered. For example:

Will the "Edit Table" module have to be repeated for each table?

If so, will we also need copies of all other editing modules?

Is there a way to automate the process?

What if the underlying data structure is changed?

What if I want to apply a similar structure to another database?

How can I allow queries to be added to the system?

It is tempting to write a system specifically to manage the spy database. The
advantage of such a system is it will know exactly how to handle issues
relevant to the spy system. For example, operationID is a foreign key
reference in the agent table, so it should be selected by a drop-down list
whenever possible. If you build a specific module to handle editing the
agent table, you can make this happen. However, this process will quickly
become unwieldy if you have several tables. It would be better to have a
"smart" procedure that can build an edit screen for any table in the database.
It would be even better if your program could automatically detect foreign
key fields and produce the appropriate user interface element (an HTML
SELECT clause) when needed. In fact, you could build an entire library of
generic routines that could work with any database. That's exactly the
approach I chose.

Building a Library of Functions
Although the "Spy Master" program is the longest in this book, you'll find that
most of it is surprisingly simple. The centerpiece of the system is a file called
"spyLib.php." This file is not meant to run in the user's browser at all.
Instead, it contains a library of functions that simplify coding of any database.
I stored as much of the PHP code as I could in this library. All the other PHP
programs in the system make use of the various functions in the library. This
approach has a number of advantages:

The overall code size is smaller since code does not need to be
repeated.

If I want to improve a module, I do it once in the library rather than in
several places.

It is extremely simple to modify the code library so it works with another
database.

The details of each particular module are hidden in a module so I can
focus on the bigger picture when writing each PHP page.

The routines can be re-used to work with any table in the database.

The routines can automatically adjust to changes in the data structure.

The library can be readily re-used for another project.

Figure 10.11 shows a more detailed state diagram.

Figure 10.11: This state diagram illustrates the relationship between
PHP programs and functions in the spyLib code
library.

As you will see when you begin looking at actual code, most of the PHP
programs are extremely simple. They usually just collect data for a library
function and send program control off to that function, then print any output
produced by the function.

Writing the Non-Library Code
I'll begin by describing all the parts of this project except the library. The
library module is driven by the needs of the other PHP programs, so it
actually makes sense to look at the other programs first.

Preparing the Database
The database for this segment is almost the same as the one used in
Chapter 9 "Data Normalization." I added one table to store queries. All other
tables are the same as those in Chapter 9. The SQL script to create this new
version of the spy database is available on the CD-ROM as "buildSpy.sql."
Note this version is slightly different than the version in Chapter 9, because it
includes several queries as part of the data! In order to make the program
reasonably secure, I didn't want typical users to be able to make queries. I
also don't want users to be limited to the few queries I thought of when
building this system. One solution is to store a set of queries in the database
and let appropriate users modify the queries. I called my new table the
storedQuery table. It can be manipulated in the system just like the other
tables, so a user with password access can add, edit, and delete queries.
Here is the additional code used to build the storedQuery table:
######################################
build storedQuery table
######################################

CREATE TABLE storedQuery (
 storedQueryID int(11) NOT NULL AUTO_INCREMENT,
 description varchar(30),
 text varchar(255),
 PRIMARY KEY (storedQueryID)
);

INSERT INTO storedQuery VALUES (
 null,
 'agent info',
 'SELECT * FROM agent'
);

The storedQuery table has three fields. The description field holds a
short English description of each query. The text field holds the actual SQL
code of the query.

Examining the spyMaster.php Program

TRAP Proper SQL syntax is extremely important when you store SQL syntax
inside an SQL database as I'm doing here. It's especially important to keep
track of single and double quotes. To include the single quotes that some
queries require, you'll need to precede the quote with a backslash
character. For example, if I want to store the following query:
SELECT * FROM agent WHERE agent.name = 'Bond',

I would actually store this text instead:
SELECT * FROM agent WHERE agent.name = \'Bond\'

This is necessary in order to store the single quote characters. Otherwise
they will be interpreted incorrectly. I'll show you how to remove the
backslash characters at the appropriate time.

The sypMaster.php program is the entry point into the system. All access
to the system comes from this page. It has two main parts. Each segment
encapsulates an HTML form that will send a request to a particular PHP
program. The first segment has a small amount of PHP code that sets up the
query list box.

Creating the Query Form
<html>
<head>
<title>Spy Master Main Page</title>
<?
 include "spyLib.php";
?>

</head>
<body>
<form action = "viewQuery.php"
 method = "post">

<table border = 1
 width = 200>
<tr>
 <td><center><h2>View Data</h2></center></td>
</tr>

<tr>
 <td><center>
 <select name = "theQuery" size = 10>
<?
//get queries from storedQuery table

$dbConn = connectToSpy();
$query = "SELECT * from storedQuery";
$result = mysql_query($query, $dbConn);
while($row = mysql_fetch_assoc($result)){
 $currentQuery = $row['text'];
 $theDescription = $row['description'];
 print <<<HERE
 <option value = "$currentQuery">$theDescription</option>

HERE;
 } // end while

?>
 </select>
 </center>
</tr>

<tr>
 <td><center>
 <input type = "submit"
 value = "execute request" >
 </center></td>
</tr>
</table>

</form>

Most of the code is ordinary HTML. The HTML code establishes a form that

will call viewQuery.php when the user presses the Submit button. I added
some PHP code here as well. The PHP generates a special input box based
on the entries in the storedQuery table.

Including the spyLib Library

The first thing to notice is the include() statement. This command allows
you to import another file. PHP will read that file and interpret it as HTML. An
included file can contain HTML, CSS, or PHP code. Most of the functionality
for the spy data program is stored in the spyLib.php library program. All
the other PHP programs in the system begin by including spyLib.php.
Once this is done, every function in the library can be accessed as if it were
a locally defined function. As you will see, this provides tremendous power
and flexibility to a programming system.

Connecting to the Spy Database

The utility of the spyLib library becomes immediately apparent as I connect
to the spy database. Rather than worrying about exactly what database I'm
connecting to, I simply defer to the connectToSpy() function in spyLib
(). In the current code I don't need to worry about the details of connecting
to the database. With a library I can write the connecting code one time and
re-use that function as needed.

Notice the connectToSpy() function returns a data connection pointer I
can use for other database activities.

Retrieving the Queries

I decided to encode a series of pre-packaged queries into a table. I'll explain
more about my reasons for this in the section on the viewQuery program.
The main form needs to present a list of query descriptions and let the user
select one of these queries. I use an SQL SELECT statement to extract
everything from the storedQuery table. I then use the description and text
fields from storedQuery to build a multiline list box.

Creating the Edit Table Form
The second half of the spyMaster program presents all the tables in the
database and allows the user to choose a table for later editing. Most of the
functionality in the system comes through this section. Surprisingly, there is
no PHP code at all in this particular part of the page. An HTML form will send
the user to the editTable.php program.
<hr>
<form action = "editTable.php"
 method = "post">

<table border = 1>
<tr>
 <td colspan = 2><center>
 <h2>Edit / Delete table data</h2>
 </center></td>
</tr>

TRICK There's another advantage to using a library when connecting to a
database. It's quite likely that if you move this code to another system
you'll have a different way to log in to the data server. If the code for
connecting to the server is centralized, it only needs to be changed in
one place when you want to update the code. This is far more efficient
than searching through dozens of programs to find every reference to the
mysql_connect() function.

<tr>
 <td>Password:</td>
 <td>
 <input type = "password"
 name = "pwd"
 value = "absolute">

 </td>
</tr>

<tr>
 <td colspan = 2><center>
 <select name = "tableName"
 size = 5>
 <option value = "agent">agents</option>
 <option value = "specialty">specialties</option>
 <option value = "operation">operations</option>
 <option value = "agent_specialty">agent_specialty</option>
 <option value = "storedQuery">storedQuery</option>
 </select>
 </center></td>
</tr>

<tr>
 <td colspan = 2><center>
 <input type = "submit"
 value = "edit table">
 </center></td>
</tr>
</table>

</form>

</body>
</html>

Building the viewQuery.php Program
When the user chooses a query, program control is sent to the
viewQuery.php program. This program does surprisingly little on its own.
<html>
<head>
<title>View Query</title>
</head>
<body>

<center>
<h2>Query Results</h2>
</center>
<?
include "spyLib.php";

TRICK To make debugging easier, I pre-loaded the password field with the
appropriate password so I don't have to type it in each time. In a
production environment, you should of course leave the password field
blank so the user cannot get into the system without the password.

$dbConn = connectToSpy();

//take out escape characters...
$theQuery = str_replace("\'", "'", $theQuery);

print qToTable($theQuery);

print mainButton();

?>

</body>
</html>

Once viewQuery.php connects to the library, it uses functions in the library
to connect to the database and print out desired results. The qToTable()
function does most of the actual work. It will take whatever query is passed
to it and generate a table with add, delete, and edit buttons.

WHY DID I STORE QUERIES IN THE DATABASE?

You might wonder why I chose this approach to queries. After all, I could
have let the user type in a query directly or provided some sort of form
that allows the user to search for certain values. Either of these
approaches has advantages, but they also pose some risks. It's very
dangerous to allow direct access to your data from a Web form.
Malicious users can introduce Trojan Horse commands that can snoop
on your data, change data, or even delete information from the
database. I sometimes build a form that has enough information to
create an SQL query and then build that query in a client-side form
(sounds like a good end-of-chapter exercise). In this case, I stored
queries in another table. People with administrative access have the
ability to add new queries to the database, but ordinary users do not. I
pre-loaded the storedQuery database with a number of useful queries,
then added the capacity to add new queries whenever the situation
demands it. There are still some draw-backs to this system (primarily
that ordinary users cannot build custom queries), but it is far more
secure than a system that builds a query based on user input.

The str_replace() function is necessary because SQL queries contain
single quote (') characters. When I store a query as a VARCHAR entity, the
single quotes embedded in the query cause problems. The normal solution
to this problem is to use a backslash, which indicates that the quote should
not be immediately interpreted, but should be considered a part of the data.
The problem with this is the backslash is still in the string when I try to
execute the query. The str_replace() function replaces all instances of
"\'" with a simple single quote (').

Note that the qToTable() function doesn't actually print anything to the
screen. All it does is build a complex string of HTML code. The
viewQuery.php program prints the code to the screen.

TRICK If you are using a library, it's best if the library code does not print
anything directly to the screen. Instead, it should simply return a value to
whatever program called it. This will allow multiple uses for the data. For
example, if the qToTable() function printed directly to the screen, you
could not use it to generate a file. Since the library code returns a value
but doesn't actually do anything with that value, the code that calls the

The mainButton() function produces a simple HTML form that directs the
user back to the spyMaster.php page. Even though the code for this is
relatively simple, it is repeated so often that it makes sense to store it in a
function rather than copying and pasting it in every page of the system.

Viewing the editTable.php Program
The editTable.php follows a familiar pattern. It has a small amount of
PHP code, but most of the real work is sent off to a library function. The main
job of this module is to check for an administrative password. If the user
does not have the appropriate password, further access to the system is
blocked. If the user does have the correct password, the very powerful
tToEdit() function provides access to the add, edit, and delete functions.
<html>
<head>
<title>Edit table</title>
</head>
<body>
<h2>Edit Table</h2>
<?
include "spyLib.php";

//check password

if ($pwd == $adminPassword){
 $dbConn = connectToSpy();
 print tToEdit("$tableName");
} else {
 print "<h3>You must have administrative access to proceed</h3>\n";
} // end if
print mainButton();

?>
</body>
</html>

The $pwd value comes from a field in the spyMaster.php page. The
$adminPassword value is stored in spyLibrary.php. (The default admin
password is "absolute," but you can change it to whatever you want by
editing spyLib.php.)

Viewing the editRecord.php Program
The editRecord.php program is called from a form generated by
editTable.php. (Actually, the tToEdit() function generates the form,
but tToEdit() is called from editTable.php.) This program expects
variables called $tableName, $keyName, and $keyVal. These variables
(provided by tToEdit() automatically) help editRecord build a query that
will return whatever record the user selects. (You'll need to trust me for now
on how the appropriate record data is sent. You can read ahead to the
description of tToEdit() for details on how this exactly works.)
<html>
<head>
<title>Edit Record</title>

function has the freedom to use the results in multiple ways.

</head>
<body>
<h1>Edit Record</h1>
<?

// expects $tableName, $keyName, $keyVal
include "spyLib.php";

$dbConn = connectToSpy();

$query = "SELECT * FROM $tableName WHERE $keyName = $keyVal";
print smartRToEdit($query);

print mainButton();

?>
</body>
</html>

The editRecord.php program prints out the results of the smartRToEdit
() library function. This function takes the single-record query and prints
HTML code that lets the user update the record appropriately.

Viewing the updateRecord.php Program
The smartRToEdit() function calls another PHP program called
updateRecord.php. This program calls a library function that actually
commits the user's changes to the database.
<html>
<head>
<title>Update Record</title>
</head>
<body>

<h2>Update Record</h2>
<?

include "spyLib.php";

$dbConn = connectToSpy();

$fieldNames = "";
$fieldValues = "";

foreach ($_REQUEST as $fieldName => $value){
 if ($fieldName == "tableName"){
 $theTable = $value;
 } else {

 $fields[] = $fieldName;
 $values[] = $value;
 } // end if
} // end foreach

print updateRec($theTable, $fields, $values);

print mainButton();

?>
</body>
</html>

It is more convenient for the updateRec() function if the field names and
values are sent as arrays, so the PHP code in updateRecord.php
converts the $_REQUEST array to an array of fields and another array of
values. These two arrays are passed to the updateRec() function, which
will process them.

Viewing the deleteRecord.php Program
The deleteRecord.php program acts in a now-familiar manner. It mainly
serves as a wrapper for a function in the spyLib library. In this particular
case, the program simply sends the name of the current table, the name of
the key field, and the value of the current record's key to the delRec()
function. That function will delete the record and return a message regarding
the success or failure of the operation.
<html>
<head>
<title>Delete Record</title>
</head>
<body>
<h2>Delete Record</h2>
<?

include "spyLib.php";

$dbConn = connectToSpy();
print delRec($tableName, $keyName, $keyVal);
print mainButton();
?>

</body>
</html>

Viewing the addRecord.php Program
Adding a record is actually much like editing a record. It actually requires two
distinctive steps. The addRecord.php program calls the tToAdd()
function, which builds a form allowing the user to add data to whichever table
is currently selected. It isn't necessary to send any information to this
function except the name of the table, because the key value will be
automatically generated by tToAdd().
<html>
<head>
<title>Add a Record</title>
</head>
<body>
<h2>Add Record</h2>
<?
include "spyLib.php";

$dbConn = connectToSpy();

print tToAdd($tableName);
print mainButton();

?>

</body>
</html>

Viewing the processAdd.php Program
The tToAdd() function called by the addRecord.php program doesn't
actually add a record. Instead, it places an HTML form on the screen that
allows the user to enter the data for a new record. When the user submits
this form, he or she is passed to the processAdd.php program, which calls
procAdd() in the library code. The procAdd() function generates the
appropriate SQL code to actually add the new record to the table. In order to
do this, procAdd() needs to know the field names and values. These are
passed to the function in arrays just like in updateRecord.php.
<html>
<head>
 <title>Process Add</title>
</head>
<body>
<h2>Process Add</h2>
<?
include "spyLib.php";

$dbConn = connectToSpy();

$fieldNames = "";
$fieldValues = "";

foreach ($_REQUEST as $fieldName => $value){
 if ($fieldName == "tableName"){
 $theTable = $value;
 } else {
 $fields[] = $fieldName;
 $values[] = $value;
 } // end if
} // end foreach

print procAdd($theTable, $fields, $values);

print mainButton();

?>
</body>
</html>

Creating the spyLib Library Module
Although I have described several PHP programs in this chapter, most of
them are extremely simple. Most of the heavy lifting is done by the spyLib
library code. Having a library like spyLib makes data programming pretty
easy, because you don't have to know all the details of spyLib in order to
make it work. All you need to have is a basic understanding of the functions
in the library, what each function expects as input, and what it will produce
as output. Although there is a good amount of code in this library (over 500
lines, in fact), there is almost nothing in the code you haven't seen before.
It's worth it to look carefully at this code because it can give you a good idea
of how to create your own libraries. You'll also find there's no better way to
understand the library than to dig around under the hood.

Setting a CSS style
Some of the simplest elements can have profound effects. One example of
this maxim is the storage of a CSS style in the library code. Each program in
the system will operate using the style specified in the library. This means
you can easily change the look and feel of the entire system by manipulating
one <style></style> block.
<style type = "text/css">
body{
 background-color: black;
 color: white;
 text-align:center
}

</style>

Setting System-Wide Variables
Another huge advantage of a library file is the ability to set and use variables
that will have meaning throughout the entire system. Since each PHP
program in the system includes the library, all will have access to any
variables declared in the main section of the library file. Of course, you will
still need to use the global keyword to access a global variable from within
a function.
<?
//spyLib.php
//holds utilities for spy database

//variables
$userName = "";
$password = "";
$serverName = "localhost";
$dbName = "chapter10";
$dbConn = "";
$adminPassword = "absolute";
$mainProgram = "spyMaster.php";

HINT Remember, when you include a file, it is interpreted as HTML, not PHP.
This means you can place any HTML code you wish in an include file
and it will be automatically inserted in your output wherever the include
function occurred. I took advantage of this fact to include a CSS block in
the library. If you want PHP code in your library file, you'll need to surround
your code with PHP tags (<? ?>) in the library file.

I stored a few key data points in the system-wide variables. The
$userName, $password, and $serverName variables are used to set up
the data connection. I did this because I expect people to re-use my library
for their own databases. They will definitely need to change this information
to connect to their own copy of MySQL. It's much safer for them to change
this data in variables than in actual program code. If you're writing code for
re-use, you might consider moving anything the code adopter might change
into variables as I have done here.

The $adminPassword variable will hold the password used to edit data in
the system. Again, I want anybody re-using this library (including me) to
change this value without having to dig through the code.

The $mainProgram variable holds the URL of the "control pad" program of
the system. In the spy system, I want to provide access back to
spyMaster.php in every screen. The mainButton() function uses the
value of $mainProgram to build a link back to the primary screen in every
other document produced by the system.

Connecting to the Database
The connectToSpy() function is fundamental to the spy system. It uses
system-level variables to generate a connection to the database. It returns
an error message if it is unable to connect to the database. The
mysql_error() function prints an SQL error message if the data
connection was unsuccessful. This information may not be helpful to the end
user, but it might give you some insight as you are debugging the system.
function connectToSpy(){
 //connects to the spy DB
 global $serverName, $userName, $password;
 $dbConn = mysql_connect($serverName, $userName, $password);
 if (!$dbConn){
 print "<h3>problem connecting to database...</h3>\n";
 } // end if

 $select = mysql_select_db("chapter10");
 if (!$select){
 print mysql_error() . "
\n";
 } // end if
 return $dbConn;
} // end connectToSpy

The connectToSpy() function returns a connection to the database that
will be subsequently used in the many queries passed to the database
throughout the life span of the system.

Creating a Quick List from a Query
I created a few functions in the spyMaster library that didn't get used in the
final version of the project. The qToList() function is a good example. This
program takes any SQL query and returns a simply formatted HTML
segment describing the data. I find this format useful when debugging
because no complex formatting gets in the way.
function qToList($query){
 //given a query, makes a quick list of data
 global $dbConn;
 $output = "";

 $result = mysql_query($query, $dbConn);

 //print "dbConn is $dbConn
";
 //print "result is $result
";

 while ($row = mysql_fetch_assoc($result)){
 foreach ($row as $col=>$val){
 $output .= "$col: $val
\n";
 } // end foreach
 $output .= "<hr>\n" ;
 } // end while
 return $output;
} // end qToList

Building an HTML Table from a Query
The qToTable() function is a little more powerful than qToList(). It can
take any valid SQL SELECT statement and build an HTML table from it. The
code uses the mysql_fetch_field() function to determine field names
from the query result. It also steps through each row of the result printing out
an HTML row corresponding to the record.
function qToTable($query){
 //given a query, automatically creates an HTML table output
 global $dbConn;
 $output = "";
 $result = mysql_query($query, $dbConn);

 $output .= "<table border = 1>\n";
 //get column headings

 //get field names
 $output .= "<tr>\n";
 while ($field = mysql_fetch_field($result)){
 $output .= " <th>$field->name</th>\n";
 } // end while
 $output .= "</tr>\n\n";

 //get row data as an associative array
 while ($row = mysql_fetch_assoc($result)){
 $output .= "<tr>\n";
 //look at each field
 foreach ($row as $col=>$val){
 $output .= " <td>$val</td>\n";
 } // end foreach
 $output .= "</tr>\n\n";
 }// end while

 $output .= "</table>\n";
 return $output;
} // end qToTable

The qToTable() function is called by the viewQuery.php program, but it
could be used any time you want an SQL query formatted as an HTML table
(which turns out to be quite often).

Building an HTML Table for Editing an SQL Table
If the user has appropriate access, he or she should be allowed to add, edit,

or delete records in any table of the database. While qToTable() is
suitable for viewing the results of any SQL query, it does not provide any of
these features. The tToEdit() function is based on qToTable() with a
few differences. First, tToEdit() does not accept a query, but the name of
a table. You cannot edit joined queries directly, only tables, so this limitation
is sensible. tToEdit() creates a query that will return all records in the
specified table. In addition to printing the table data, tToEdit() adds two
forms to each record. One form contains all the data needed by the
editRecord.php program to begin the record-editing process. The other
form added to each record sends all data necessary for deleting a record
and calls the deleteRecord.php program. One more form at the bottom of
the HTML table allows the user to add a record to this table. This form
contains information needed by the addRecord.php program.
function tToEdit($tableName){
 //given a table name, generates HTML table including
 //add, delete and edit buttons

 global $dbConn;
 $output = "";
 $query = "SELECT * FROM $tableName";

 $result = mysql_query($query, $dbConn);

 $output .= "<table border = 1>\n";
 //get column headings

 //get field names
 $output .= "<tr>\n";
 while ($field = mysql_fetch_field($result)){
 $output .= " <th>$field->name</th>\n";
 } // end while

 //get name of index field (presuming it's first field)
 $keyField = mysql_fetch_field($result, 0);
 $keyName = $keyField->name;

 //add empty columns for add, edit, and delete
 $output .= "<th></th><th></th>\n";
 $output .= "</tr>\n\n";

 //get row data as an associative array
 while ($row = mysql_fetch_assoc($result)){
 $output .= "<tr>\n";
 //look at each field
 foreach ($row as $col=>$val){
 $output .= " <td>$val</td>\n";
 } // end foreach
 //build little forms for add, delete and edit

 //delete = DELETE FROM <table> WHERE <key> = <keyval>
 $keyVal = $row["$keyName"];
 $output .= <<< HERE

 <td>
 <form action = "deleteRecord.php">
 <input type = "hidden"
 name = "tableName"
 value = "$tableName">
 <input type= "hidden"

 name = "keyName"
 value = "$keyName">
 <input type = "hidden"
 name = "keyVal"
 value = "$keyVal">
 <input type = "submit"
 value = "delete"></form>
 </td>

HERE;
 //update: won't update yet, but set up edit form
 $output .= <<< HERE
 <td>
 <form action = "editRecord.php"
 method = "post">
 <input type = "hidden"
 name = "tableName"
 value = "$tableName">
 <input type= "hidden"
 name = "keyName"
 value = "$keyName">
 <input type = "hidden"
 name = "keyVal"
 value = "$keyVal">
 <input type = "submit"
 value = "edit"></form>
 </td>

HERE;

 $output .= "</tr>\n\n";

 }// end while

 //add = INSERT INTO <table> {values}
 //set up insert form send table name
 $keyVal = $row["$keyName"];
 $output .= <<< HERE

 <td colspan = "5">
 <center>
 <form action = "addRecord.php">
 <input type = "hidden"
 name = "tableName"
 value = "$tableName">
 <input type = "submit"
 value = "add a record"></form>
 </center>
 </td>

HERE;

 $output .= "</table>\n";
 return $output;
} // end tToEdit

Look carefully at the forms for editing and deleting records. These forms
contain hidden fields with the table name, key field name, and record
number. This information will be used by subsequent functions to build a

query specific to the record associated with that particular table row.

Creating a Generic Form to Edit a Record
The table created in tToEdit() calls a program called editRecord.php.
This program accepts a one-record query. It prints out an HTML table based
on the results of that query. The output of rToEdit() is shown in Figure
10.12.

Figure 10.12: The rToEdit function is simple, but produces dangerous
output.

The rToEdit function produces a very simple HTML table. Every field has a
corresponding text box. The advantage of this approach is it works with any
table. However, the use of this form is quite risky. First, the user should not
be allowed to change the primary key, because that would in effect edit
some other record, which could have disastrous results. Second, the
operationID field is a foreign key reference. The only valid entries to this
field are integers corresponding to records in the operation table. There's
no way for the user to know what operation a particular integer is related to.
Worse, he or she could enter any number (or for that matter any text) into
the field. The results would be unpredictable, but almost certainly bad. I'll fix
these defects in the smartRToEdit() function coming up next, but begin
by studying this simpler function, because smartRToEdit() is build on
rToEdit().
function rToEdit ($query){
 //given a one-record query, creates a form to edit that record
 //works on any table, but allows direct editing of keys
 //use smartRToEdit instead if you can

 global $dbConn;
 $output = "";
 $result = mysql_query($query, $dbConn);
 $row = mysql_fetch_assoc($result);

 //get table name from field object
 $fieldObj = mysql_fetch_field($result, 0);
 $tableName = $fieldObj->table;

 $output .= <<< HERE
<form action = "updateRecord.php"

 method = "post">

<input type = "hidden"
 name = "tableName"
 value = "$tableName">

<table border = 1>

HERE;

 foreach ($row as $col=>$val){
 $output .= <<<HERE
 <tr>
 <th>$col</th>
 <td>
 <input type = "text"
 name = "$col"
 value = "$val">
 </td>
 </tr>

HERE;
 } // end foreach
 $output .= <<< HERE
 <tr>
 <td colspan = 2>
 <center>
 <input type = "submit"
 value = "update this record">
 </center>
 </td>
 </tr>
</table>

HERE;
 return $output;
} // end rToEdit

Building a Smarter Edit Form
The smartRToEdit() function builds on the basic design of rToEdit()
but compensates for a couple of major flaws in the rToEdit() design. Take
a look at the smarter code below and I'll explain why it's better.
function smartRToEdit ($query){
 //given a one-record query, creates a form to edit that record
 //Doesn't let user edit first (primary key) field
 //generates dropdown list for foreign keys
 //MUCH safer than ordinary rToEdit function

 // --restrictions on table design--
 //foreign keys MUST be named tableID where 'table' is table name
 // (because mySQL doesn't recognize foreign key indicators)
 // I also expect a 'name' field in any table used as a foreign key
 // (for same reason)

 global $dbConn;
 $output = "";
 $result = mysql_query($query, $dbConn);
 $row = mysql_fetch_assoc($result);

 //get table name from field object
 $fieldObj = mysql_fetch_field($result, 0);
 $tableName = $fieldObj->table;

 $output .= <<< HERE
<form action = "updateRecord.php"
 method = "post">

<input type = "hidden"
 name = "tableName"
 value = "$tableName">

<table border = 1>

HERE;
 $fieldNum = 0;
 foreach ($row as $col=>$val){
 if ($fieldNum == 0){
 //it's primary key. don't make textbox,
 //but store value in hidden field instead
 //user shouldn't be able to edit primary keys
 $output .= <<<HERE
 <tr>
 <th>$col</th>
 <td>$val
 <input type = "hidden"
 name = "$col"
 value = "$val">
 </td>
 </tr>

HERE;
 } else if (preg_match("/(.*)ID$/", $col, $match)) {
 //it's a foreign key reference
 // get table name (match[1])
 //create a listbox based on table name and its name field
 $valList = fieldToList($match[1],$col, $fieldNum, "name");

 $output .= <<<HERE
 <tr>
 <th>$col</th>
 <td>$valList</td>
 </tr>

HERE;

 } else {
 $output .= <<<HERE
 <tr>
 <th>$col</th>
 <td>
 <input type = "text"
 name = "$col"
 value = "$val">
 </td>
 </tr>

HERE;
 } // end if

 $fieldNum++;
 } // end foreach
 $output .= <<< HERE
 <tr>
 <td colspan = 2>
 <center>
 <input type = "submit"
 value = "update this record">
 </center>
 </td>
 </tr>
</table>
</form>

HERE;
 return $output;
} // end smartRToEdit

What makes this function "smart" is the ability to examine each field in the
record and make a guess about what sort of field it is. Figure 10.13 shows
the result of the smartRToEdit() program so you can compare it to the
"not so clever" function in Figure 10.12.

Figure 10.13: The smarter function doesn't let the user edit the primary
key and provides a drop-down list for all foreign key
references.

Determining the Field Type
As far as this function is concerned, there are three types of fields in a record
that need to be handled differently.

First is the primary key. If a field is the primary key, its value needs to be
passed on to the next program, but the user should not be able to edit it.

If a field is a foreign key reference to another table, the user should only be
able to edit the value indirectly. The best approach is to have a drop-down
list box that shows values the user will recognize. Each of these values
corresponds to a key in that secondary record. For example, in Figure 10.13
there is a list box for the operationID field. The operationID field is a
foreign key reference in the agent table. The ordinary rToEdit() function
allowed the user to type any index number into the textbox without any real

indication what data correlates to that index. This version builds a drop-down
list showing operation names. The key value associated with those names is
stored in the value attribute of each option (details to follow in the
fieldToList() function). The user doesn't have to know anything about
foreign key references or relational structures. He or she simply chooses an
operation from a list. That list is dynamically generated each time the user
chooses to add a record, so it always reflects all the operations in the
agency.

The last possibility is a field is neither a primary or secondary key. In this
case, I will print a simple text box so the user can input the value of the field.
In all cases, the output will reflect the current value of the field.

Working with the Primary Key
The primary key value is much more important to the program than it is to
the user. I decided to display it, but not to make it editable in any way.
Primary keys should not be edited. They should only be changed by adding
or deleting records.

I decided to rely upon some conventions to determine whether a field is a
primary key or not. I assumed that the first field of the record (field number 0)
is the primary key. This is a very common convention, but it is not universal.
Since I created the data design in this case, I can be sure that the number 0
field in every table is the primary key. For that field, I simply printed the field
name and value in an ordinary HTML table row. I added the key's value in a
hidden field so the next program will have access to it.

Recognizing Foreign Keys
Unfortunately, there is no way (at least in MySQL) to determine if a field is a
foreign key reference. I had to rely on a naming convention to make sure my
program recognizes a field as a foreign key reference. I decided that all
foreign key fields in my database will have the foreign table's name followed
by the value ID. For example, a foreign key reference to the operation
table will always be called operationID in my database. This is a smart
convention to follow anyway, as it makes your field names easy to
remember. It becomes critical in smartRToEdit() because it's the only
way to tell whether a field is a foreign key reference. I used an else if
clause to check the name of any field that is not the primary key (which was
checked in the if clause). The preg_match() function lets me use a
powerful regular expression match to determine the field's name.

TRICK Examining the Regular Expression: The statement I used to determine
whether a field is a foreign key looks like this:
} else if (preg_match("/(.*)ID$/", $col, $match)) {

It uses a simple but powerful regular expression: /(.*)ID$/. This
expression looks for any line that ends with ID. (recall that the $
indicates the end of a string.) The.*indicates any number of characters.
The parentheses around .* tell PHP to store all the characters before ID
into a special array, called $match. Since there's only one pattern to
match in this expression, all the characters before ID will contain the
name of the table. So, this regular expression takes the name of a field
and determines if it ends with ID. If so, the beginning part of the field
name (everything but ID) is stored to $match[1]. If $col contains
operationID, this line will return TRUE (because operationID ends
with ID) - and the table name (operation) will be stored in $match[1].

Building the Foreign Key List Box
If a field is a foreign key reference, it is necessary to build a list box
containing some sort of meaningful value the user can read. Since I'll need
this capability in a couple of places (and smartRToEdit() is already pretty
complex), I build a new function called fieldToList(). This function
(explained in detail later in this chapter) builds a drop-down HTML list based
on a table and field name. Rather than worrying about the details of the
fieldToList() function here, I simply figured out what parameters it
would need and printed out the results of that function.

Working with Regular Fields
Any field that is not a primary or foreign key is handled by the else clause,
which prints out an rToEdit()-style text box for user input. This will handle
all fields that allow ordinary user input, but it will not trap for certain errors
such as string data being placed in numeric fields or data longer than the
underlying field will accept. These would be good improvements to the code.
If the data designer did not name foreign key references according to my
convention, those fields will still be editable with a text box, but the errors
that could happen with rToEdit() are still concerns.

Committing a Record Update
The end result of either rToEdit() or smartRToEdit() is an HTML form
containing a table name, and a bunch of field names and values. The
updateRecord.php takes these values and converts them into arrays
before calling the updateRec() function. It's much easier to work with the
fields and values as arrays than in the somewhat amorphous context they
embody after smartRToEdit() or rToEdit().
function updateRec($tableName, $fields, $vals){
 //expects name of a record, fields array values array
 //updates database with new values

 global $dbConn;

 $output = "";
 $keyName = $fields[0];
 $keyVal = $vals[0];
 $query = "";

 $query .= "UPDATE $tableName SET \n";
 for ($i = 1; $i < count($fields); $i++){
 $query .= $fields[$i];
 $query .= " = '";
 $query .= $vals[$i];
 $query .= "',\n";
 } // end for loop

 //remove last comma from output
 $query = substr($query, 0, strlen($query) - 2);

 $query .= "\nWHERE $keyName = '$keyVal'";

 $result = mysql_query($query, $dbConn);
 if ($result){

 $query = "SELECT * FROM $tableName WHERE $keyName = '$keyVal'";
 $output .= "<h3>update successful</h3>\n";
 $output .= "new value of record:
";
 $output .= qToTable($query);
 } else {
 $output .= "<h3>there was a problem...</h3><pre>$query</pre>\n";
 } // end if
 return $output;
} // end updateRec

The primary job of updateRec() is to build an SQL UPDATE statement
based on the parameters passed to it. It is expecting a table name, an array
containing field names, and another array containing field values. The
UPDATE statement is primarily a list of field names and values, which can be
easily obtained with a for loop stepping through the $fields and $vals
arrays.

Once the query has been created, it is submitted to the database. The
success or failure of the update is reported back to the user.

Deleting a Record
Deleting a record is actually pretty easy compared to adding or updating. All
that's necessary is the table name, key field name, and key field value. The
deleteRec() function accepts these parameters and uses them to build an
SQL DELETE statement. As usual, the success or failure of the operation is
returned as part of the output string.
function delRec ($table, $keyName, $keyVal){
 //deletes $keyVal record from $table
 global $dbConn;
 $output = "";
 $query = "DELETE from $table WHERE $keyName = '$keyVal'";
 print "query is $query
\n";
 $result = mysql_query($query, $dbConn);
 if ($result){
 $output = "<h3>Record successfully deleted</h3>\n";
 } else {
 $output = "<h3>Error deleting record</h3>\n";
 } //end if
 return $output;
} // end delRec

Adding a Record
Adding a new record is much like editing a record. It is a two-step process.
The first screen builds a page to add a record much like the edit record
screen. I used techniques from the smartRToEdit() function to ensure the
primary and foreign key references are edited appropriately.
function tToAdd($tableName){
 //given table name, generates HTML form to add an entry to the
 //table. Works like smartRToEdit in recognizing foreign keys

 global $dbConn;
 $output = "";

 //process a query just to get field names
 $query = "SELECT * FROM $tableName";
 $result = mysql_query($query, $dbConn);

 $output .= <<<HERE
 <form action = "processAdd.php"
 method = "post">
 <table border = "1">
 <tr>
 <th>Field</th>
 <th>Value</th>
 </tr>

HERE;

 $fieldNum = 0;
 while ($theField = mysql_fetch_field($result)){
 $fieldName = $theField->name;
 if ($fieldNum == 0){
 //it's the primary key field. It'll be autoNumber
 $output .= <<<HERE
 <tr>
 <td>$fieldName</td>
 <td>AUTONUMBER
 <input type = "hidden"
 name = "$fieldName"
 value = "null">
 </td>
 </tr>

HERE;
 } else if (preg_match("/(.*)ID$/", $fieldName, $match)) {
 //it's a foreign key reference. Use fieldToList to get
 //a select object for this field

 $valList = fieldToList($match[1],$fieldName, 0, "name");
 $output .= <<<HERE
 <tr>
 <td>$fieldName</td>
 <td>$valList</td>
 </tr>

HERE;
 } else {
 //it's an ordinary field. Print a text box
 $output .= <<<HERE
 <tr>
 <td>$fieldName</td>
 <td><input type = "text"
 name = "$fieldName"
 value = "">
 </td>
 </tr>

HERE;
 } // end if
 $fieldNum++;
 } // end while
 $output .= <<<HERE
 <tr>
 <td colspan = 2>
 <input type = "hidden"
 name = "tableName"

 value = "$tableName">
 <input type = "submit"
 value = "add record">
 </td>
 </tr>
 </table>
 </form>

HERE;

 return $output;

} // end tToAdd

The INSERT statement created by this function will use NULL as the primary
key value, because all tables in the system are set to AUTO_INCREMENT. I
used the same regular expression trick as in smartRToEdit() to recognize
foreign key references. If they exist, I built a drop-down list with
fieldToList() to display all possible values for that field and send an
appropriate key. Any field not recognized as a primary or foreign key will
have an ordinary text box.

Processing an Added Record
The tToAdd() function sends its results to processAdd.php, which
reorganizes the data much like updateRecord.php. The field names and
values are converted to arrays, which are passed to the procAdd()
function.
function procAdd($tableName, $fields, $vals){
 //generates INSERT query, applies to database
 global $dbConn;

 $output = "";
 $query = "INSERT into $tableName VALUES (";
 foreach ($vals as $theValue){
 $query .= "'$theValue', ";
 } // end foreach

 //trim off trailing space and comma
 $query = substr($query, 0, strlen($query) - 2);

 $query .= ")";
 $output = "query is $query
\n";

 $result = mysql_query($query, $dbConn);
 if ($result){
 $output .= "<h3>Record added</h3>\n";
 } else {
 $output .= "<h3>There was an error</h3>\n";
 } // end if
 return $output;
} // end procAdd

The main job of procAdd() is to build an SQL INSERT statement using the
results of tToAdd(). This insert is passed to the database, and the outcome
off the insertion attempt is reported to the user.

Building a List Box from a Field
Both smartRToEdit() and tToAdd() need drop-down HTML lists
following a specific pattern. In both cases, I needed to build a list that allows
the user to select a key value based on some other field in the record. This
list should be set so any value in the list can be set as selected. The
fieldToList() function takes four parameters and uses them to build
exactly such a list.
function fieldToList($tableName, $keyName, $keyVal, $fieldName){
 //given table and field, generates an HTML select structure
 //named $keyName. values will be key field of table, but
 //text will come from the $fieldName value.
 //keyVal indicates which element is currently selected

 global $dbConn;
 $output = "";
 $query = "SELECT $keyName, $fieldName FROM $tableName";
 $result = mysql_query($query, $dbConn);
 $output .= "<select name = $keyName>\n";
 $recNum = 1;
 while ($row = mysql_fetch_assoc($result)){
 $theIndex = $row["$keyName"];
 $theValue = $row["$fieldName"];
 $output .= <<<HERE
 right now, theIndex is $theIndex and keyVal is $keyVal
 <option value = "$theIndex"
HERE;

 //make it currently selected item
 if ($theIndex == $keyVal){
 $output .= " selected";
 } // end if
 $output .= ">$theValue</option>\n";
 $recNum++;
 } // end while
 $output .= "</select>\n";
 return $output;
} // end fieldToList

The fieldToList() function begins by generating a query that will return
all records in the foreign table. I build an HTML SELECT object based on the
results of this query. As I step through all records, I check to see if the
current record corresponds to the $keyVal parameter. If so, that element is
selected in the HTML.

Creating a Button That Returns to the Main Page
To simplify navigation, I added a button at the end of each PHP program that
returns the user to the program's primary page. The mainButton()
program creates a very simple form calling whatever program is named in
the $mainProgram variable indicated at the top of the library.
function mainButton(){
 // creates a button to return to the main program

 global $mainProgram;

 $output .= <<<HERE

<form action = "$mainProgram"
 method = "get">
<input type = "submit"
 value = "return to main screen">
</form>

HERE;
 return $output;
} // end mainButton

Summary
The details of the Spy Master system can be dizzying, but the overall effect
is a flexible design that can be easily updated and modified. This system can
accept modifications to the underlying database, and can be adapted to an
entirely different data set with relatively little effort. Although you didn't learn
any new PHP syntax in this chapter, you saw an example of coding for re-
use and flexibility. You learned how to use include files to simplify coding
of complex systems. You learned how to build a library file with utility
routines. You learned how to write code that can be adapted to multiple data
sets. You learned how to write code that prevents certain kinds of user errors
by limiting choices to legal values. You learned how to build programs that
help tie together relational data structures. The things you have learned in
this chapter form the foundation of all data-enabled Web programming,
which in turn form the backbone of e-commerce and content management
systems.

Challenges
1. Add a module that lets the user interactively query the database.

Begin with a page that allows the user to type in an agent's name
and returns data based on that agent.

2. Once the basic functionality of an "agent search" program is
done, add checkboxes that allow certain aspects of the agent to
be displayed (operation and skills).

3. Build programs that allow searching on other aspects of the
data, including skills and operations.

4. Modify the spy master database to support another data set.

Index

Symbols
{} (braces), 84–85
| (pipe bars), 229
/ (slashes), 229
; line termination character, 44–48, 303
$ variable naming character, 42
= assignment operator, 43
== assignment operator, 84
&& boolean and operator, 155
!= comparison operator, 85
!== comparison operator, 228
< comparison operator, 85
<= comparison operator, 85
> comparison operator, 85
>= comparison operator, 85
. concatenation operator, 186–187
++ increment operator, 122
<? ?> HTML tag, 33
<?php ?> HTML tag, 33

Index

A
Ace or Not program, 86–88
Ace program, 81–86
action method, 54
addFoils() function, 191–192, 205–206
Adventure Generator program

building, 291–296
buttons, 311–312
connecting database, 306–311
CSS, 310
displaying records, 307–310
editing records, 316–320
list boxes, 321
overview, 264–266
selecting records, 313–316
Show Heros database, 300–302
updating, 321–322
variables, 311, 320

alignment, HTML, 8, 18
architecture, three-tiered, 348
array() function, 133–134

associative arrays, 166
arrays. See also loops; variables

associative
array() function, 166
building, 163–167
debugging forms, 170
foreach loops, 166–167
reading forms, 167–170
two-dimensional, 177–181

building, 132–133
debugging, 205
foreach loops, 161–163
loops, 133
multi-dimensional. See also databases; tables

building, 172–176
overview, 170–172
queries, 174–176

overview, 130–132
parsing, 191–194
Poker Dice program, 141–156
pre-loading, 133–134
reading, 133, 223–225
size, 134
splitting, 235, 251–255
strings, 184–185
This Old Man program, 134–137
Word Puzzle Maker program, 190, 204–206

assignment operator
=, 43
==, 84

associative arrays
array() function, 166

building, 163–167
foreach loops, 166–167
forms

debugging, 170
reading , 167–170

two-dimensional
building, 177–181
queries, 179–181

Index

B
Bad While program, 127–129
Basic Array program, 130–132

building, 132–133
Binary Dice program, 88–91
<body> HTML tag, 5
boolean and operator (&&), 155
boolean variables (Word Puzzle Maker Program), 195–197
Border Maker program

building, 60–63
overview, 59–60
reading, 63–65

braces ({}), 84–85
branching statements, 94–97
break statements, 94
building. See also creating

arrays, 132–133
associative, 163–167
multi-dimensional, 172–176
two-dimensional associative, 177–181

buttons, 311–312
database, Spy, 334–339
for loops, 122
libraries, functions, 356
programs

Adventure Generator, 291–296
Border Maker, 60–63
Petals Around the Rose, 109–115
Pig Latin Generator, 184–185
Poker Dice, 141–156
Story, 68–74

buttons, 27–28, 65
building, 311–312
forms, 29–31

Reset, 31
Submit, 31

spyLib program, 394

Index

C
Cartoonifier program, 223–225
cascading style sheets. See CSS
case sensitivity

PHP, 43
strings, 193

case statements, 94
<center> HTML tag, 5
check boxes

forms, 26–27
Poker Dice program, 144–146

chr() function, 206
clauses (SQL)

FROM, 286–287
LIKE, 288–289
ORDER BY, 289–290
WHERE, 287–288, 339–342

clients
servers, connecting, 279
three-tiered architecture, 348

closing files, 219–220
code. See programs
columns

databases, 269
queries, 286–287

commands
PHP

HTML, 32–35
phpInfo(), 34–35

print, 44
SQL, 270. See also queries

CREATE, 270–273
DESCRIBE, 273–274
DROP, 277
INSERT, 274–275, 337
SELECT, 275–276, 285–286
SOURCE, 276–278
UPDATE, 290–291, 321–322
USE, 270–271

commenting
programs, 189–190
Word Puzzle Maker program, 204

comments, SQL, 277
comparison operators, 84

!=, 85
!==, 228
<, 85
<=, 85
>, 85
>=, 85

concatenating strings, 186–187

concatenation operator (.), 186–187
conditional statements. See statements
conditions (for loops), 121
connecting

databases
programs, 306–307, 310–311, 360–361
spyLib program, 372–373

servers
clients, 279
programs, 302–303

content management systems, 3
control page (Quiz Machine program), 236–245
Count by Five program, 122–124
count() function, 134
counters, loops

for loops, 122–125
Word Puzzle Maker program, 197

Counting Backwards program, 124–125
CREATE SQL command, 270–273
creating. See also building

databases, 268–270
files, 215–217
functions, 97–100

 images, 81
queries, 303
random text, 187
records, 369–370

spyLib program, 389–392
tables, 269–273

scripts, 276–278
SQLyog, 280

variables, 311
CSS (cascading style sheets), 14

databases, 310
files, 222
programs, 310
spyLib program, 371
styles

external, 19–21
local, 14–15
page, 15–19

Index

D
data

loading, 234–235
normalizing, 329–331
persistence, 137–141
retrieving, 55–59

files, 245–247
forms, 53–55

searching, 55–59
tables, multi-dimensional arrays, 170

data types. See also fields
databases, 271–272
tables, viewing, 273–274

database management system. See RDBMS
databases. See also multi-dimensional arrays; tables

columns, 269
connecting

programs, 306–311, 360–361
servers, 302–303
spyLib program, 372–373

creating, 268–270
Spy, 334–339

CSS, 310
data types, 271–272
design

defining relationships, 332–333
diagrams, 333
guidelines, 329
normalizing data, 329–331
state diagrams, 354–356
troubleshooting, 326–329

fields, 269, 272
files, dragging, 278
queries, 357–358

creating, 303
fields, 304–305
result sets, 303–306

records, 269
displaying, 307–310
editing, 316–320
printing, 307–310
selecting, 313–316
viewing, 313–316

security, passwords, 302
selecting, 303
Show Heros, 300–302
SQLyog, 278–279
strings, 272
tables, 269

foreign keys, 336–337
inner joins, 339–342
link tables, 342–346
primary keys, 335–336
values, 337

three-tiered architecture, 348

date() function, 260
debugging. See also editing; troubleshooting

arrays, 205
forms, associative arrays, 170
Word Puzzle Maker Program, 193

defining relationships, 332–333
deleting records, 368–369, 388–389
DESCRIBE SQL command, 273–274
designing

databases
defining relationships, 332–333
diagrams, 333
guidelines, 329
normalizing data, 329–331
state diagrams, 354–356
troubleshooting, 326–329

forms, 66
programs, 67

Dia, 333
diagrams

drawing, 333
state, 354–356

directories, 225–227
dragging, 278
handles, 227
lists, 227–228
regular expressions, 229–230
retrieving, 237–245
saving, 229–231
selecting, 228
storing, 229–231

displaying. See reading; viewing
documents. See files; Web pages
dollar sign ($), variable naming character, 42
dragging files, 278
drawing diagrams, 333
DROP SQL command, 277
drop-down list boxes, 28, 64–65

Index

E
Edit Segments program, 316–320
editing. See also debugging; troubleshooting

records, 316–320, 366–367
fields, 384–387
spyLib program, 379–387

tables, 361–366
SQLyog, 280–281

editors, 4
elements. See forms
else statements, 86–88

else…if statements, 88–91

email files, 231–235
embedded strings, 185–186
empty() function, 94–97
encapsulating functions, 100–106
endless loops, 127–129
equal sign assignment operator

=, 43
==, 84

error handling. See debugging; editing; troubleshooting
executables (MySQL), 267–268
exporting tables (SQLyog), 281–285
external styles (CSS), 19–21

Index

F
fclose() function, 219–220
feof() function, 222
fgets() function, 222, 235
fields. See also data types

databases, 269
spyLib program

editing, 384–387
foreign keys, 386–387
primary keys, 385–386

hidden, 137–141
Word Puzzle Maker program, 206–208

passwords, 25
queries, 288–289, 304–305
VARCHAR, 272

file() function, 224, 234–235
files. See also forms

closing, 219–220
creating, 215–217
CSS, 222
data retrieval, 245–247
directories, 225–227

dragging, 278
handles, 227
lists, 227–228
regular expressions, 229–230
retrieving, 237–245
saving, 229–231
selecting, 228
storing, 229–231

email, 231–235
 images, 225–227
handles, 227
lists, 227–228
regular expressions, 229–230
saving, 229–231
selecting, 228
storing, 229–231

importing, 360
loading, 220–221, 234–235
log, 258–261
names, 249
opening, 217–219, 222, 257–258
printing, 247–249
Quiz Machine program, 212–215
reading, 218–219, 222

arrays, 223–225
security, 217–219, 247, 255–256
text, 231–235
troubleshooting, 220
writing, 218–219

fonts (HTML), 8
fopen() function, 217–219
for loops, 118–121

building, 122
conditions, 121
counting, 122–125
initializing, 121
Word Puzzle Maker Program, 194–195

foreach loops
arrays, 161–163

associative arrays, 166–167
debugging, 193
Word Puzzle Maker Program, 193

foreign keys
spyLib program, 386–387
tables, 336–337

Form Reader program, 167–170
forms. See also files

action method, 54
associative arrays

debugging, 170
reading, 167–170

buttons, 27–31, 65
Reset, 31
Submit, 31

check boxes, 26–27, 144–146
data retrieval, 53–55
designing, 66
drop-down list boxes, 28, 64–65
fields

hidden, 25, 137–141
password, 25

if statements, 94–97
input, 59–66
linking programs, 54
methods

get, 53
post, 53

multi-select list boxes, 29, 64–65
queries, 358–361
records, 316–320
selection elements, 26
tables, 361–363
text, 21–23
text areas, 24–25
text boxes, 23–24
values, 65
variables, 51–53, 65
Word Puzzle Maker program, 187–189

fputs() function, 219–220
FROM SQL clause, 286–287
functions

addFoils(), 191–192, 205–206
array(), 133–134

associative arrays, 166
chr(), 206
count(), 134
creating, 97–100
date(), 260
empty(), 94–97
encapsulating parameters, 100–106

fclose(), 219–220
feof(), 222
fgets(), 222, 235
file(), 224, 234–235
fopen(), 217–219
fputs(), 219–220
libraries, building, 356
list(), 235, 251–255
ltrim(), 185
mail(), 235
mysql_connect, 302–303
mysql_fetch_array, 305
mysql_fetch_assoc, 305
mysql_fetch_field, 304–305
mysql_fetch_object, 305
mysql_query, 303
mysql_set_db, 303
openDir(), 227
ord(), 187
parseList(), 192–194
Petals Around the Rose program, 110–115
preg_grep(), 228
rand(), 78–80
random(), 187
readDir(), 227–228
readFile(), 36, 231
replace(), 225
rtrim(), 185, 193
setType(), 51
split(), 184–185, 193, 235, 251–255
strstr(), 186
strtoupper(), 193
substr(), 185–186
trim(), 185

Index

G
games. See programs
get method, 53–59
global variables (spyLib program), 371–372
guidelines

database design, 329
loops, 129–130

Index

H
<h1> HTML tag, 6
handles, files, 227
<head> HTML tag, 5
Hello World program, 4–6
HERE token, 100
hero generator Web site, 280
Hi Jacob program, 41–42
Hi User program, 94–97
hidden fields, 137–141

forms, 25
Word Puzzle Maker program, 206–208

hiding text, 237–238
HTML

alignment, 8, 18
CSS

external styles, 19–21
local styles, 14–15
page styles, 15–19

documents, 4
fonts, 8
forms

action method, 54
buttons, 29–31
check boxes, 26–27, 144–146
data retrieval, 53–55
debugging associative arrays, 170
designing, 66
drop-down list boxes, 28, 64–65
get method, 53
hidden fields, 25, 137–141
if statements, 94–97
input, 59–66
linking programs, 54
multi-select list boxes, 29, 64–65
password fields, 25
post method, 53
queries, 358–361
radio buttons, 27–28, 65
reading associative arrays, 167–170
records, 316–320
selection elements, 26
tables, 361–363
text, 21–23
text areas, 24–25
text boxes, 23–24
values, 65
variables, 51–53, 65
Word Puzzle Maker program, 187–189

 images, 9–10
links, 9–10
lists, 9–10
PHP commands, 32–35

tables, 11–14
tags

<? ?>, 33
<?php ?>, 33
<body>, 5
<center>, 5
<h1>, 6
<head>, 5
<html>, 5
<input>, 23–24
<select>, 28–29, 64–65
<style>, 15–19
<textarea>, 24–25
overview, 5–10

text, 8
text editors, 4
Web editors, 4
Word processors, 4

<html> HTML tag, 5

Index

I
if statements, 81–86

branching, 94–97

if…else statements, 86–88

if…else…if statements, 88–91

Image Index program, 225–227
file handles, 227
file lists, 227–228
regular expressions, 229–230
saving, 229–231
selecting files, 228
storing, 229–231

images
creating, 81
files, 225–227

handles, 227
lists, 227–228
regular expressions, 229–230
saving, 229–231
selecting, 228
storing, 229–231

HTML, 9–10
printing, 80–81

importing files, 360
increment operator (++), 122
initializing for loops, 121
inner joins, 339–342
input. See forms
<input> HTML tag, 23–24
INSERT SQL command, 274–275, 337
inserting records, 274–275
installing MySQL, 267–268
integers. See numbers
interpolating variables, 80–81

Index

J–K
joins, inner, 339–342
keys

foreign
spyLib program, 386–387
tables, 336–337

primary. See primary keys
spyLib program, 385–386
tables, 273, 335–336

Index

L
libraries, functions, 356
LIKE SQL clause, 288–289
lines, terminating, 44–48, 303
link tables, 342–346
links

forms, 54
HTML, 9–10

list boxes
Adventure Generator program, 321
drop-down, 28, 64–65
multi-select, 29, 64–65
spyLib program, 393–394

List Segments program, 313–316
list() function, 235, 251–255
lists

file directories, 227–228
HTML, 9–10
parsing, 191–194
queries, 373–374

loading
arrays, 133–134
data, 234–235
files, 220–221, 234–235

local styles (CSS), 14–15
log files, 258–261
logic. See statements
long variables, 46–47
loops. See also arrays; variables

arrays, 133
counters, 197
endless, 127–129
for, 118–121

building, 122
conditions, 121
counting, 122–125
initializing, 121
Word Puzzle Maker program, 194–195

foreach
arrays, 161–163
associative arrays, 166–167
debugging, 193
Word Puzzle Maker program, 193

guidelines, 129–130
Poker Dice program, 141–156
This Old Man program, 134–137
while, 126–129

ltrim() function, 185

Index

M
Mail Merge program, 231–235
mail() function, 235
management system content, 3
manipulating strings, 182–184
math (Word Puzzle Maker program), 204
mathematical operators, 50–51
methods

action, 54
get, 53–59
post, 53

multi-dimensional arrays. See also databases; tables
building, 172–176
overview, 170–172
queries, 174–176

multi-line strings, 47–48
multi-select list boxes, 29, 64–65
MySQL

executables, 267–268
installing, 267–268
three-tiered architecture, 348

mysql_connect function, 302–303
mysql_fetch_array function, 305
mysql_fetch_assoc function, 305
mysql_fetch_field function, 304–305
mysql_fetch_object function, 305
mysql_query function, 303
mysql_set_db function, 303

Index

N
naming

files, 249
variables, 42–43

normalizing data, 329–331
null values, 337
numbers, 78

counting (for loops), 122–125
random, 78–80
variables, 48–51

integers, 51
real numbers, 51
values, 50

Index

O
openDir() function, 227
opening files, 217–219, 222, 257–258
operators

assignment
=, 43
==, 84

boolean and (&&), 155
comparison, 84

!=, 85
!==, 228
<, 85
<=, 85
>, 85
>=, 85

concatenation (.), 186–187
increment (++), 122
mathematical, 50–51

ord() function, 187
ORDER BY SQL clause, 289–290
output. See printing

Index

P
page styles (CSS), 15–19
pages. See files; Web pages
parameters, functions, 100–106
parseList() function, 192–194
parsing, 191–194
passwords

databases, 302
fields, forms, 25
security, 247, 255–256

persistence, data, 137–141
Petals Around the Rose program

building, 109–115
functions, 110–115
overview, 78, 108–109

PHP
case sensitivity, 43
commands

HTML, 32–35
phpInfo(), 34–35

running, 32, 42
support, 32
troubleshooting, 32, 42

<?php ?> HTML tag, 33
PHP Tripod program, 32
phpInfo() command, 34–35
Pig Latin Generator program

building, 184–185
overview, 182–184

pipe bars (|), 229
Poker Dice program

arrays, 141–156
boolean and operator (&&), 155
building, 141–156
check boxes, 144–146
loops, 141–156
overview, 118–119
printing, 146–148, 155–156

post method, 53
preg_grep() function, 228
pre-loading arrays, 133–134
primary keys

spyLib program, 385–386
tables, 273, 335–336

print command, 44
printing, 44

files, 247–249
 images, 80–81

Poker Dice program, 146–148, 155–156
records, 307–310

Word Puzzle Maker program, 206–209
processing records (spyLib program), 392–393
programming

line termination character, 44–48, 303
server-side, 3

programs
Ace, 81–86
Ace or Not, 86–88
Adventure Generator

building, 291–296
buttons, 311–312
connecting database, 306–307, 310–311
CSS, 310
displaying records, 307–310
editing records, 316–320
list boxes, 321
overview, 264–266
selecting records, 313–316
Show Heros database, 300–302
updating, 321–322
variables, 311, 320

Bad While, 127–129
Basic Array, 130–132

building, 132–133
Binary Dice, 88–91
Border Maker

building, 60–63
overview, 59–60
reading, 63–65

Cartoonifier, 223–225
commenting, 189–190
connecting

databases, 306–307, 310–311, 360–361
servers, 302–303

content management systems, 3
Count by Five, 122–124
Counting Backwards, 124–125
CSS, 310
data persistence, 137–141
designing, 67
Edit Segments, 316–320
files

log, 258–261
opening, 257–258
security, 247, 255–256

Form Reader, 167–170
Hello World, 4–6
Hi Jacob, 41–42
Hi User, 94–97
Image Index, 225–227

file handles, 227
file lists, 227–228
regular expressions, 229–230
saving, 229–231
selecting files, 228
storing, 229–231

List Segments, 313–316
Mail Merge, 231–235
Petals Around the Rose

building, 109–115

functions, 110–115
overview, 78, 108–109

PHP
running, 42
troubleshooting, 42

PHP Tripod, 32
Pig Latin Generator

building, 184–185
overview, 182–184

Poker Dice
arrays, 141–156
boolean and operator (&&), 155
building, 141–156
check boxes, 144–146
loops, 141–156
overview, 118–119
printing, 146–148, 155–156

Quiz Machine
control page, 236–245
editing tests, 245–249
grading tests, 257–260
overview, 212–215, 235–236
taking tests, 255–256
viewing log, 260–261
writing tests, 249–255

Roll Em, 78–80
Row Your Boat, 46–47
Save Sonnet

closing files, 219–220
creating files, 215–217
CSS, 222
loading files, 220–221
opening files, 217–219, 222
reading files, 222
writing files, 219

Scope Demo, 106–108
Spy Master. See also Spy database; spyLib program

connecting database, 360
creating records, 369–370
database queries, 357–358
deleting records, 368–369
edit table form, 361–363
editing records, 366–367
editing tables, 365–366
function library, 356
overview, 348–353
query form, 358–361
state diagram, 354–356
updating records, 367–368
viewing queries, 363–365

spyLib. See also Spy database; Spy Master program
buttons, 394
connecting database, 372–373
creating records, 389–392
CSS, 371
deleting records, 388–389
editing fields, 384–387
editing records, 379–384
foreign keys, 386–387
global variables, 371–372
list boxes, 393–394

primary keys, 385–386
processing records, 392–393
query lists, 373–374
query tables, 374–379
updating records, 387–388

Story, 40
building, 68–74
overview, 66–67
reading, 71–73

Switch Dice, 91–94
text, hiding, 237–238
This Old Man, 97–100

arrays, 134–137
loops, 134–137
parameters, 100–106
returning values, 103–104

Three Plus Five, 48–50
three-tiered architecture, 348
Tip of the Day, 2, 35–36
Word Puzzle Maker

arrays, 190, 204–206
boolean variables, 195–197
commenting, 204
debugging, 193
for loop, 194–195
foreach loop, 193
form, 187–189
hidden fields, 206–208
loop counters, 197
math, 204
overview, 160–161
parsing, 191–194
printing, 206–209
response page, 189–190
strings, 193, 200–206
switch statements, 197–200

Index

Q
queries, 285–286. See also SQL, commands

arrays
multi-dimensional, 174–176
two-dimensional associative, 179–181

columns, 286–287
creating, 303
data, 55–59
databases, 357–358
fields, 288–289, 304–305
forms, 358–361
lists (spyLib program), 373–374
result sets, 303–306
rows, 287–288
sorting, 289–290
tables (spyLib program), 374–379
updating, 290–291
viewing, 363–365

Quiz Machine program
control page, 236–245
editing tests, 245–249
grading tests, 257–260
overview, 212–215, 235–236
taking tests, 255–256
viewing log, 260–261
writing tests, 249–255

quotation marks, 358

Index

R
radio buttons, 27–28, 65
rand() function, 78–80
random numbers, 78–80
random text, 187
random() function, 187
RDBMS (relational database management system), 266–267, 348
readDir() function, 227–228
readFile() function, 36, 231
reading. See also viewing

arrays, 133, 223–225
Border Maker program, 63–65
files, 218–219, 222–225
forms

associative arrays, 167–170
input, 59–66

Story program, 71–73
real numbers (variables), 51
records

creating, 369–370
spyLib program, 389–392

databases, 269
deleting, 368–369

spyLib program, 388–389
displaying, 307–310
editing, 316–320, 366–367

fields, 384–387
spyLib program, 379–387

printing, 307–310
processing, 392–393
selecting, 313–316
tables

inserting, 274–275
selecting, 275–276

updating, 367–368
spyLib program, 387–388

viewing, 313–316
register globals variable, 167–170
regular expressions, 229–230
relational database management system. See RDBMS
relationships, 332–333
replace() function, 225
replacing strings, 225
Reset button, 31
response page (Word Puzzle Maker program), 189–190
result sets, queries, 303–306
retrieving data, 55–59

directories, 237–245
files, 245–247
forms, 53–55

returning values, 103–104
Roll Em program, 78–80
Row Your Boat program, 46–47
rows, queries, 287–288
rtrim() function, 185, 193
running PHP, 32, 42

Index

S
Save Sonnet program files

closing, 219–220
creating, 215–217
CSS, 222
loading, 220–221
opening, 217–219, 222
reading, 222
writing, 219

saving files, 229–231
scope, variables, 106–108
Scope Demo program, 106–108
scripts, tables, 276–278
searches

data, 55–59
shortcuts, 57–59
templates, 57–59

security
files, 217–219, 247, 255–256
passwords

databases, 302
forms, 25

<select> HTML tag, 28–29, 64–65
SELECT SQL command, 275–276, 285–286. See also queries
selecting

databases, 303
files, directories, 228
form elements, 26
records, 313–316

tables, 275–276
semicolon line termination character (;), 44–48, 303
sentry variables, 121–122
servers

connecting
clients, 279
programs, 302–303

three-tiered architecture, 348
server-side programming, 3
setType() function, 51
shortcuts, searches, 57–59
Show Heros database, 300–302
size, arrays, 134
slashes (/), 229
sorting queries, 289–290
SOURCE SQL command, 276–278
spaces, filenames, 249
split() function, 184–185, 193, 235, 251–255
splitting arrays, 235, 251–255
Spy database. See also spyLib program; Spy Master program

building, 334–339
inner joins, 339–342
link tables, 342–346
tables

foreign keys, 336–337
primary keys, 335–336
values, 337

Spy Master program. See also Spy database; spyLib program
connecting database, 360
creating records, 369–370
database queries, 357–358
deleting records, 368–369
edit table form, 361–363
editing records, 366–367
editing tables, 365–366
function library, 356
overview, 348–353
query form, 358–361
state diagram, 354–356
updating records, 367–368
viewing queries, 363–365

spyLib program. See also Spy database; Spy Master program
buttons, 394
connecting database, 372–373
creating records, 389–392
CSS, 371
deleting records, 388–389
editing fields, 384–387
editing records, 379–384
foreign keys, 386–387
global variables, 371–372
list boxes, 393–394
primary keys, 385–386
processing records, 392–393
query lists, 373–374
query tables, 374–379
updating records, 387–388

SQL (structured query language), 266–267
clauses

FROM, 286–287
LIKE, 288–289
ORDER BY, 289–290
WHERE, 287–288, 339–342

commands, 270. See also queries
CREATE, 270–273
DESCRIBE, 273–274
DROP, 277
INSERT, 274–275, 337
SELECT, 275–276, 285–286
SOURCE, 276–278
UPDATE, 290–291, 321–322
USE, 270–271

comments, 277
queries, 285–286

columns, 286–287
creating, 303
data, 55–59
databases, 357–358
fields, 288–289, 304–305
forms, 358–361

lists (spyLib program), 373–374
multi-dimensional arrays, 174–176
result sets, 303–306
rows, 287–288
sorting, 289–290
tables (spyLib program), 374–379
two-dimensional associative arrays, 179–181
updating, 290–291
viewing, 363–365

quotes, 358
SQLyog

connecting, 279
databases, 278–279
tables

creating, 280
editing, 280–281
exporting, 281–285

state diagrams, 354–356
statements

break, 94
case, 94
else, 86–88
else…if, 88–91
if, 81–86

branching, 94–97
if…else, 86–88
if…else…if, 88–91
SQL. See commands
switch, 91–94

branching, 94–97
Word Puzzle Maker program, 197–200

storing files, 229–231
Story program, 40

building, 68–74
overview, 66–67
reading, 71–73

strings. See also values
arrays, 184–185
case sensitivity, 193
concatenating, 186–187
databases, 272
embedded, 185–186
manipulating, 182–184
overview, 181
replacing, 225
substrings, 185–186
trimming, 185
variables, 42–44

multi-line, 47–48
Word Puzzle Maker program, 193, 200–206

strstr() function, 186
strtoupper() function, 193
structured query language. See SQL
<style> HTML tag, 15–19
style sheets. See CSS
styles (CSS)

external, 19–21
local, 14–15
page, 15–19

Submit button (forms), 31
substr() function, 185–186
substrings, 185–186
super hero generator Web site, 280
support, PHP, 32
Switch Dice program, 91–94
switch statements, 91–94

branching, 94–97
Word Puzzle Maker Program, 197–200

systems, content management, 3

Index

T
tables. See also databases; multi-dimensional arrays

comments, 277
creating, 269–273

scripts, 276–278
SQLyog, 280

data types, 273–274
databases, 269
editing, 361–366

fields, 384–387
SQLyog, 280–281

exporting, 281–285
foreign keys, 336–337
HTML, 11–14
inner joins, 339–342
link tables, 342–346
primary keys, 273, 335–336
queries

columns, 286–287
fields, 288–289
rows, 287–288
sorting, 289–290
spyLib program, 374–379
updating, 290–291

records
creating, 369–370, 389–392
deleting, 368–369, 388–389
editing, 366–367, 379–384
inserting, 274–275
processing, 392–393
selecting, 275–276
updating, 367–368, 387–388

values, 337
tags. See HTML, tags
terminating lines, 44–48, 303
text

files, 231–235
forms, 21–23
hiding, 237–238
HTML, 8
random, 187

text areas, forms, 24–25
text boxes, forms, 23–24
text editors, HTML, 4
<textarea> HTML tag, 24–25
This Old Man program, 97–100

arrays, 134–137
loops, 134–137
parameters, 100–106
values, returning, 103–104

Three Plus Five program, 48–50
three-tiered architecture, 348
Tip of the Day program, 2, 35–36

token, HERE, 100
trim() function, 185
trimming strings, 185
Tripod program, 32
troubleshooting. See also debugging; editing

database design, 326–329
error handling, 45
files, 220
PHP, 32, 42

two-dimensional associative arrays
building, 177–181
queries, 179–181

Index

U
underscores (filenames), 249
UPDATE SQL command, 290–291, 321–322
updating

Adventure Generator program, 321–322
queries, 290–291
records, 367–368

spyLib program, 387–388
URL data, 55–59
USE SQL command, 270–271
userName variable, 94–97
user input. See forms

Index

V
values. See also strings

null, 337
returning, 103–104
variables, 43–44

forms, 65
numbers, 50

VARCHAR fields, 272
variables. See also arrays; loops

Adventure Generator program, 320
boolean, 195–197
creating, 311
defined, 40–41
forms, 51–53, 65
global, 371–372
interpolating, 80–81
long, 46–47
mathematical operators, 50–51
naming, 42–43
numbers, 48–50

integers, 51
real numbers, 51
values, 50

register globals, 167–170
scope, 106–108
sentry, 121–122
strings, 42–44

multi-line, 47–48
userName, 94–97
values, 43–44, 65

viewing. See also reading
data types (tables), 273–274
queries, 363–365
records, 307–310, 313–316

Index

W–Z
Web editors, 4
Web pages

data
retrieving, 53–59
searching, 55–59

forms, linking, 54
Web servers, 3
Web site, super hero generator, 280
WHERE SQL clause, 287–288, 339–342
while loops, 126–129
Word processors, 4
Word Puzzle Maker program

arrays, 190, 204–206
boolean variables, 195–197
commenting, 204
debugging, 193
for loop, 194–195
foreach loop, 193
form, 187–189
hidden fields, 206–208
loop counters, 197
math, 204
overview, 160–161
parsing, 191–194
printing, 206–209
response page, 189–190
strings, 193, 200–206
switch statements, 197–200

writing files, 218–219

List of Figures

Chapter 1: Exploring the PHP Environment
Figure 1.1: The tip of the day might look simple, but it is a technological
marvel, because it features html, cascading style sheets, and PHP code.

Figure 1.2: A very basic Web page.

Figure 1.3: An HTML page containing the most common HTML tags.

Figure 1.4: Examples of several other basic HTML tags.

Figure 1.5: Tables can be basic, or cells can occupy multiple rows and
columns.

Figure 1.6: I used CSS to define the special styles shown on this page.

Figure 1.7: The H1 style has been defined for the entire page, as well as
two kinds of paragraph styles.

Figure 1.8: External style sheets look just like other styles to the user,
but they have advantages for the programmer.

Figure 1.9: You can add text boxes, text areas, password boxes, and
hidden fields (which do not appear to the user) to your Web pages.

Figure 1.10: Several HTML elements allow the user to enter information
without having to type anything.

Figure 1.11: Although these buttons all look very similar to the user, they
are different, and have distinctive behaviors.

Figure 1.12: The page mixes HTML with some other things.

Chapter 2: Using Variables and Input
Figure 2.1: The program begins by asking the user to enter some
information.

Figure 2.2: I hate it when the warthog's in the kohlrabi.

Figure 2.3: The word "Jacob" is stored in a variable in this page. You
can't really see anything special about this program from the Web page
itself (even if you look at the HTML source). To see what's new, look at
the source code of hiJacob.php.

Figure 2.4: This error will occur if you forget to add a semicolon to the
end of every line.

Figure 2.5: This program shows the words to a popular song. They sure
repeat a lot.

Figure 2.6: This program does basic math on variables containing the
values 3 and 5.

Figure 2.7: This is an ordinary HTML page containing a form.

Figure 2.8: The resulting page uses the value from the original HTML
form.

Figure 2.9: The links on this page appear ordinary, but they are

unusually powerful.

Figure 2.10: When I clicked on the "Hi Elizabeth" link, I was taken to
the HiUser program with the value "Elizabeth" automatically sent to the
program!

Figure 2.11: The Google PHP runs a search on www.google.com for
the term "PHP".

Figure 2.12: The Google search for "Absolute Beginners Programming"
shows some really intriguing book offerings!

Figure 2.13: The borderMaker HTML page uses a text area, two list
boxes, and a select group.

Figure 2.14: The borderMaker.php code reacts to all the various
input elements on the form.

Figure 2.15: My plan for the story game. I thought through the story and
the word list before writing any code.

Chapter 3: Controlling Your Code with Conditions
and Functions

Figure 3.1: This is a new twist on an old dice puzzle.

Figure 3.2: The die roll is randomly generated by PHP.

Figure 3.3: When the roll is not a one, nothing interesting happens.

Figure 3.4: When a one appears, the user is treated to a lavish
multimedia display.

Figure 3.5: If the program rolls a "one," it still hollers out "Ace!"

Figure 3.6: If the program rolls anything but a one, it still has a message
for the user.

Figure 3.7: The roll is a 5, and the program shows the binary
representation of that value.

Figure 3.8: After rolling again, the program again reports the binary
representation of the new roll.

Figure 3.9: This version shows a die roll in Roman numerals.

Figure 3.10: The HTML page is actually produced through PHP code.

Figure 3.11: The result is produced by exactly the same program.

Figure 3.12: This song has a straightforward verse, chorus, verse,
chorus pattern.

Figure 3.13: While the output looks similar to Figure 3.12, the program
that produced this page is much more efficient.

Figure 3.14: Variable $a keeps its value inside a function, but $b does
not.

Chapter 4: Loops and Arrays: The Poker Dice Game
Figure 4.1: After the first roll, you can choose to keep some of the dice

by selecting the checkboxes underneath each die.

Figure 4.2: The player has earned back some money with a full house!

Figure 4.3: This program counts from zero to one using only one print
statement!

Figure 4.4: This program uses a for loop to count by five.

Figure 4.5: This program counts backwards from ten to one using a for
loop.

Figure 4.6: Although the output of this program looks a lot like the basic
for loop, it uses a different construct to achieve the same result.

Figure 4.7: The information displayed on this page is stored in two array
variables.

Figure 4.8: The Fancy Old Man program uses a more compact structure
that is easy to modify.

Figure 4.9: The program has two counters, which both read one when
the program is run the first time.

Figure 4.10: After the user clicks the Submit button, both values are
incremented.

Chapter 5: Better Arrays and String Handling
Figure 5.1: The user enters a list of words, and a size for the finished
puzzle.

Figure 5.2: This puzzle contains all the words in the list.

Figure 5.3: Here's the answer key for the puzzle.

Figure 5.4: Although it looks just like normal HTML, this page was
created with an array and a foreach loop.

Figure 5.5: This page uses associative arrays to relate countries and
states to their capital cities.

Figure 5.6: This form has three basic fields. It will call the
formReader.php program.

Figure 5.7: The formReader program determines each field and its
value.

Figure 5.8: The user can choose origin and destination cities from select
groups.

Figure 5.9: The program will look up the distance between the cities and
return an appropriate value.

Figure 5.10: The pigify program lets the user type some text into a
text area.

Figure 5.11: The program translates immortal prose into incredible
silliness.

Chapter 6: Working with Files
Figure 6.1: The user is an administrator, preparing to edit a quiz.

Figure 6.2: The user has chosen to edit the Monty Python quiz.

Figure 6.3: The user is taking the Monty Python quiz. If you want to
become a serious programmer, you should probably rent this movie. It's
part of the culture.

Figure 6.4: The grading program provides immediate feedback to the
user and stores the information in a file so the administrator can see it
later.

Figure 6.5: The log retrieval program presents an activity log for each
quiz.

Figure 6.6: The file has been loaded from the drive system and prettied
up a bit with some CSS tricks.

Figure 6.7: The cartoonifier program shows what would happen if
Shakespeare were a cartoon character.

Figure 6.8: This HTML file was automatically created by
imageIndex.php.

Figure 6.9: The program created several form letters from a list of names
and e-mail addresses.

Figure 6.10: The data file for this program was created in Notepad.

Figure 6.11: This diagram illustrates a user's movement through the quiz
machine system.

Chapter 7: Using MySQL to Create Databases
Figure 7.1: The user can choose an option. Let's hop onto that sub...

Figure 7.2: Maybe the warehouse would have been a better choice after
all.

Figure 7.3: This page provides information about each segment in the
game, including links to directly edit each segment.

Figure 7.4: From this screen it is possible to change everything about a
node. All the nodes that have been created so far are available as new
locations.

Figure 7.5: The MySQL program connecting to a database.

Figure 7.6: The MySQL command line tool after I created the phonelist
table.

Figure 7.7: MySQL tells you the operation succeeded, but you don't get
a lot more information.

Figure 7.8: The result of the SELECT statement is a table just like the
original plan.

Figure 7.9: The SOURCE command allows you to read in SQL
instructions from a file.

Figure 7.10: This screen helps you connect to a data server.

Figure 7.11: It's easy to create a table and modify its structure with
SQLyog.

Figure 7.12: You can edit a number of records easily in the edit view.

Figure 7.13: The export result set dialog allows you to save table data in
a number of formats.

Figure 7.14: You can easily print HTML summaries of your data results.

Figure 7.15: I set up the phone list data as a tab delimited file and read it
into Excel.

Figure 7.16: The XML form of the data generates HTML-like tags to
describe the fields in the table.

Figure 7.17: The schema for a table describes important information
about the table's structure.

Figure 7.18: From this dialog box you can generate code that will
manufacture replicas of any database created or viewed with SQLyog.

Figure 7.19: The SELECT query is in the top right section, and the results
are shown underneath.

Figure 7.20: This Query returns only the names and weapons.

Figure 7.21: If you know how to set up the query, you can get very
specific results. In this case, the query selects only heroes with a laser
pointer.

Figure 7.22: This query shows the entire database sorted by the weapon
name.

Figure 7.23: This query sorts by the power in descending (reverse
alphabetical) order.

Chapter 8: Connecting to Databases Within PHP
Figure 8.1: This HTML table is generated by a PHP program reading the
database.

Figure 8.2: The listSegments program lists all the data and allows the
user to choose a record for editing.

Figure 8.3: The edit record program displays data from a requested
record and lets the user manipulate that data.

Chapter 9: Data Normalization
Figure 9.1: The badSpy database schema looks reasonable enough.

Figure 9.2: The badSpy database after I added a few agents.

Figure 9.3: A basic entity-relationship diagram for the spy database.

Figure 9.4: The entity-relationship diagram for the spy database.

Figure 9.5: This newer ER diagram includes a special table to handle the
many-many relationship

Chapter 10: Building a Three-Tiered Data Application
Figure 10.1: The entry point to the Spy Master Database is clean and

simple.

Figure 10.2: The results of the query are viewed in an HTML table.

Figure 10.3: From the main screen you can also access the table data
with a password.

Figure 10.4: The editTable screen displays all the information in a
table.

Figure 10.5: The user is editing a record in the agent table.

Figure 10.6: The user can see the newly updated record.

Figure 10.7: It's very easy to delete a record.

Figure 10.8: The add screen includes list boxes for foreign key
references.

Figure 10.9: The user has successfully added an agent.

Figure 10.10: A state diagram of the "Spy Master" system.

Figure 10.11: This state diagram illustrates the relationship between
PHP programs and functions in the spyLib code library.

Figure 10.12: The rToEdit function is simple, but produces dangerous
output.

Figure 10.13: The smarter function doesn't let the user edit the primary
key and provides a drop-down list for all foreign key references.

List of Tables

Chapter 1: Exploring the PHP Environment
Table 1.1: BASIC HTML TAGS

Table 1.2: COMMON CSS ELEMENTS

Chapter 3: Controlling Your Code with Conditions
and Functions

Table 3.1: COMPARISON OPERATORS

Chapter 5: Better Arrays and String Handling
Table 5.1: DISTANCES BETWEEN MAJOR CITIES

Table 5.2: SUMMARY OF PLACEMENT DATA

Chapter 6: Working with Files
Table 6.1: FILE ACCESS MODIFIERS

Table 6.2: SUMMARY OF BASIC REGULAR EXPRESSION
OPERATORS

Chapter 7: Using MySQL to Create Databases
Table 7.1: PHONE LIST SUMMARY

Table 7.2: COMMON DATA TYPES IN MYSQL

Table 7.3: DATA STRUCTURE OF ENIGMA ADVENTURE

Chapter 8: Connecting to Databases Within PHP
Table 8.1: COMMONLY USED PROPERTIES OF THE FIELD OBJECT

Chapter 9: Data Normalization
Table 9.1: AGENT TABLE IN 1NF

Table 9.2: SPECIALTY TABLE IN 1NF

Table 9.3: THE AGENT TABLE

Table 9.4: THE OPERATION TABLE

Table 9.5: COMBINING TWO TABLES

Table 9.6: JOINING AGENT AND OPERATION WITHOUT A WHERE
CLAUSE

Table 9.7: THE SPECIALTY TABLE

Table 9.8: THE AGENT_SPECIALTY TABLE

Table 9.9: QUERY INTERPRETATION OF AGENT_SPECIALTY TABLE

List of In The Real World

Chapter 1: Exploring the PHP Environment
IN THE REAL WORLD

IN THE REAL WORLD

Chapter 2: Using Variables and Input
IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 3: Controlling Your Code with Conditions
and Functions

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 4: Loops and Arrays: The Poker Dice Game
IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 5: Better Arrays and String Handling
IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 6: Working with Files
IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 7: Using MySQL to Create Databases
IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 8: Connecting to Databases Within PHP
IN THE REAL WORLD

IN THE REAL WORLD

Chapter 9: Data Normalization
IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

List of Sidebars

Chapter 1: Exploring the PHP Environment
USING DIV AND SPAN ELEMENTS IN CSS

Chapter 3: Controlling Your Code with Conditions
and Functions

ACQUIRING IMAGES

CODE STYLE

Chapter 7: Using MySQL to Create Databases
ADVANTAGES OF SQL

DETERMINING THE LENGTH OF A VARCHAR FIELD

Chapter 9: Data Normalization
THE TRUTH ABOUT INNER JOINS

Chapter 10: Building a Three-Tiered Data Application
WHY DID I STORE QUERIES IN THE DATABASE?

 CD Content
Following are select files from this book's Companion CD-ROM. These files
are for your personal use, are governed by the Books24x7 Membership
Agreement, and are copyright protected by the publisher, author, and/or
other third parties. Unauthorized use, reproduction, or distribution is strictly
prohibited.

Click on the link(s) below to download the files to your computer:

File Description Size

 All CD Content PHP/MySQL Programming for the
Absolute Beginner

912,578

Back Cover

If you are new to programming with PHP and MySQL and are looking for a solid
introduction, this is the book for you. Developed by computer science instructors,
books in the For the Absolute Beginner series teach the principles of programming
through simple game creation. You will acquire the skills that you need for more
practical programming applications and will learn how these skills can be put to use
in real-world scenarios. Best of all, by the time you finish this book you will be able
to apply the basic principles you’ve learned to the next programming language you
tackle.

With the instructions in this book, you’ll learn to:

Use MySQL to create databases
Master variables and input
Connect to databases within PHP
Control your code with conditions and functions
Build a three-tiered data application

About the Author

Andy Harris began his teach career as a high school special education teacher. He
began teaching at the university level in the late 1980s as a part-time job. Since
1995, he has been a full-time lecturer at the Computer Science Department of
Indiana University/Purdue University—Indianapolis. He manages the IUPUI
Streaming Media Lab and teaches classes in several programming languages.

