OPEN SOURCE GIS:
A GRASS GIS
Approach

Second Edition

" Markus Neteler
and :
Helena Mitasova

Open Source GIS:
A GRASS GIS Approach

OPEN SOURCE GIS:

A GRASS GIS APPROACH
Second Edition

MARKUS NETELER
ITC-irst — Centro per la Ricerca Scientifica e Tecnologica, ltaly

HELENA MITASOVA
North Carolina State University, U.S.A.

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

http://www.springerlink.com

eBook ISBN: 1-4020-8065-4
Print ISBN: 1-4020-8064-6

©2005 Springer Science + Business Media, Inc.
Print ©2004 Kluwer Academic Publishers
Boston

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

http://ebooks.kluweronline.com
http://www.springeronline.com

to our friends and to all
GRASS developers, present
and past

Contents

List of Figures

List of Tables

Foreword

Preface to the First Edition
Preface to the Second Edition
Acknowledgments

L.

OPEN SOURCE SOFTWARE AND GIS
1.1 Open Source concept

1.2 GRASS as an Open Source GIS

1.3 How to read this book

GIS CONCEPTS
2.1 General GIS principles
2.1.1 Geospatial data models
2.1.2 Organization of GIS data
2.1.3 GIS functionality
2.2 Map projections and coordinate systems
2.2.1 Map projection principles
2.2.2 Common coordinate systems
2.2.3 North American and European Datums

GETTING STARTED WITH GRASS
3.1 First steps
3.1.1 Download and install GRASS
3.1.2 Database and command structure
3.1.3 Starting GRASS with demo database Spearfish
3.1.4 GRASS file and location management
3.2 Starting GRASS with a new project
3.2.1 Latitude-Longitude
3.2.2 Universal Transverse Mercator

xiii
Xix
XX1
XXV
XXVii

XX1X

i I IS Y S S B

[\)u—t»—kr—k»—t»—n
S 9~ w P

W W W W NN NN DN
O L B = 00 L W W W

viii

323
324

OPEN SOURCE GIS

State Plane
Non-georeferenced xy coordinate system

3.3 Coordinate system transformations

33.1
332
333

Coordinates lists
Map layers
Reprojecting with GDAL/OGR tools

GRASS DATA MODELS AND DATA EXCHANGE

4.1 Raster data

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

GRASS raster data model

Managing raster map resolution and boundaries
Import of georeferenced raster data

Import and geocoding of scanned maps

Export

4.2 Vector data

4.2.1
422
423

GRASS vector data model
Import of vector data
Export of vector data

4.3 Sites data

4.3.1
432
433

GRASS sites data model
Import of sites data
Export of sites data

5. WORKING WITH RASTER DATA
5.1 Viewing and managing raster map layers

5.1.1
5.1.2
5.1.3
5.14
5.1.5
5.1.6
5.1.7

Displaying raster data and assigning a color table
Raster map queries and profiles

Zooming and generating subsets from raster maps
Managing metadata of raster maps
Reclassification of raster maps

Assigning category labels

Masking and handling of no-data values

5.2 Raster map algebra

5.3 Raster data transformation and interpolation

5.3.1
532
533
534
535

Automated vectorization of discrete raster data
Generating isolines representing continuous fields
Raster data transformation to sites

Interpolation of raster data and resampling

Recoding of raster map types and value replacements

5.4 Spatial analysis with raster data

5.4.1
542

Map statistics and neighborhood analysis
Overlaying and merging raster maps

42
44
45
46
48
49

53

53
53
55
57
61
67
68
68
70
78

80
80
81
83

85

85
85
87
88
90
91
93
97
99

105
105
107
108
108
110
111
111
115

Contents

5.4.3 Buffering of raster features

5.4.4 Cost surfaces

5.4.5 DEM and watershed analysis

5.4.6 Landscape structure analysis and modeling

6. WORKING WITH VECTOR DATA

6.1 Digitizing vector data
6.1.1 General principles for digitizing topological data
6.1.2 Digitizing in GRASS
6.2 Metadata and attributes management
6.2.1 Managing metadata of vector maps
6.2.2 Map attributes modifications

6.3 Viewing and analysis
6.3.1 Displaying vector map layers
6.3.2 Intersecting and clipping vector maps
6.3.3 Map reclassification
6.34 Feature extraction from vector data
6.4 Vector data transformations to/from raster and sites
6.4.1 Automatic vectorization of raster data
6.4.2 Direct transformation of vector data to raster or sites
6.4.3 Interpolating raster surfaces from contour lines

7. WORKING WITH SITE DATA
7.1 Creating site data
7.1.1 Digitizing site data
7.1.2 Generating site data within GRASS
7.2 Viewing and managing site data
7.2.1 Displaying site data and creating subsets
7.2.2 Computing basic statistics

7.3 Transformation from sites to rasters and spatial interpolation

7.3.1 Selecting an interpolation method

7.3.2 Interpolating with RST: tuning the parameters
7.3.3 Estimating accuracy

7.34 Interpolating large data sets (f})

7.3.5 Surfaces with faults ({})

7.3.6 Adding third variable: precipitation with elevation (f})

7.3.7 Volume and volume-temporal interpolation ()
7.3.8 Geostatistics and splines

8. GRAPHICAL OUTPUT AND VISUALIZATION
8.1 Two-dimensional display and animation
8.1.1 Displaying map layers using the GRASS monitor
8.1.2 Creating a 2D shaded elevation map

X

118
120
123
129

131

131
132
133

139
140
140
141
141
142
144
145

145
146
147
147

151

151
151
152

154
154
156

157
157
160
165
166
171
171
174
175

177
177
177
180

OPEN SOURCE GIS

8.1.3 Monitor output to PNG and HTML files (1)) 181
8.1.4 Animations in 2D space 183
8.2 Visualization in 3D space with NVIZ 184
8.2.1 Viewing multiple map layers 184
8.2.2 Querying and analyzing datain nviz 189
8.2.3 Creating animations in 3D space (f}) 191
8.2.4 Visualizing volumes ({}) 195
8.3 Creating hardcopy maps 196
8.3.1 Map generation with ps.map 196
8.3.2 Map design with Xfig and Skencil 198
SATELLITE IMAGE PROCESSING 201
9.1 Remote sensing basics 201
9.1.1 Spectrum and remote sensing 201
9.1.2 Satellite sensors 203
9.2 Satellite data import and export 206
9.2.1 Import of raw and geocoded satellite data 206
9.2.2 Export of multi-channel data sets 209
9.3 Understanding a satellite data set 209
9.3.1 Managing channels and colors 209
9.3.2 The feature space and image groups 213
9.4 Geometric and radiometric preprocessing 215
9.4.1 Geometric preprocessing 215
9.4.2 Radiometric preprocessing 222

9.4.3 Application: Deriving a surface temperature map from
thermal channel 228
9.5 Radiometric transformations and image enhancements 231
9.5.1 Image ratios 231
9.5.2 Principal Component Transformation (f}) 231
9.6 Geometric feature analysis 233
9.6.1 Matrix filter: Spatial convolution filtering 234
9.6.2 Edge detection 236
9.7 Image fusion 237
9.7.1 Introduction to RGB and IHS color model 237
9.72 RGB color composites 238
9.7.3 Image fusion with IHS transformation 239
9.7.4 Image fusion with Brovey transformation 241
9.8 Thematic reclassification of satellite data 242
9.8.1 Unsupervised radiometric reclassification 245
9.8.2 Supervised radiometric reclassification 248
9.8.3 Supervised SMAP reclassification 251

Contents

10. PROCESSING OF AERIAL PHOTOS
10.1 Brief introduction to aerial photogrammetry
10.2 From aerial photo to orthophoto

10.3 Orthophoto generation
10.3.1 Aerial photo and LOCATIONS preparation
10.3.2 Orthophoto generation from vertical aerial photos
10.3.3 Generating orthophotos from oblique aerial photos

104 Segmentation and pattern recognition for aerial images

11. NOTES ON GRASS PROGRAMMING

11.1 GRASS programming environment
11.1.1 GRASS source code
11.1.2 Methods of GRASS programming
11.1.3 Level of integration

11.2 Script programming
11.3 Automated usage of GRASS
11.4 Notes on programming GRASS modules in C

12. USING GRASS: APPLICATION EXAMPLES

Xi

253
253
257

257
258
260
266

268

271

271
272
273
273

274
280
282

289

12.1 Working with Digital Elevation Models: erosion risk assessment 289

12.1.1 Computation of the LS factor
12.1.2 Estimating R, K, and C factors
12.1.3 Computing and analyzing erosion risk

12.2 GIS modeling for land management (f})
12.2.1 Building the GIS database
12.2.2 Deriving new map layers
12.2.3 Land use analysis, problems and solutions
13. USING GRASS WITH OTHER OPEN SOURCE TOOLS (1)
13.1 Geostatistics with GRASS and gstat

13.2 Spatial data analysis with GRASS and R
13.2.1 Spearfish data set analysis
13.2.2 Maas river bank soils data analysis
13.2.3 Using R in batch mode

13.3 GPS data handling
13.4 WebGIS applications with UMN/MapServer

References

Appendices
A Using UNIX text tools for GIS data preparation

290
296
298
301
302
308
316

327

328

333
335
344
352

354
356

359

367
367

xii OPEN SOURCE GIS

B Selected equations used in GRASS modules 371
B.1 Basic Statistics 371
B.2 Interpolation 372
B.3 Topographicanalysis 373
B.4 Insolation 378

C UMN/MapServer sample configuration 383
C.1 UMN/MapServer definition file 383
C.2 UMN/MapServer HTML template 386

Index

389

List of Figures

1.1
2.1
22
23

24
3.1

32
33
34

35
3.6
3.7

4.1
4.2

4.3
4.4
5.1
52

53

GRASS Development Model
Data models in GIS: raster, vector, point data and attributes
Data dimensions in a GIS

Earth’s surface representation in map projections and
coordinate systems

Example for Gauss-Kriiger Grid System

Organization of GRASS DATABASE, LOCATIONs
and MAPSETs

Graphical startup of GRASS
GRASS used in the KDE environment on GNU/Linux

Spearfish soil raster map with overlayed vector streams
and archeological sites

GRASS text-based startup screen
Definition of a xy and a projected LOCATION

Definition of a region for xy LOCATION suitable for
importing an image or scanned map

Types of raster data

Sample workflow to import GIS data and to geocode
scanned maps

Geocoding of a scanned map
Vector types in GIS: vector line and vector area

“Moving window” method for neighborhood opera-
tions in raster map algebra

Modules for transformation of different types of raster
data to vector representation

Difference between resampling and interpolation

11

15
20

26
29
30

31
34
36

45
54

63
65
68

101

106
109

Xiv

54
55
5.6

5.7

5.8

6.1
6.2
6.3
6.4
6.5
6.6

6.7
7.1
7.2

7.3

74

75
7.6
7.7
7.8
7.9
7.10

7.11
8.1

8.2
8.3

OPEN SOURCE GIS

Map composite of roads, land use map and elevation model

Raster data merging

Spearfish noise impact map from interstate (simple
noise buffer model)

Visibility impact analysis of sample windpower plant
east of Spearfish

Simplified planning procedure to find a location for a
windpower plant

Digitizing common area boundaries in a topological GIS

The node snapping function in GIS
“Overshoots” and “undershoots” in vector maps
Correction of “spaghetti digitizing”

Possible results of intersecting vector data

Methods for transforming and interpolating vector data
to raster and site data

Interpolation of raster map layer from vector data (contours)

Selecting subsets of site data

Conversion of site data to raster for discrete and con-
tinuous phenomenon

Interpolation methods available in GRASS and the re-
sulting surfaces

Tuning the character of interpolated surface by tension
parameter

RST interpolation with anisotropy

Impact of constant and spatially variable smoothing
Segmented processing of large data sets

Surface created from raw LIDAR data

LIDAR data interpolated at 1 m resolution

Interpolation of a surface with fault representing an
edge of a gully

Interpolation of precipitation with influence of topography

Map display with d. frame: three frames with shaded
DEM, soils and geology map

Shaded elevation maps with different sun azimuth angles

Spearfish geology map draped over a DEM with over-
layed streams and roads as vector data, and archaeolog-
ical and insect collection sites as point symbols (pyra-
mids and spheres respectively)

116
117

119

128

129
136
137
138
139
144

146
148
155

158

159

162
163
164
167
168
170

172
173

178
180

186

List of Figures

84

8.5

8.6

8.7

8.8

8.9

8.10

9.1

9.2

9.3
9.4
9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

Displaying topography at multiple resolutions con-
trolled in the upper part of the Surface menu, using
multiple, masked-out surfaces

Interactive control of light aided by a sphere
Interactive 3D query of elevation surface with slope
map draped as color

Viewing multiple surfaces next to each other or in their
relative position with a cutting plane (elevation surface
before and after construction)

Fly-by animation menu in nviz

Volume (3D grid) visualization integrated in nviz

3D pH values displayed in Vis5D visualization tool
Distribution of solar radiation (reflective portion of the

spectrum) on upper boundary of atmosphere and at
earth’s surface with gaseous absorption

Idealized reflection curves of green vegetation, sandy

soil and water with LANDSAT-TMS channel filter functions
Color functions for density slicing of grey scale images
Pixel in a three-dimensional feature space

Spectrum showing typical spectral response of com-
mon objects with LANDSAT-TMS channels and distri-
bution of pixel brightness levels in a two-dimensional
feature space

Geocoding of a satellite image to raster/vector refer-
ence maps

Pattern-overlay to verify the geocoding accuracy of a
satellite image to a raster reference map

Incident angle geometry related to direct solar irradia-
tion onto a tilted surface

Example for cosine correction of terrain effects with
uncorrected and illumination corrected SPOT-1 PAN image
Multispectral pixel values shown as standardized data
vectors with related first and second orthogonal princi-
pal component vectors in polar and coordinates view

Principal Component Transformation applied to chan-
nels tm3 and tm4 of a LANDSAT-TMS data set

RGB (red, green, blue) cubic color space and IHS (in-
tensity, hue, saturation) hexcone color space

XV

187
189

190

191

192

195

196

203

204
211
213

214

218

221

225

227

232

233

237

Xvi

9.13

9.14

9.15

9.16

9.17
10.1
10.2
10.3
104
10.5
12.1

12.2

12.3

12.4

12.5

12.6
13.1

13.2

13.3

134

13.5

13.6

13.7

OPEN SOURCE GIS

Exo-atmospheric solar radiation and relative spectral
sensitivity of LANDSAT-TMS5 channel filter functions
Geometric resolution improvement of LANDSAT-
TM7 data (IHS image fusion method)

Standard RGB composite of SPOT-1 HRV channels
and image fusion of SPOT-1 HRV channels (20 m) with
SPOT-1 PAN (10 m) with Brovey transformation

Unsupervised and supervised classification procedures
for multispectral data

Sample screen of interactive training area identification
Aerial photo terminology

Terrain mapping to a map plane and an aerial photo plane
Zoomed fiducial mark in an aerial photo

Fiducial marks in aerial photos

Attitude angles of an aircraft

LS factor for Spearfish area computed at 30 m, 15 m
and 10 m resolutions

Sample from the USGS seamless National Elevation
Data set

Interpolating DEM from contours: profile curvature
displayed with input contours

High resolution DEM interpolated from 2 ft contours
with buildings

Flow accumulation maps based on D8, vector-grid (D-
infinite), and multiple directions algorithms

Proposed grassways

gstat/GRASS: Semivariogram of zinc contaminations
of the Maas river bank soil samples

gstat/GRASS: Ordinary kriging prediction of zinc con-
taminations on the Maas river bank

R/GRASS: Cubic trend surface of pH values in
Spearfish region

R/GRASS: Boxplot of soil type distribution against el-
evation in Spearfish region

R/GRASS: Empirical cumulative distribution function
(ECDF) plot, integer elevation model

R/GRASS: Empirical cumulative distribution function
(ECDF) plot, reclassified elevation model

R/GRASS: Density plot of Spearfish elevation data

238

240

241

243
249
254
255
259
263
267

291

304

309

310

314
321

331

332

338

340

341

342
343

List of Figures

13.8

139

13.10

13.11

13.12

13.13

R/GRASS: Maas river bank soil data: plots of zinc con-
tamination

R/GRASS: Maas river bank soil data: zinc contam-
ination — contamination severeness, flood frequency
classes, histograms, histograms of logarithmic trans-
formed data, QQ plots

R/GRASS: Maas river bank soil data: zinc contamina-
tion 2D kernel density

R/GRASS: Maas river bank soil data: Distribution of
power-transformed zinc contamination data (various
exponents)

Screenshot of GRASS / UMN/MapServer demonstra-
tional Web site

Sample UMN/MapServer implementation model

X Vil

345

347

350

351

355
357

List of Tables

2.1
22
3.1
32
9.1

Standard ellipsoids as used in various countries
Selected projections used in various countries
GRASS GIS functionality

GRASS module function classes

Classification methods in GRASS

14
17
24
27
252

Foreword

William D. Goran, USA CERL

GRASS GIS software was developed in response to the need for improved
analysis of landscape “trade offs” in managing government lands and the
emerging potential of computer-based land analysis tools. During the last
decades of the 20th century, government land managers in the U.S. (and
across the world) faced increasing requirements from legislation and stake-
holder groups to examine and evaluate alternative actions. To fulfill these new
requirements, land managers needed new tools.

During this same era, computational capabilities wondrously improved.
Tasks requiring days and months with paper and acetate overlays could be
accomplished with this newly emerging geographic information technology
within minutes. But even in the mid-1980s, GIS technology involved signifi-
cant capital investment. Managers wanted to see results before they spent their
limited funds on new technologies.

The U.S. Army Construction Engineering Research Laboratory (CERL) in
Champaign, Illinois has the mission of developing and infusing new technolo-
gies for managing U.S. Department of Defense installations. These installa-
tions include millions of acres of lands needed for military training and testing.
Other uses included wildlife management, hunting and fishing and forestry,
grazing and agricultural production. Other priorities were added through legis-
lation — such as protecting endangered species and habitats, protecting cultural
sites, and limiting the on and off-post impacts of noise, ordnance, contaminants
and sediments.

Military land managers were unable to cope with the challenge of examining
proposed new actions (such as new weapon firing ranges or new vehicle train-
ing routes) without improved methods to gather, integrate and visualize their
data and to examine alternative courses of action. Acquiring emerging propri-

xxii OPEN SOURCE GIS

etary technologies and digital data wasn’t even a consideration — the cost was
too high and the expertise required to learn, operate and manage the technology
was beyond their resources.

Given this need, a group of then young researchers at CERL elected to de-
velop their own set of initial landscape analysis tools. Initially, this in-house
software development effort was designed to “bridge the gap” as commercial
proprietary technology developed. The other costs involved in implementing
GIS (acquiring data and hardware, learning GIS skills and computer mainte-
nance skills) were so high; CERL decided that no-fee software could reduce
the technology hurdle involved in implementing GIS. This proved to be true —
and U.S. military installations were some of the first government managers to
become active users of this new technology.

Once our efforts began, software development took on a life of its own. The
Open Source code and Internet accessible software soon sparked the creative
energies of numerous other organizations and individuals, and many began to
use GRASS and contribute capabilities. At CERL, a small-scale skunk works
project became the biggest and hottest program in the lab. Dozens of persons
were employed developing new tools, building digital databases, assisting with
complex applications and fielding the technology across the Department of
Defense.

The needs we addressed drove the design criteria for GRASS. Because of
the requirement to analyze alternative actions and to evaluate impacts of ac-
tions on continuous surfaces of differing elevations and vegetation and soil
types, GRASS development was focused on raster analysis tools. Also, be-
cause of the need for digital and “real time” data, GRASS also incorporated
remotely sensed image integration and analysis tools. At the time, this focus
set GRASS apart from marketplace capabilities, which were primarily based
on vector data and tools and did not include image analysis.

To nurture a “growing” GRASS community, CERL and other organizations
established forums for sharing and contributing software. For several years, the
lab (and lab partners) also offered newsletters, developed formal interagency
partnerships (primarily with the U.S. Department of Agriculture and National
Park Service) and held annual software user meetings. During the early 1990s,
this GRASS community helped to initiate the Open GIS Foundation (now the
Open GIS Consortium) as an international organization focused on advancing
openness and interoperability for geospatial technologies.

But by the mid-1990s, many of the original military installation GIS users
were switching to proprietary marketplace GIS technologies. In the interven-
ing years, marketplace GIS vendors had added raster analysis tools, much like
those in GRASS. Installation managers had become dependent on GIS, and
were now willing to buy from the marketplace. Generally, the government is
expected to buy off the marketplace, unless there are no comparable market-

FOREWORD XXiii

place options. Plus, installation managers wanted GIS software just like the
systems that were showing up in the offices of supporting contractors and lo-
cal and state government offices across-their-fence lines. As a result, CERL
managers decided they had achieved their purpose of “bridging the gap” in
introducing this new technology. CERL entered into agreements with GIS
vendors, and helped installations transition their data to proprietary systems.
Army research programs were directed to new challenges.

Fortunately, in the years since CERL stopped active development and
support of GRASS, the Universities of Hannover (Germany), Baylor, Texas
(U.S.A.), and recently the ITC-irst — Centro per la Ricerca Scientifica e Tecno-
logica (Italy) have continued to coordinate the development of GRASS GIS,
performed by a team of developers from all over the world. Thanks to their ef-
forts, GRASS GIS keeps getting better, and valuable and reliable Open Source
GIS capabilities are still available through the Internet.

Those of us at CERL are grateful for these academic efforts. GRASS re-
mains an unique capability that continues to play an important role in education
and in the advancement of scientific understanding and resource management.
The analysis tools within GRASS and the access to source code provide im-
portant benefits in our ability to understand and model geospatial phenomena.
Plus, developers of this Open Source GIS continue to pioneer and advance
capabilities that later emerge in the proprietary geospatial marketplace.

Thanks to the authors, this book should help sustain these important roles
for GRASS GIS for years to come.

Preface to the First Edition

Geographical Resources Analysis Support System (GRASS) is the largest
Free Software Geographical Information System (GIS) project and by the
size of the code it belongs to the top ten list of all Open Source projects
(http://www.codecatalog.com). The release of GRASS 5.0beta un-
der GNU General Public License (GPL) in October 1999 protects the software
authors from misuse of their developments, while offering full insight into the
system. Users can analyze the internally used methods, understand their func-
tionality, modify the programs to meet their needs, and correct or update the
modules.

GRASS was developed in 1982 - 1995 by the U.S. Army Corps of Engineers
Construction Engineering Research Laboratory (CERL) in Champaign, Illinois
to support land management at military installations. During the late eighties,
CERL published GRASS with its complete source code on the Internet. Ex-
pansion of the Internet helped to establish GRASS worldwide. In 1995, CERL
withdrew from further GRASS development. In 1997, GRASS 4.2 was pub-
lished by the Baylor University. The GRASS 4.2.1 release, published in 1998,
was coordinated by this book’s author at the Institute of Physical Geography
and Landscape Ecology, University of Hannover. Nearly all known software
errors were removed and about 50 new modules were added. The development
of the GRASS 5.0 release started in 1999. Since 2001, the “GRASS Develop-
ment Team” has its headquarters at ITC-irst (Centro per la Ricerca Scientifica
e Tecnologica), Trento, Italy.

GRASS 5.0.0 was officially released in 2002 with substantial improvements
over GRASS 4.x, including floating point raster data support and interactive
3D visualization. At the same time, the development work on GRASS 5.7 has
started by implementing the 3D multilayer vectors, 3D TINs, multiple vec-
tor attributes with database support, and an update of 3D raster data format,
paving the path for GRASS 6 to become a 3D/4D GIS. The increased activity
in GRASS development in the year 2002 was accompanied by the First Inter-

XXVi OPEN SOURCE GIS

national Open Source / Free Software GIS - GRASS users conference held in
September 2002 in Trento, Italy, and by the publication of the first edition of
this book.

The book has its own history. It started as “GRASS Recipes” written in 1995
for students at the Institute of Landscape Architecture, University of Hannover.
In 1996, the first continuous German text was written and after several updates,
it was finally published in “Geosynthesis” series at the Geographical Institute,
University of Hannover. The first english edition of the book, published in
June 2002, was the result of collaborative work of a number of translators
and anew coauthor. It was substantially rewritten including updates reflecting
the improvements developed for the GRASS 5.0 release. Several extended
chapters were added to introduce more advanced topics and to explain the use
of GRASS together with other Open Source software tools. The first edition
was written for the GRASS 5.0pre3 release.

The second edition is based on the GRASS 5.3 release and includes nu-
merous updates reflecting the enhancements of the system and the feedback
that we have received from our readers. Because GRASS is updated fairly
frequently there may be some differences between the command options and
parameters in this book and the latest release. It is therefore useful to verify
the most recent command usage in the related manual page.

This book was written for experienced GIS users who want to learn GRASS,
as well as for the Open Source software users who are GIS newcomers. There-
fore, an introduction to UNIX/Linux and a general chapter on GIS are pre-
ceding the GRASS chapters. Then the raster, vector, site, satellite and aerial
imagery processing is described followed by notes on programming and ap-
plication examples, including the work with other Open Source tools. An ap-
pendix provides an overview of GRASS modules, as well as additional tech-
nical information. A wide range of examples illustrating GRASS applications
for spatial analysis, modeling and visualization are provided as an inspiration
for the readers own GIS analysis.

The GRASS project’s Web site, providing access to the GRASS soft-
ware and documentation, can be reached at “GRASS European Headquar-
ters” at http://grass.itc.it and a number of mirror sites including
the “GRASS U.S.A. mirror” at http://grass.baylor.edu.

MARKUS NETELER, HELENA MITASOVA

Preface to the Second Edition

Since the first edition of this book was published in 2002, GRASS has un-
dergone major improvements. The second edition includes numerous updates
related to the new development and its text is based on the GRASS 5.3 ver-
sion from December 2003. Besides changes related to GRASS enhancements,
the introductory chapters have been re-organized. The UNIX/Linux section
was omitted because most readers are already familiar with the system. The
second chapter now describes basic GIS concepts and coordinate systems. Ex-
perienced GIS users may skip this chapter and start working with GRASS in
chapter three. The properties of GRASS raster, vector, and site data are pre-
sented in chapter four, which also includes extensive material on importing
external data in various formats. The following chapters of the book have
structure similar to the first edition, with changes related to GRASS updates
and improvements in technical accuracy and clarity. Most of these improve-
ments were based on valuable feedback from readers. The sample data set
used throughout the book has been updated with new data and is now avail-
able as spearfish_grass53data.tar.gz on the GRASS Web site. We hope that the
book will not only help users to learn GRASS, but that it will also inspire the
development of new and original GIS methods and tools.

MARKUS NETELER, HELENA MITASOVA

Acknowledgments

First and foremost, we would like to thank the large number of developers
who designed, implemented, and enhanced GRASS over the 20 years of its
existence. We especially appreciate the help from the members of the current
GRASS Development Team who answered our numerous questions and im-
plemented the bug fixes and improvements that we needed to make this book
better.

We would like to acknowledge the contributions of Jaro Hofierka from
the University of Presov, Slovakia, and Roger Bivand, Norwegian School of
Economics and Business Administration, who helped with several chapters.
We are grateful to Aldo Clerici, Parma University, for his excellent techni-
cal comments and to Andy Mitas, North Carolina State University (NCSU)
for his valuable editorial review. Our thanks go to the translators of the orig-
inal German publication whose volunteer contribution was very helpful for
writing this book in a relatively short time. The reviews and comments by
Lorenzo Potrich, Stefano Menegon, Stefano Merler (ITC-irst), Otto Dassau
(GDF Hannover bR), Manfred Redslob (University of Hannover), Marcel Suri
(Geomodel s.r.0.), and by Lubos Mitas were helpful for improving the tech-
nical accuracy and clarity of the book. We also thank Michael M. Kimberley
and Thomas Drake (NCSU) for reviews of the key chapters. Robert Austin and
David Pierson (NCSU) provided important technical assistance.

We greatly appreciate the support of our research work related to this book
by Cesare Furlanello and ITC-irst — Centro per la Ricerca Scientifica e Tecno-
logica, Italy, as well as by Russell Harmon from the Army Research Office and
by the National Research Council.

Previous support for the GRASS software development by William D.
Goran and USA CERL, Douglas Johnston and the University of Illinois Geo-
graphic Modeling Systems Laboratory, as well as the University of Hannover,
Institute of Physical Geography, is also acknowledged.

We are grateful to James Westervelt, Michael Shapiro, David Gerdes and
William Brown for major code design of GRASS and, with assistance of many
more developers at USA CERL, the coding of the GRASS 4.x series as well as
most of the core GRASS 5.0 implementations.

Chapter 1

OPEN SOURCE SOFTWARE AND GIS

Over the past decade Geographical Information Systems (GIS) have evolved
from a highly specialized niche to a technology that affects nearly every as-
pect of our lives, from finding driving directions to managing natural disasters.
While just a few years ago the use of GIS was restricted to a group of re-
searchers, planners and government workers, now almost everybody can create
customized maps or overlay GIS data. On the other hand, many complex prob-
lems related to urban and regional planning, environmental protection, or busi-
ness management, require sophisticated tools and special expertise. Therefore
the current GIS technology spans a wide range of applications from viewing
maps and images to spatial analysis, modeling and simulations.

GIS is often described as integration of data, hardware, and software de-
signed for management, processing, analysis and visualization of georefer-
enced data. Its software component has a profound impact on the capabilities to
effectively use the spatial data for solving a wide range of problems. To ensure
the continuous innovation and improvement of the GIS software, existence of
diverse approaches to GIS software development is crucial. Besides the widely
used proprietary systems, an Open Source GIS plays an important role in adap-
tation of GIS technology by stimulating new experimental approaches and by
providing access to GIS for the users who cannot or do not want to use propri-
etary products.

1.1. OPEN SOURCE CONCEPT

The idea of Open Source software has been around for almost as long as
software has been developed. The results of research and development at the
universities and government laboratories have been often made available in the

2 OPEN SOURCE GIS

form of Public Domain software packages. Richard M. Stallman first defined
the concept of Free Software in form of four freedoms:

0. freedom: The freedom to run the program, for any purpose.

1. freedom: The freedom to study how the program works, and adapt it to
your needs.

2. freedom: The freedom to redistribute copies.

3. freedom: The freedom to improve the program, and release your improve-
ments to the public, so that the whole community benefits.

Software following these four principles is called “Free Software”. In 1984,
Richard M. Stallman started to work on the GNU-Project and in 1985 he cre-
ated the “Free Software Foundation” to support the Free Software concept.
The license of the GNU-Project, the GNU General Public License not only
grants the four freedoms described above, but it also protects them. Because
of this protection the GPL is the most widely used license for Free Software
nowadays. You can learn more about the ideas behind the Open Source at the
Open Source' and Free Software” Web sites.

The basic idea is based on the assumption that by allowing the program-
mers to read, redistribute, and modify the source code, the software evolves. It
gets improved, software errors (often called “bugs”) are fixed and capabilities
expanded. And, depending on the level of programmer’s involvement and ex-
pertise, this can happen at a speed that may be quite impressive compared to
the pace of conventional software development.

Full access to the source code is particularly important for GIS because the
underlying algorithms can be complex and can greatly influence the results
of spatial analysis and modeling. To fully understand system’s functionality,
which is not as obvious as it may be for example for a word processing soft-
ware, it is important to be able to review and verify the implementation of a
particular function. While an average user may not be able to trace bugs within
a complex source code, there is a number of specialists willing to test, analyze
and fix the code. The different backgrounds and expertise of these developers
contribute to the synergethic effects leading to faster and more cost effective
software development of a stable and robust product.

Over the past few years several Open Source GIS and GPS projects have
been established with different goals. Most of them are listed at the “FreeGIS
portal” Web site’. Smaller projects are usually based on individual devel-
oper’s initiative, when the lack of available software for a specific application
is solved by his own development and the result is then made available to the
public on the Internet. Depending on the level of required expertise other pro-
grammers may join the project and further develop, improve and extend these

Open Source software and GIS 3

tools. Some projects are finished quickly, others evolve over time. In gen-
eral the Open Source development is very dynamic. The Open Source licenses
and the free access through the Internet enable the new contributors take over
an abandoned project and continue the development. The overall idea differs
significantly from the strategies used in the proprietary GIS development in-
dustries.

1.2. GRASS AS AN OPEN SOURCE GIS

GRASS (Geographical Resources Analysis Support System) is a
raster/vector GIS combined with integrated image processing and data
visualization subsystems. It includes more than 350 modules for man-
agement, processing, analysis and visualization of georeferenced data.
As we have mentioned in the Preface the key development in the recent
GRASS history was the adoption of GNU GPL (General Public License, see
http://www.gnu.org) in 1999. By this, GRASS embraces the Open
Source philosophy, well known from the GNU/Linux development model,
which stimulated its wide acceptance (Raymond, 1997 and Raymond, 1999,
for a discussion see also Wheeler, 2003). This license protects the GRASS
contributors against misuse of their code contribution within proprietary
projects which do not allow free access to their source code. The GPL ensures
that all code based on GPL’ed code must be published again under GPL.
The benefits of using other developers’ code further increases the motivation
to participate. For the GRASS users the license offers various advantages
besides full access to the source code, especially the low costs, access to the
new features and capabilities developed between the releases and possibility
to provide releases more often than it is common for proprietary products.
Finally, full access to the source code is also an investment protection for the
future. In case that the project is withdrawn by the current developers, others
may take over the development, while keeping free access to the source code.

Unlike most proprietary GIS, GRASS provides complete access to its in-
ternal structure and algorithms. Advanced users who want to write their own
GIS modules may therefore learn from existing modules as well as by reading
the “GRASS Programmer’s Manual”. The documented GRASS GIS libraries
with the Application Programming Interface (API) make the new module de-
velopment more efficient and allow to integrate new functionality into GRASS.
Applications can be also written with shell scripts to automate the GIS work-
flow.

The GRASS Development Model is similar to other Open Source projects
(Figure 1.1). The backbone of the project is the Internet which supports the
software distribution, user support, centralized management of the GRASS

4 OPEN SOURCE GIS

WWW/FTP

GRASS-releases N cvs
8[;?:‘;;[:321 [Mailing lists] [S RT bugtracker

INTERNET |

Users

Developers

Figure 1.1. GRASS Development Model: Developers’ and users’ interaction with semi-
automated development tools over Internet

development through CVS (Concurrent Versioning System), as well as a bug-
tracking system and mailing lists. The GRASS Development Team is coor-
dinated at ITC-irst — Centro per la Ricerca Scientifica e Tecnologica, Trento
(Italy) and includes developers from all over the world. The team continues to
work on improving the GRASS capabilities.

GRASS is available via Internet and on CD-ROM as precompiled binary
versions for different UNIX, MacOS X and MS-Windows platforms along with
the complete C-source code. While through the GPL GRASS is Free Software
with protection of the authors’ rights, commercial services related to GRASS
can be offered and are welcome by both the developers and users community.

1.3. HOW TO READ THIS BOOK

This book focuses on the basic principles and functionality of GRASS. Af-
ter a brief introduction to GIS principles, map projections and coordinate sys-
tems are explained. GRASS is introduced in the third chapter using a sample
database provided on the related Web site.* The next chapter describes the
properties of GRASS raster, vector and site data and provides extensive infor-
mation on import and export of a wide range of data formats. Management,
display, analysis and modeling using raster, vector, and point data is covered
in the next three chapters, again using hands-on examples based on the sample
database. Interactive visualization and map creation is covered at a basic level
needed to communicate the results of a GIS project effectively. An extensive
chapter is devoted to the satellite image processing and analysis as a special
case of raster data application, followed by explanation of orthophoto creation

Open Source software and GIS 5

from scanned aerial imagery. The next chapter provides an introduction to
GRASS scripting and programming. Specific applications of GRASS in the
area of natural resources are illustrated within the next chapter. The last chap-
ter demonstrates the use of GRASS with other Open Source software. The
Appendix provides text file processing explanations, equations used in some
of the modules and an example for WebGIS implementation. The sections
for more experienced GRASS users are marked by an “advanced” arrow (f}).
References to literature provide access to detailed information about the given
topic.

We use the following conventions throughout the book. Commands which
you can type in are written in typewriter font, for example: r. mapcalc. Ter-
minology related to GRASS is written in capital letters, such as LOCATION,
MAPSET, DATABASE, and GRID RESOLUTION. Wherever [. . .] appears
within the description of GRASS workflow, we have omitted some less impor-
tant screen output. Long lines representing UNIX or GRASS commands are
broken with \; this means that the command continues on next line. This char-
acter is usually not necessary when typing, we often used it here for formatting
reasons. If you use \, be sure not to have blank space after the \ character.
Otherwise the subsequent line(s) are ignored. Text from the graphical user
interface menu’s is written within quotes, for example: “Display”.

You can download ready-to-use databases which we use throughout the
book as well as updates to this book from the related Web site.’

NOTES

1 Open Source Web Site, http://www.opensource.org

2 Free Software pages, http://www.gnu.org/philosophy/
free-software-for-freedom.html

3 FreeGIS Web Portal, http://www.freegis.org

4 GRASS Web site,
http://grass.itc.it/data.html

5 Book related Tutorials Web site (book data sets, scripts etc.),
http://mpa.itc.it/grasstutor/

Chapter 2

GIS CONCEPTS

To use GIS effectively, it is important to understand the basic GIS terminol-
ogy and functionality. While each GIS software has slightly different naming
conventions, there are certain principles common to all systems. At first, we
briefly describe the GIS basics in general (for in depth information read Lon-
geley et al., 2002, Clarke, 2002, or Burrough and McDonnell, 1998) and then
we explain the principles of map projections and coordinate systems that are
used to georeference the data.

2.1. GENERAL GIS PRINCIPLES

Data in the GIS database provide a simplified, digital representation of Earth
features for a given region. Georeferenced data can be organized within GIS
using different criteria, for example, as thematic layers or spatial objects. Each
thematic layer can be stored using an appropriate data model depending on the
source of data and their potential use.

2.1.1 Geospatial data models

Georeferenced data include a spatial (geometrical or graphical) component
describing the location or spatial distribution of geographic phenomenon and
an attribute component used to describe its properties. The spatial component
can be represented using one of the two basic approaches (Figure 2.1):

8

OPEN SOURCE GIS

= field representation, where each regularly distributed point or an area el-

ement (pixel) in the space has an assigned value (a number or no-data),
leading to the raster data model;

s geometrical objects representation, where geographic features are defined

as lines, points, and areas given by their coordinates, leading to the vector

data model.

Depending on the scale, the representation of a geographic feature can
change; for example, a river can be handled as a line at small scale or as a
continuous 3D field (body of water) at a large scale. Similarly, a city can be
represented as a point or an area. Note that we use the terms small and large
scale in the cartographic sense, for example, 1:1million is small scale, 1:1000

is large scale.

Raster data

Vector data

22|19|23(26

22

28

34

28

26

22

23|18|21| 23

25

27

Point data

—_—

Attribute data
3577695 5766285 sL
3575805 5762175 tL
3592365 5774295 IS
3592395 5774085 sL
3595345 5774455 sT
3592497 5774585 sT

Figure 2.1. Data models in GIS: raster, vector, point data and attributes:
Raster data: rows and columns of values representing spatial phenomenon;

Vector data: representation by lines and areas;

Point data: values are assigned to individual points which are often irregularly distributed;

Attributes: descriptive data stored in a database table

GIS concepts 9

To effectively use GIS, it is useful to understand the basic properties and
applications of each data model (in older GIS literature, the raster and vector
data models have been often referred to as raster and vector data formats).

Raster data model. Raster is a regular matrix of values (Figure 2.1). If the
values are assigned to grid points, the raster usually represents a continuous
field (elevation, temperature, chemical concentration) and is sometimes called
lattice. If the values are assigned to grid cells (area units), it represents an
image (satellite image, scanned map, converted vector map). If the cell values
represent category numbers, one or more attributes can be assigned to that
cell using a database. For example, a soil type number 3 can have attributes
describing its texture, acidity, color and other properties. The grid cells are
organized and accessed by rows and columns. The area represented by a square
grid cell is computed from the length of its side, called resolution. Resolution
controls the level of spatial detail captured by the raster data. Most data are
represented by a 2D raster, with the grid cell (unit area) called a pixel; volume
data can be stored as a 3D raster with a unit volume called a voxel. General
d-dimensional raster formats are used for spatio-temporal or multispectral data
(e.2. HDF format").

The raster data model is often used for bio-physical subsystems of the geo-
sphere such as elevation, temperature, water flow, or vegetation. However, it
can also be used for data usually represented by lines and polygons such as
roads or soil properties, especially for scanned maps. The raster data model
was designed with a focus on analysis, modeling and image processing. Its
main advantage is its simplicity, both in terms of data management as well as
the algorithms for analysis and modeling, including map algebra. This data
model is not particularly efficient for networks and other types of data heav-
ily dependent on lines, such as property boundaries. GRASS has extensive
support for the raster data model.

Vector data model. Vector data model is used to represent areas, lines and
points (Figure 2.1). In this section, we describe the vector data model using
GRASS terminology; however, in other systems the definitions may be slightly
different.

The vector data model is based on arc-node representation, consisting of
non-intersecting curves called arcs. An arc is stored as a series of points given
by (x,y) or (x,y,z) coordinate pairs or triplets (with height). The two endpoints
of an arc are called nodes. Points along a curve are called vertices. Two con-
secutive (x,y) or (x,y,z) pairs define an arc segment. The arcs form higher
level map features: lines (e.g., roads or streams) or areas (e.g., farms or forest
stands). Arcs that outline areas (polygons) are called area edges or area lines.
Each map feature is assigned a category number which is used to link the geo-

10 OPEN SOURCE GIS

metric data with descriptive, attribute data (such as category labels or multiple
attributes stored in a database). For example, in a vector map layer “roads”, a
line can be assigned category number 2 with a text attribute “gravel road” and
a numerical attribute representing its width.

In addition to the coordinate information, the vector data model often in-
cludes information about the data topology which describes the relative posi-
tion of objects to each other. The rules which apply to the vector data with
topology description are explained in the Section 6.1.1.

Linear features or polygon boundaries are drawn by straight lines connect-
ing the points defining the arc segments. To reduce the number of points
needed to store complex curves, some GIS include mathematically defined
curve sections or splines which are used to compute the points with the re-
quired density at the time of drawing.

Vector data are most efficient for features which can be described by lines
with simple geometry, such as roads, utility networks, property boundaries,
building footprints, etc. Continuous spatial data can be represented by isolines
or various types of irregular meshes using the vector data model; however,
such representations usually lead to more complex algorithms for analysis and
modeling. GRASS 5.3 provides basic support for the 2D vector model, while
the GRASS 5.7 introduces 3D multiattribute vector model.

Point data model. The point data model is a special case of the vector data
model. It is a set of independent points given by their coordinates represent-
ing point features (e.g. a city or a church) or samples of continuous fields
(e.g., elevation, precipitation), often irregularly distributed. A value or a set
of attributes (numerical or text) is assigned to each point. Point data are often
represented using the vector data model. GRASS up to version GRASS 5.3
allows the user to store point data in a special data model designated as sites
while GRASS 5.7 manages point data in the Vector model.

Attributes — GIS and databases. Attributes are descriptive data providing
information associated with the geometrical data. Attributes are usually man-
aged in external or internal GIS database management systems (DBMS). The
databases use the corresponding coordinates or identification numbers to link
the attribute to the geometrical data. Other systems such as PostGIS” also allow
the user to store geometrical data into the database. GRASS 5.3 offers a lim-
ited internal database and several interfaces to external databases (PostgreSQL,
ODBC interface to various DBMS). The GRASS internal database supports
only a single attribute for each vector object or cell category. GRASS 5.7 pro-
vides extended capabilities as it includes a SQL-DBMS engine.

GIS concepts 11

BN

point line area surface volume

Figure 2.2. Data dimensions in a Geographical Information System (after Rase, 1998:19)

Data model transformations. The same phenomenon or feature can be rep-
resented by different data models. GIS usually includes tools for transforma-
tion between the vector, raster and site data. For example, elevation can be
measured as point data, then interpolated into the raster map layer which is
then used to derive contour lines as vector data. Note that transformations
between different data models are usually not lossless (there can be a loss or
distortion of information due to the transformation).

Dimensions of geospatial data. In general, Earth and its features are located
and evolve in 3D space and time. However, for most applications a projection
of geospatial data to a flat plane is sufficient; therefore two-dimensional repre-
sentation of geographical features (with data georeferenced by their horizontal
coordinates) is the most common. Elevation as a third dimension is usually
stored as a separate data layer representing a surface within three-dimensional
space (often referred to, not quite correctly, as a 2.5-dimensional represen-
tation, Figure 2.2). Elevation can be also added as a z-coordinate or an at-
tribute to vector and point data. If there is more than a single value associated
with a given horizontal location, the data represent a volume and are three-
dimensional (e.g. chemical concentrations in groundwater, or air temperature).
Three-dimensional data can change in time, adding the fourth dimension. GIS
provides the most comprehensive support for 2D data. GRASS 5.3 includes a
3D raster model for volume data and a multidimensional, multi-attribute site
data format (see Brandon et al., 1999; Neteler, 2001a); however, only a limited
number of modules is available for volume data.

2.1.2 Organization of GIS data

GIS can be implemented as a comprehensive, multipurpose system
(GRASS, ArcGIS), as a specialized, application oriented tool (MapQuest), or
as a subsystem of a larger software package supporting handling of geospatial
data needed in its applications (e.g. hydrologic modeling system, geostatis-
tical analysis software, or a real estate services Web site). The multipurpose

12 OPEN SOURCE GIS

systems are often built from smaller components or modules which can be
used independently in application oriented systems.

The multipurpose GIS usually stores the georeferenced data as thematic map
layers. Each geographic feature or theme, such as streams, roads, vegetation,
or cities is stored in a separate map layer using the vector or raster data model.
The map layers can then be combined to create different types of new maps as
well as perform analysis of spatial relations. GRASS and most of the propri-
etary GIS products are based on this data organization.

For certain applications, especially those based on discrete, object based
representation of geographical features, the object oriented approach to data
management is used. Within this approach, data are stored as closed objects
with coordinates and attribute information. Objects include characteristics and
methods. The characteristics describe the data structure, the methods include
the information about the data exchange with other objects. The advantage of
this concept is in the possibility to generate complex data structures connected
to objects, allowing an efficient management of data for such applications as
utilities or land register. The main disadvantage of this concept is that the man-
agement of continuous data, which are important for physical geography and
landscape ecology, is unfavorable in object oriented form. GRASS does not
use the object oriented approach to data organization, although some modules
(nviz) and add-on libraries (GDAL) have object oriented design.

A large volume of geospatial data is nowadays distributed through Inter-
net based GIS. The data sets are stored on central server(s) and users ac-
cess the data as well as the display and analysis tools through the Inter-
net. Examples are the interactive National Atlas of the U.S.?, MapQuest* or
UMN/MapServer Gallery’. Almost every multipurpose GIS software includes
tools supporting development of Web-based applications. GRASS can be used
with UMN/MapServer, an Open Source project for developing Web-based GIS
applications which supports a variety of spatial requests like making maps,
scale-bars, and point, area and feature queries (see Chapter 13). Other projects
such as ICENS Spatial Information System® and Grules’ are using JAVA to
connect GRASS to the Internet. Internet GIS can be enhanced by interactive
3D viewing capabilities using GeoVRML® as well as by multimedia features
adding photographs, video, animations or sound to the georeferenced data.

2.1.3 GIS functionality

While creating digital and hardcopy maps has been the core GIS function
over the past decade, the emphasis is shifting towards spatial analysis and mod-
eling. GIS functionality is rapidly evolving and currently covers a wide range
of areas, for example (read in more detail at Wadsworth and Treweek, 1999):

GIS concepts 13

m integration of geospatial data from various sources: projections and coor-
dinate transformations, format conversions, spatial interpolation, transfor-
mations between data models;

s visualization and communication of digital georeferenced data in form of
digital and paper maps, animations, virtual reality (computer cartography);

® spatial analysis: spatial query, spatial overlay (combination of spatial data
to find locations with given properties), neighborhood operations, geostatis-
tics and spatial statistics;

® image processing: satellite and airborne image processing, remote sensing
applications;

m network analysis and optimization;

m simulation of spatial processes: socioeconomic such as transportation, ur-
ban growth, population migration as well as physical and biological, such
as water and pollutant flow, ecosystem evolution, etc.

This functionality is used to solve spatial problems in almost every area of our
lives. Here are a few examples. In the area of socioeconomic applications,
GIS can be used to find directions, locate a hospital within a given distance
from a school, find optimal locations for a new manufacturing facility, design
voter districts with given composition and number of voters, identify crime hot
spots in a city, select optimal evacuation routes, manage urban growth. GIS
plays an important role in conservation of natural resources and management
of natural disasters, such as identification and prevention of soil erosion risk,
forest resource management, ecosystem analysis and modeling, planning of
conservation measures, flood prediction and management, pollutant modeling,
etc. GIS is also being increasingly used in agriculture, especially in the area of
precision farming.

22. MAP PROJECTIONS AND COORDINATE
SYSTEMS

The basic property of GIS, as opposed to other types of information systems,
is that the stored data are georeferenced. That means that the data have defined
their location on Earth using coordinates within a georeferenced coordinate
system. The fact that the Earth is an irregular, approximately spherical object

14 OPEN SOURCE GIS

Ellipsoid name Region of use
Airy 1858 Great Britain
Airy modified Ireland
Australian National Australia
Bessel 1841 Austria, Chile, Croatia, Czech Rep., Germany, Greece,
Indonesia, Netherlands, Slovakia, Sweden, Switzerland
Bessel modified Norway
Clarke 1880 Africa, France
Clarke 1866 North America, Philippines
Everest 1830 Afghanistan, Myanmar, India, Pakistan, Thailand,
and other countries in southern Asia
GRS 1980 North America, worldwide
Hayford (International) 1909 Belgium, Finland, Italy, all countries using ED50 system
New International 1967 many other regions
Krassovsky 1938 Albania, Poland, Romania, Russia and neighboring countries
WGS 1984 North America, worldwide
WGS 1972 NASA satellite

Table 2.1. Selected standard ellipsoids as used in various countries

makes the definition of an appropriate coordinate system rather complex. The
coordinate system either has to be defined on a sphere or ellipsoid, leading to a
system of geographic coordinates or the sphere has to be projected on a surface
that can be developed into a plane where we can define the cartesian system of
coordinates (easting, northing and elevation; see Sections 2.2.2).

Because GRASS keeps the projects organized by LOCATIONS, where each
LOCATION has a unique map projection and coordinate system, it is important
to understand the relevant terminology before starting to work with geospatial
data.

2.2.1 Map projection principles

When working with GRASS, the projection and coordinate system must be
defined when a new project (LOCATION in GRASS terminology) is defined.
The map projection definition is stored in an internal file within the given LO-
CATION. It is used whenever the data need to be projected into a different
projection or when calculations requiring information about the Earth’s curva-
ture are performed. Different parameters are needed to define different projec-
tions and coordinate systems; therefore, it is important to understand the map
projection terminology.

GIS concepts 15

Geoid Simplified representation: Projection on developable Planar map with
Ellipsoid surface coordinate system

Figure 2.3. Earth’s surface representation in map projections and coordinate systems

Shape of the Earth. Shape of the Earth is usually approximated by a math-
ematical model represented by an ellipsoid (also called a spheroid). A variety
of cartographic ellipsoids have been designed to provide the best-fit properties
for certain portions of the Earth’s surface, see for example Table 2.1.

While the ellipsoid describes the shape of the Earth by a relatively simple
mathematical function, the geoid, a physical approach to the description of
the Earth’s shape, undulates responding to the distribution of the Earth’s mass
which locally varies. The geoid is the equipotential surface of Earth’s gravity
field and corresponds to the mean sea level. For map projections, the ellipsoids
are usually sufficient for horizontal positioning; however, the geoid has to be
used for exact elevation calculations.

Geodetic or map datum. A set of constants specifying the coordinate sys-
tem used for calculating the coordinates of points on Earth is called a geodetic
datum. Horizontal datums define the origin and orientation of a coordinate sys-
tem used to calculate the horizontal coordinates (usually northing and easting).
Vertical datums define the coordinate system origin for calculating the eleva-
tion coordinate (mean sea level). For map layers to match, their coordinates
must be computed using the same datum. Different datums mean a shift in the
origin of the coordinate system, and that means a shift of the entire map.

Map projection. To transform a curved Earth surface into a plane (flat sheet
of paper or a computer screen), a map projection is used. Direct projection
of a spherical object to a plane cannot be performed without distortion. The
most common approach is to project the spheroid onto a developable surface,
such as a cylinder or a cone which can be developed into a plane without de-
formation (tearing or stretching), see Figure 2.3. A large number of different
projections have been designed with the aim to minimize the distortion and
preserve certain properties. In general, the projections can be divided into
three major groups (for a mathematical description refer to Bugayevskiy and
Snyder, 2000:20-22):

16 OPEN SOURCE GIS

m conformal, preserves angles (shapes for small areas), used for navigation
and most national grid systems;

8 equidistant, preserves certain relative distances, used for measurement of
length;

® equivalent, preserves area, used for measurement of areas.

Each of these properties (angle, distance, area) is preserved at the expense of
the others. Because there is no perfect solution, the map projection is selected
depending on the application. Most coordinate systems used for land surface
mapping use conformal projections.

The developable surfaces can either touch the spheroid (tangent case) or
intersect it (secant case). Based on the geometry of the developable surface,
the projections can be divided into:

m cylindrical, which transform the spherical surface to a tangent or secant
cylinder;

® conic, which use the tangent or secant cone;
® qazimuthal, which use a tangent or secant plane (flat sheet).

The points or lines where a developable surface touches or intersects the
spheroid are called standard points and standard lines with zero distortion (e.g.
standard parallel for tangent cone or two standard parallels for secant cone).
That means that the projected maps (or in the GIS the projected data) do not
have uniform scale for the entire area, and the true map scale is preserved only
along the standard lines. To minimize distortions, some projections reduce the
scale along the standard parallel(s) or central meridian(s). This is expressed as
a scale factor smaller than 1.0 in the definition of such a projection.

Transverse projections use developable surfaces rotated by 90° so that the
standard (tangent) line is a meridian called central meridian instead of a stan-
dard parallel. Oblique projections may use any rotation defined by azimuth
where azimuth is an angle between a map’s central line of projection and the
meridian it intersects, measured clockwise from north. Snyder, 1987, provides
an excellent manual on map projections with map examples for many impor-
tant projections.

Coordinate system. To accurately identify a location on Earth, a coordinate
system is required. It is defined by its origin (e.g. prime meridian, datum),
coordinate axes (e.g. X, y, z), and units (angle: degree, gon, radiant; length:
meter, feet).

GIS concepts 17

Projection Type Country

Transverse Mercator Albania, Australia, Austria, Denmark, Finland,
Germany, Great Britain, Ireland, Italy, Luxembourg,
Norway, Poland, Portugal, Russia, Spain, Sweden, USA

Oblique Mercator Hungary, Madagascar, Malaysia, Switzerland

Lambert Conformal Conic Belgium, France, Portugal, USA

Stereographic Netherlands (oblique aspect), Poland, Romania,
UPS (polar regions)

Table 2.2. Selected projections used in various countries

The following general coordinate systems are commonly used in GIS:
m geographic (global) coordinate system (latitude-longitude);

m planar (cartesian) georeferenced coordinate system (easting, northing, el-
evation) which includes projection from an ellipsoid to a plane, with origin
and axes tied to the Earth surface;

a planar non-georeferenced coordinate system, such as image coordinate
system with origin and axes defined arbitrarily (e.g. image corner) with-
out defining its position on the Earth.

Note that for planar georeferenced systems false easting and false northing
may be used. These are selected offset constants added to coordinates to ensure
that all values in the given area are positive.

For mapping purposes, each country has one or more national grid systems.
Information about national grid systems can be obtained from the national car-
tographic institutes or from the Internet ASPRS site’. A national grid system is
defined by a set of parameters such as ellipsoid, datum, projection, coordinate
system origin and axes, etc. Examples of worldwide and national grid systems
are UTM (Universal Transverse Mercator), Gauss-Kriiger, Gauss-Boaga, or
State Plane, with the projections listed in the Table 2.2. Information about the
grid system used to georeference digital geospatial data is a crucial component
of the metadata and allows the user to integrate and combine data obtained
from different sources.

2.2.2 Common coordinate systems

Geographic coordinate system: latitude-longitude. The most common co-
ordinate system used for the global data is the spherical coordinate system
which determines the location of a point on the globe using latitude and longi-
tude. It is based on a grid of meridians and parallels, where meridians are the

18 OPEN SOURCE GIS

longitude lines connecting the north and south poles and parallels are the lati-
tude lines which form circles around the Earth parallel with the equator. The
longitude of a point is then defined as an angle between its meridian and the
prime meridian (0° east, passing through the Royal Observatory in Greenwich,
near London, UK). The latitude of a point is defined as an angle between the
normal to the spheroid passing through the given point and the equator plane.
The longitude is measured 0-180° east from prime meridian and 0-180° west,
where 180° longitude is the international date line. Latitude is measured 0-90°
north and 0-90° south from equator.
Geographic coordinates can be expressed in two notations:

& decimal degree;

m sexagesimal degree.

Decimal values of W and S are expressed as negative numbers, N and E
as positive numbers (e.g. Murcia, Spain: -1.167°, 38.0°). Values given in
sexagesimal system always use positive numbers together with N, S, E, W
(Murcia, Spain: 1:10:00W, 38:00:00N). It is not difficult to convert between
these notations.

Universal Transverse Mercator Grid System. The Universal Transverse
Mercator (UTM) Grid System is used by many national mapping agencies for
topographic and thematic mapping, georeferencing of satellite imagery and in
numerous geographical data servers. It applies to almost the entire globe (area
between 84° N and 80° S). The pole areas are covered by the Universal Polar
Stereographic (UPS) Grid System not explained here; please refer to Robinson
et al., 1995 or other authors.

UTM is based on a Transverse Mercator (conformal, cylindrical) projection
with strips (zones) running north-south rather than east-west as in the standard
Mercator projection. UTM divides the globe into 60 zones with a width of
6° longitude, numbered 1 to 60, starting at 180° longitude (west). Each of
these zones will then form the basis of a separate map projection to avoid
unacceptable distortions and scale variations. Each zone is further divided into
strips of 8° latitude with letters assigned to from C to X northwards, omitting
the letters I and O, beginning at 80° south (Robinson et al., 1995:101).

The origin of each zone (central meridian) is assigned an easting of
500,000 m (false easting, Maling, 1992:358). For the northern hemisphere
the equator has northing set to zero, while for the southern hemisphere it has
northing 10,000,000 m (false northing). To minimize the distortion in each
zone, the scale along the central meridian is 0.9996, leading to a secant case of
the Transverse Mercator projection with two parallel lines of zero distortion.
Note that UTM is used with different ellipsoids, depending on the country and
time of mapping.

GIS concepts 19

For GIS applications, it is important to realize that each UTM zone is a
different projection using a different system of coordinates. Combining maps
from different UTM zones into a single map using only one UTM zone (which
can be done relatively easily using GIS map projection modules) will result
in significant distortion in the location, distances and shapes of the objects
that originated in a different zone map and are outside the area of the given
zone. To overcome the problem, a different coordinate system should be used
and the data re-projected. For a quick reference, you can find the UTM zone
numbers in the Unit 013 “Coordinate System Overview” of the NCGIA Core
Curriculum in GIS."

Lambert Conformal Conic Projection based systems. The Lambert Con-
formal Conic (LCC) projection is one of the best and most common for middle
latitudes. It uses a single secant cone, cutting the Earth along two standard
parallels. The tangent cone version with a single standard parallel case is also
used. When working with LCC based coordinate systems, the following pa-
rameters have to be provided: the standard parallel(s) (one or two), the longi-
tude of the central meridian, the latitude of projection origin (central parallel),
false easting and, sometimes, false northing (you may recall that false easting
and northing are shifts of the origin of the coordinate system from the central
meridian and parallel).

State Plane Coordinate System. The State Plane Coordinate System used
by state mapping agencies in the U.S.A. is based on different projections de-
pending on the individual state shape and location, usually LCC or a Trans-
verse Mercator with parameters optimized for each state. Various combina-
tions of datums (NAD27, NAD83) and units (feet, meters) have been used,
so it is important to obtain all relevant coordinate system information (usually
stored in the metadata file) when working with the data georeferenced in the
State Plane Coordinate System. GIS projection modules often allow to define
the State Plane system by providing the name of the state and the county, how-
ever, the parameters should always be checked, especially when working with
older data.

Gauss-Kriiger Grid System. The Gauss-Kriiger Grid System is used in sev-
eral European and other countries. It is based on the Transverse Mercator Pro-
jection and the Bessel ellipsoid. The zones are 3° wide, leading to 120 strips.
The zone number is divided by 3 according to longitude of central meridian.
Adjacent zones have a small overlapping area. The scale along the central
meridian (scale factor) is 1.0.

Figure 2.4 illustrates the coordinate system, the x-axis is defined by the cen-
tral meridian, the y-axis by the equator. The northing values are positive north

20 OPEN SOURCE GIS

9°E (longitude)

=
5 12000m A 3512000 easting
S =X 5772450 northing
3489322 easting B 10678m ;
5767000 northing ’Af“‘ e £
: S
<
k. R
S - N
S 0.
~ :
{_Q .
M~
m 5 .
y v -
0°N (latitude) — equator East

Figure 2.4. Example for the Gauss-Kriiger Grid System with two points A and B

from the equator, the easting values are measured from the central meridian.
To avoid negative values, a false easting of 500,000 m is defined in addition to
the third of the longitude of the central meridian. For example the false easting
for the 9° E central meridian is 3,500,000 m (9/3 = 3, value composed with
500,000 m to 3,500,000 m).

2.23 North American and European Datums

In general, a large number of georeferencing datums exists, here we focus
on three examples. The North American Datum 1983 (NADS3) is a geodetic
reference system which uses as its origin the Earth’s center of mass, whereas
the old North American Datum 1927 (NAD27) had a different origin, making
it useful only in North America. GPS receivers which are mostly based on the
WGS84 datum (other local datums can be selected in the GPS receiver’s menu)
also use the Earth’s center of mass as their system’s origin.

When using maps based on different datums, a datum transformation to a
common datum is required. For example, a change from NAD27 to NADS3
system leads to a shift for the entire map. Overlapping maps based on differ-
ent datums of the same region would not co-register properly without datum
transformation. In the continental United States a few common assignments
between datums and ellipsoids are in use: NAD27 datum with Clarke 1866 el-

GIS concepts 21

lipsoid, NAD83 datum with GRS80 ellipsoid, and WGS84 datum with WGS84
ellipsoid.

It is important to know that the NAD27 and NADS83 datums are 2D horizon-

tal datums used for horizontal coordinates (easting and northing). WGS84 is a
3D datum (X, y and height). Separate vertical datums used with these systems
are NGVD29 and NAVD88. GRASS does not handle such separate vertical
datums so these transformation needs to be done outside GRASS.

NOTES

1

AN AW

HDF format and tools,
http://hdf .ncsa.uiuc.edu

PostGIS DBMS, http://postgis.refractions.net

National Atlas of the U.S., http://nationalatlas.gov
MapQuest, http://www.mapgquest . com

UMN/MapServer Gallery, http://mapserver.gis.umn.edu
ICENS Spatial Information System,
http://196.3.4.220:8000/jdb/icens.sivs?class=gis
Grules (GRASS JAVA Server),
http://grules.sourceforge.net

GeoVRML, http://www.geovrml.org

Information about national grid systems: ASPRS: Grids & Datums,
http://www.asprs.org/asprs/resources/grids/
European coordinate systems,

http://www.mapref .org

A comprehensive, general list of projection transformations is available at
http://www.remotesensing.org/geotiff/proj list/

10Unit 013 Coordinate System Overview in the NCGIA Core Curriculum

in GIS,
http://www.ncgia.ucsb.edu/education/curricula/
giscc/units/u013/u013.html

Chapter 3

GETTING STARTED WITH GRASS

In this chapter we begin working with GRASS. First, we explain GRASS
software installation and the structure of its database. Then we use a sample
database to perform basic GIS tasks. We also include a number of examples
illustrating how to start a GRASS project using different coordinate systems.

31. FIRST STEPS

GRASS, as a multipurpose GIS, with data organized as raster, vector and
site map layers, provides a wide range of tools to support most of the GIS
functionality outlined in the previous sections. The overview is given in Ta-
ble 3.1. Detailed explanation of each module, often with a usage example, is
given in the GRASS users manual (see your GRASS installation or Web site';
this manual is based on a publication by the U.S. Army CERL, 1993).

While the support for temporal and volume data in GRASS 5.3 is still lim-
ited, the GRASS 5.7 that is currently under development, is being designed as
full 3D GIS with support for 3D raster, 3D vector and 3D site data (see Blazek
et al., 2002; Neteler, 2001a).

3.1.1 Download and install GRASS

GRASS software can be downloaded free of charge from the main GRASS
Web site:

http://grass.itc.it

The ITC-irst GRASS site is mirrored in several countries for faster access in-
cluding the GRASS U.S.A. mirror at http://grass.ibiblio.org.

24

OPEN SOURCE GIS

Sfunctionality class

Sfunctionaliry

integration of geospatial data

raster data processing

vector data processing

site data processing

image processing

visualization

modeling and simulations
temporal data support
volume data processing

links to Open Source tools

import and export of data in various formats
coordinate systems transformations and projections
transformations between raster, vector and point data models
spatial interpolation

comprehensive map algebra

surface, topographic and watershed analysis
correlation, covariant analysis

cost surfaces, shortest path, buffers

line of sight, insolation

landscape ecology measures

expert system (Bayes logic)

digitizing

overlay

spatial autocorrelation

multidimensional, multi-attribute site data model
summary statistics

site buffers

multivariate spatial interpolation and surface analysis
voronoi polygons, triangulation

processing and analysis of multispectral satellite data
image rectification and orthophoto generation
principal and canonical component analysis
reclassification and edge detection

radiometric correction

2D display of raster, vector and site data with zoom and pan
3D visualization of multiple surfaces with vector and site data
2D and 3D animations

hardcopy postscript maps

hydrologic, erosion and pollutant transport, fire

time stamp for raster, vector and site data

3D map algebra

volume interpolation and analysis

volume visualization (isosurfaces)

R-stats, gstat, PostgreSQL, UMN/MapServer, Vis5D
GPS tools, GDAL

Table 3.1. GRASS GIS functionality

There, you can find the source code (portable version for all platforms) as
well as the latest ready-to-install binaries for Linux, SUN, SGI, MacOS X
and MS-Windows NT/2000/XP (requiring the Cygwin tools). For some
GNU/Linux distributions, RPM packages are provided.

Getting started with GRASS 25

GRASS is also available on CD-ROM, from the FreeGIS project Web site”
and for MacOS X from OpenOSX Web site’. There is a fee for packaging the
CD-ROM and for the customized installation software.

On the Web site you will also find the “GDP — GRASS Documentation
Project”, which makes it easier to find documentation, especially for externally
developed GRASS-modules and various articles. These pages can be reached
at:

http://grass.itc.it/gdp/

Support for developers and users is provided by several mailing lists to
which you can subscribe using a Web interface (see the relevant links under
“Support section” at the GRASS sites). Besides the English language interna-
tional mailing lists, there are also localized lists currently in Czech, German,
Italian, Japanese and Polish.

GRASS binary installation. The GRASS binaries are available for several
platforms. You have to download the install script grass5install.sh and
the GRASS package grass5package bin.tar.gz (the name depends on
the platform). The installation itself should be done as user “root”. It requires
only one step (check online for appropriate file names):

sh grassS5install.sh grassbpackage_bin.tar.gz

After successful installation, the package grassSpackage bin.tar.gz
may be deleted.

Refer to the Chapter 11 for information on the GRASS source code, the
CVS server and code compilation.

3.1.2 Database and command structure

GRASS data are stored in a UNIX directory referred to as DATABASE (also
called “GISDBASE”). This directory has to be created with mkdir or a file-
manager, before starting to work with GRASS. Within this DATABASE, the
projects are organized by project areas stored in subdirectories called LOCA-
TIONS (Figure 3.1).

A LOCATION is defined by its coordinate system, map projection and geo-
graphical boundaries. The subdirectories and files defining a LOCATION are
created automatically when GRASS is started the first time with a new LOCA-
TION (see Section 3.2 for more details). Each LOCATION can have several
MAPSETs (Figure 3.1). One motivation to maintain different mapsets is to
store maps related to project issues or subregions. Another motivation is to
support simultaneous access of several users to the map layers stored within
the same LOCATION, i.e. teams working on the same project. For teams a
centralized GRASS DATABASE would be defined in a network file system

26 OPEN SOURCE GIS

DATABASE !usrflocal!s_hargfgrassdataf

LOCATIONS ncarolina-utm/ ncarolina-Ilf trentino-gb/

MAPSETS PERMANENT/ PERMANENT/ PERMANENT/
helena/ user2/ helena/
user2/ markus/

Map layers

Figure 3.1. Organization of GRASS DATABASE, LOCATIONS and MAPSETs

(e.g. NFS). Besides access to his own MAPSET, each user can also read map
layers in other users’ MAPSETSs, but he can modify or remove only the map
layers in his own MAPSET.

When creating a new LOCATION, GRASS automatically creates a special
MAPSET called PERMANENT where the core data for the project can be
stored. Data in the PERMANENT MAPSET can only be added, modified or
removed by the owner of the PERMANENT MAPSET; however, they can be
accessed, analyzed, and copied into their own MAPSET by the users. The
PERMANENT MAPSET is useful for providing general spatial data such as
elevation model write-protected to other users who are working in the same
LOCATION. To import data into PERMANENT, just start GRASS with the
relevant LOCATION and the PERMANENT MAPSET. This mapset also con-
tains the DEFAULT_WIND file which holds the default region boundary co-
ordinate values. In all mapsets additionally a WIND file is kept for storing the
current boundary coordinate values and the currently selected raster resolution.

The internal organization and management of LOCATION, MAPSETs and
map layers should be left to GRASS. Operations such as renaming or copying
map layers involve several internal files and should always be done through
GRASS commands (we discuss this in detail in Section 3.1.4). Non-GRASS
interventions are acceptable only in exceptional situations and when one has a
good understanding of GRASS internal structure.

GRASS modules are organized by name, based on their function class (dis-
play, general, imagery, raster, vector or site, etc.). The first letter refers to the
function class, followed by a dot and one or two other words, again separated
by dots, describing the specific task performed by the module. Table 3.2 lists
the most important function classes.

The general syntax of a GRASS command which is called to run a module
is similar to the UNIX commands:

Getting started with GRASS 27

module [-flagll[flag2...]}] parameterl=mapl|[,map2,...]}\
[parameter2=number...]

where module is the name of the command (see Table 3.2, optional flags
enable specific features and parameters are names of input or output files or
may be a constant or name of a method, symbol etc. Note that there must be
no space when listing comma-separated names.

For example, v.in.shape is a vector command for importing ESRI
SHAPE files, r.buffer calculates a buffer zone along raster lines and around
raster areas, d . rast displays a raster map layer, i.ortho.photo creates an
orthophoto from a scanned aerial image. To learn the usage of a command
(syntax, flags and parameters) run the command with the help option, for
example:

d.rast help

and to read the module-related manual pages, run (example for d.rast):

g.manual d.rast

To make it easier to move around the manual pages you can change the stan-
dard manual page browser temporarily to a text browser lynx, netscape,
gnome-help-browser or konqueror, provided you have them installed.
For example, to view a manual page under konqueror run (using bash shell
syntax):

export GRASS_TEXT_BROWSER=konqueror
g.manual d,rast

You can also find the HTML version of the manual pages and tutorials at the
GRASS Web site.

prefix function class type of command

d.x display graphical output

8. sites site data processing

I.# raster raster data processing

i* imagery image processing

V. vector vector data processing

g% general general file operations

m.* misc miscellaneous commands

p.* paint map creation in PPM format

ps.* postscript map creation in Postscript format

Table 3.2. GRASS module function classes

28 OPEN SOURCE GIS

3.1.3 Starting GRASS with demo database Spearfish

For the following sample session we assume that you have working knowl-
edge of starting commands, creating directories etc. You need to install the
Spearfish demo data set which you can download from the GRASS Web site or
get on CD-ROM.” It is a comprehensive set of raster, vector and site data cov-
ering two 1:24,000 scale topographic map sheets in the western part of South
Dakota (SD), USA. The names of the quadrangles are Spearfish and Deadwood
North, SD. The data set includes a large portion of the Black Hills National For-
est (Mount Rushmore). The coordinate system is UTM (zone 13N, Transverse
Mercator projection, Clarke66 ellipsoid, NAD27 datum, metric units, bound-
ary coordinates 4928000N, 4914000S, 590000W and 609000E) with resolu-
tions of raster map layers ranging from 20 m to 100 m. Data have been pro-
vided by the EROS Data Center, U.S. Army CERL, USGS, U.S. Census Bu-
reau, and SPOT Image Corporation. A more complete data description can be
found at the GRASS Web site.”

To start, you need to create your DATABASE directory, for example, under
/usr/local/share/. Depending on your system set-up you may have to
do it as a user “root” (or ask your administrator to do it) and change the per-
missions so that you can read, write and execute within this directory. So as
“root” you run:

mkdir -p /usr/local/share/grassdata

chown yourname /usr/local/share/grassdata
chgrp yourgroup /usr/local/share/grassdata
chmod ug+rwx /usr/local/share/grassdata

With the flag —p, mkdir first creates all the non-existing parent directo-
ries, then the desired subdirectory. Then we set the permissions to “read”,
“write” and “execute” for the user and the group (use your selected names for
yourname and yourgroup in the example above).

Then move the downloaded file spearfish grass53data.tar.gz
into this directory, change into it and unpack the file:

mv spearfish_grassb53data.tar.gz /usr/local/share/grassdata

cd /usr/local/share/grassdata
tar xvfz spearfish_grassb53data.tar.gz

The resulting list of files shows that the data are extracted into a new subdirec-
tory spearfish, which is the name of your LOCATION. After unpacking,
the downloaded “tar.gz” package file can be deleted.

Starting GRASS. You can now call GRASS:

grass53

Getting started with GRASS 29

'.:'f Grass 5.0 Dasa Selechion .. g
Welcome 1o GRASS GIS
Pease select location and mapsel
| or define a new localion i)
: [Mmome/ grassdata Browse... E
ot | 14
| Location (Accessible) Mapsels Create new mapset :
| 41236590 | 5 PERMANENT A
| carpenterutm |
| ch_sipl_feet ! 1 e e
| ll
= =y
Create Mew Location | Cancet |

Figure 3.2. Graphical startup of GRASS

and you will see, after a welcome message, the menu for selecting a LOCA-
TION and a MAPSET in your GRASS DATABASE (Figure 3.2). Your current
directory /usr/local/share/grassdata will be automatically entered
as a DATABASE. For LOCATION select spearfish; for MAPSET select
userl. Then click on “Use selection”, and you will see the license message
and the command line prompt:

GRASS: ">

Now you are in GRASS and you can call GRASS modules as well as UNIX
programs. You can also use a TclTk interface which opens in the upper part of
your screen (Figure 3.3). If it is not already there, just type:

tcltkgrass &

Most of the GRASS commands are integrated within this interface and you
can find a command for a specific task using the function menus. The interface
includes a brief description of the parameters and it also displays the command
line version of the module.

To list the available vector, raster and site data layers, type:

g.list rast
g.list vect
g.list sites

or, in TcITKkGRASS, select under MAP ~» LIST ~+» RASTER ~» Run. You
can learn more about each data layer in terms of its minimum and maximum
coordinates, resolution, and number of classes using the *.info commands,
for example:

30 OPEN SOURCE GIS

Filg New Boctmants Desiiop wadews Hels |

uelcome to GRASS 5.0.0pre? |Septesbe

Geographic Resources mnalysis a—uuu-“ Susten [GR »' s '-m
1999-2001 by the GRASS Dew elx-w-n
neral Public License |

WSO W R = v

Figure 3.3. GRASS used in the KDE environment on GNU/Linux

r.info soils
v.info streams
s.info archsites

Now open a GRASS monitor so that you can display the map layers:

d.mon x0

or, in TclTkGRASS, select DISPLAY ~» MONITOR ~» START ~ XO.
Note that there is a maximum of seven graphical monitors that can be opened
at the same time. They are numbered x0 to x6. The default size of the graph-
ics monitor is relatively small so you may want to resize it to a bigger window
using the mouse.

To view the raster soil map layer together with vector streams (drawn as
blue lines) and archaeological sites (drawn as white squares) type (Figure 3.4):

d.rast soils
d.vect streams col=blue
d.sites archsites col=white type=box

Getting started with GRASS 31

Figure 3.4. Spearfish soil raster map with overlayed vector streams and archeological sites

In the following chapters, you will see numerous examples of geospatial data
processing and analysis performed with this data set; therefore, at this point,
we will just show how to properly end the GRASS session. Exit tcltkgrass
by clicking on “Quit”. If there are still open monitors, close them using the
mouse, then exit GRASS by typing:

exit

If you exit GRASS and you forgot to close the GRASS monitor or
tcltkgrass, you can do it any time later by closing the relevant windows
using the mouse.

3.1.4 GRASS file and location management

When working with GRASS, it is important to understand that a map layer
(except the sites) is represented by several files which include the data, cate-
gories, header, and other information. To simplify procedures such as listing,
copying, renaming and deleting map layers, a set of file management tools is
available. These commands must be used to maintain the consistency in the
GRASS DATABASE. It is not recommended to directly modify the files in the

32 OPEN SOURCE GIS

LOCATION or MAPSET directories, unless one is experienced with the sys-
tem. Note that the management modules are also applicable to other GRASS
related files such as region definitions and imagery groups.

An important note for the GRASS filename convention: It is very important
to avoid spaces and special characters, such as a comma, dash, exclamation
mark etc. in GRASS map names. It is also useful to include at least one letter
in the map name to avoid confusion with numbers being treated as values (es-
pecially when using r.mapcalc). While it is possible to use all combinations
of characters if the map name or expression is enclosed within quotes, but it is
generally safer to follow the name suggestions mentioned above.

We have already shown that we can use the command g.1ist to list avail-
able raster, vector and site map layers. To display the map layers with their
titles, use -£f flag. If you have many MAPSETs and you want to see the map
layers stored only in a selected one, use the mapset parameter, for example:

g.list -f vect
g.list -f vect mapset=PERMANENT

Remember, when a list exceeds the terminal screen, continue with <SPACE>,
go back with and leave with <q>. In case you have many map layers avail-
able, you may want to list only their subset. You can use wildcards to invoke
automated character or name replacement or, optionally, regular expressions.
In our example we want to see all vector maps with the names starting with

€99,

|
g.mlist type=vect pattern="r*"

To create a full copy of a map layer, use the g.copy module. You have to
specify the map type and add an old and a new map name, separated by comma
(no spaces are allowed between the names). As an example we can copy the
map railroads from the PERMANENT MAPSET into your own MAPSET:

g.copy vect=railroads@PERMANENT, myrailroads

To rename a map, you can use g.rename and list the old name and the new
name, separated by comma:

g.rename vect=myrailroads,railnetwork

Map removal also has to be done with a GRASS command. For example, to
remove one of the recently created map copies, type:

g.remove vect=railnetwork

Multiple maps can be removed by listing them separated by comma. If you
need to delete a series of maps, you may carefully (!) use the g.mremove
module. It allows the use of wildcards similar to g.mlist. For example, you
can generate several map copies and then delete them in one step:

Getting started with GRASS 33

.copy vect=railroads@PERMANENT,myrailroadsl
.copy vect=railroads@PERMANENT,myrailroads2
.copy vect=railroads@PERMANENT,myrailroads3
.list vect

.mremove vect="myrail*"

[Cote Rte Rte e}

The module will collect the list of map names and ask for confirmation to
delete. You want to double check, if any map is listed which you want to keep.
You won’t be able to undelete it.

Initially, you have access only to the MAPSET PERMANENT (read only)
and your own MAPSET (read and write). If several MAPSETS exist for a given
LOCATION, for example, when working within a team, you have to add these
other MAPSETs to the MAPSET SEARCH PATH. Note that you have only
read access to MAPSETs belonging to other users. We recommend using the
module g.mapsets interactively, that is, starting it without parameters. For
example, to add MAPSET user?2, type + and a number listed along the name
of the MAPSET that you want to add at the new 1list> prompt:

g.mapsets

Your mapset search list:
userl <1>, PERMANENT <2>,

Available mapsets:
1 userl 2 PERMANENT 3 user2
[...]

new list> + 3

You can restrict others’ access to your own MAPSET through the use of the
g.access. MAPSETs to which access is restricted can still be listed in an-
other’s MAPSET SEARCH PATH; however, access to these MAPSETs will
remain restricted. To modify data from another user’s MAPSET, copy them to
your MAPSET using g. copy.

A useful command for getting information about the projection parameters
and projection units for the LOCATION is g.projinfo. You may try it in
the Spearfish LOCATION to get the coordinate system information.

LOCATION management. To copy a LOCATION or even a complete
GRASS database directory, we recommend packaging the directories and ex-
tracing them in the destination directory. For example, to package the Spearfish
LOCATION, enter:

cd /usr/local/share/grassdata

tar cvfz myspearfish_location.tar.gz spearfish
mv myspearfish_location.tar.gz target_directory/
cd target_directory/

tar xvfz myspearfish_location.tar.gz

34 OPEN SOURCE GIS

The target directory may be located on another machine, in this case you will
transfer the file myspearfish location.tar.gz on floppy/CD-ROM or
through network to the destination machine and extract it there.

To remove a LOCATION from the GRASS database you have to change to
the database directory:

cd /usr/local/share/grassdata
rm -r spearfish

This will remove the entire directory. If you want to avoid the delete confirma-
tion prompts for every file/directory, add the flag —f to the rm command. Of
course you can also use a file manager.

3.2. STARTING GRASS WITH A NEW PROJECT

When starting a new project, we need to define a new LOCATION and its
projection and coordinate system.

GRASS 5.3
LOCATION:
This is the name of an available geographic location.
is the sample data base for which all tutorials are written.
MAPSET:
Every GRASS session runs under the name of a MAPSET.Associated
with each MAPSET is a rectangular COORDINATE REGION and a list
of any new maps created.
DATABASE:
This is the unix directory containing the geographic databases

The REGION defaults to the entire area of the chosen LOCATION.
You may change it later with the command: g.region

LOCATION: spearfishLL (enter list for a list of locations)
MAPSET: userl (or mapsets within a location)
DATABASE: /usr/local/share/grassdata___

AFTER COMPLETING ALL ANSWERS, HIT <ESC><ENTER> TO CONTINUE
(OR <Ctrl-C> TO CANCEL)

Figure 3.5. GRASS text-based startup screen for selection of LOCATION, MAPSET and
DATABASE

Getting started with GRASS 35

If we have data in different coordinate systems we have to import and store
them in different LOCATIONS. However, the data can be re-projected between
these LOCATIONS using the GRASS projection modules.

3.2.1 Latitude-Longitude

For illustration we create a new Spearfish LOCATION in latitude-longitude
coordinate system. We assume that you have already created a directory
for the GRASS DATABASE called /usr/local/share/grassdata (see
Section 3.1.3). To create the new LOCATION, we first start GRASS:

grassb3

GRASS starts with the TclTk interface that allows you to select your LO-
CATION and MAPSET. Because we want to define a new project we select
“Create new” which brings us to the classic, non-graphical startup screen (see
Figure 3.9).

For LOCATION enter the name for your new project (in our case
spearfishlLlL), for MAPSET you can enter your name, and for DATABASE
you should have /usr/local/share/grassdata (if it is not there, type it
in). Note that this is an old fashioned interface, and when you want to change
something, you need to type over it (BACKSPACE will not erase it). Once you
have entered the new LOCATION, MAPSET, and DATABASE, you can con-
tinue with <ESC><ENTER>. Because your LOCATION does not exist yet,
the following menu appears:

LOCATION <spearfishLL> - doesn’t exist

Available locations:

Would you like to create location <spearfishLL> ? (y/n)

Type y and you will get the following message:
To create a new LOCATION,you will need the follow. information:

1. The coordinate system for the database
X,y (for imagery and other unreferenced data)
Latitude-Longitude
UTM
Other Projection
2. The zone for the UTM database
and all the necessary parameters for projections other than
Latitude-~-Longitude, x,y, and UTM

36 OPEN SOURCE GIS

max y coordinate North N
o :
£ coordinate
=
3| 5
> xy location &1 2| o UTM location om
- (units may be pixels) 2 2 ‘g (units may be meters) 8| 7]
e o] - a
= o — O 5 m
o used for unref'ed maps a 35 used for 2
= (e.g. scanned maps) 3 =8 georeferenced maps ®
o
South S
South: 0 coordinate
X Easting

Figure 3.6. Definition of a xy LOCATION and of a projected LOCATION

3. The coordinates of the area to become the default region
and the grid resolution of this region
4. A short, one-line description or title for the location

Do you have all this information for location <spearfishLL>? y

From the previous sections, you should understand what latitude-longitude
or UTM means and you should know, based on the data that you want to work
with (or from your supervisor, customer or instructor), what coordinate system
you are going to use (see Figure 3.6 for a general idea). You can type again y
and you will be asked to specify the new coordinate system:

Xy
Latitude-Longitude
UTM

Other Projection

U 0w

Type the appropriate letter, in our example it will be B for Latitude-Longitude.
We accept and continue with:

Please enter a one line description for location <spearfishLL>
> Spearfish Latitude-Longitude WGS84
ok? (y/n) [yl y

Do you wish to specify a geodetic datum for this location? y
Please specify datum name
Enter ’'list’ for the list of available datums
or ‘custom’ if you wish to enter custom parameters
Hit RETURN to cancel request
>list
Short Name Long Name / Description
agdé6 Australian_Geodetic_Datum_1966
(australian ellipsoid)

Getting started with GRASS 37

[...]
wgs84 World_Geodetic_System_1984
{(wgs84 ellipsoid)
Please specify datum name
Enter ’'list’ for the list of available datums
or 'custom’ if you wish to enter custom parameters
Hit RETURN to cancel request
>wgs84

Now select Datum Transformation Parameters
Enter ’'list’ to see the list of available Parameter sets
Enter the corresponding number, or <RETURN> to cancel request
>list
Number Details
1 Used in Default wgs84 region

(PROJ.4 Params towgs84=0.000,0.000,0.000)

Default 3-Parameter Transformation
Now select Datum Transformation Parameters
Enter ’"list’ to see the list of available Parameter sets
Enter the corresponding number, or <RETURN> to cancel request
>1

These are all required parameters for Latitude-Longitude. Next you will be
prompted to define your default region by defining the boundary coordinates
of the project area and the default raster resolution (here we use sexagesimal
degree notation):

DEFINE THE DEFAULT REGION

=x==—=== DEE‘AULT REGION _—=m=m====
NORTH EDGE: 44:30:06N_ |

103:52:14W_ 1103:37:46W_
SOUTH EDGE: 44:22:23N_

|
!
WEST EDGE | |EAST EDGE
|
|

PROJECTION: 3 (Latitude-Longitude) ZONE: 0

GRID RESOLUTION
East-West: 0:00:01
North-South: 0:00:01

AFTER COMPLETING ALL ANSWERS, HIT <ESC><ENTER> TO CONTINUE
(OR <Ctrl-C> TO CANCEL)

38 OPEN SOURCE GIS

The default raster resolution (GRID RESOLUTION) is arbitrary, be-
cause you can change it later based on the needs of your application.
For Latitude-Longitude LOCATIONs, you have to define the resolu-
tion in degree/minutes/seconds as well. You can leave this screen with
<ESC><ENTER> and then check the list of parameters that appears:

projection: 3 (Latitude-Longitude)
zone: 0

north: 44:30:06N
south: 44:22:23N

east: 103:37:46W
west: 103:52:14w

e-w res: 0:00:01

n-s res: 0:00:01

total rows: 463
total cols: 868
total cells: 401,884

Do you accept this region? (y/n) [y] > vy
LOCATION <spearfishLL> created!
Hit RETURN -~>

If everything is correct, type y and RETURN and you will get back to the
startup screen. Type <ESC><ENTER> again and you will get the message
that your MAPSET does not exist yet (note that the MAPSET PERMANENT
was created automatically):

Mapset <<userl>> is not available

Mapsets in location <>

(+) PERMANENT

note: you only have access to mapsets marked with (+)

Would you like to create < userl > as a new mapset? (y/n) y

Type y and your new LOCATION with your MAPSET are created and GRASS
prompt appears. You are now working in GRASS. You can check the definition
of your LOCATION by running:

g.projinfo -p
g.region -p
g.region -m

The last command prints the geodesic resolution of the region in meters.
Now the LOCATION is ready, and you can start importing data.

Getting started with GRASS 39

3.2.2 Universal Transverse Mercator
In this section we want to define a LOCATION with the UTM coordinate

system, again for the Spearfish region, but now with NAD83 datum and the
related GRS80 ellipsoid. To create the new LOCATION, we first start GRASS:

grass53

GRASS starts with the TclTk interface that allows you to select your LOCA-
TION and MAPSET. Because we want to define a new project we select “Cre-
ate new” which brings us to the classic, non-graphical startup screen (compare
Figure 3.5, dialog shortened here):

GRASS 5.3
(...1
LOCATION: spearfishNAD83 (enter list for a list of locations)
MAPSET: userl (or mapsets within a location)
DATABASE: /usr/local/share/grassdata

AFTER COMPLETING ALL ANSWERS, HIT <ESC><ENTER> TO CONTINUE
(OR <Ctrl-C> TO CANCEL)

For LOCATION enter the name for your new project (in our case
spearfishNAD83), for MAPSET you can enter your name and for
DATABASE you should have /usr/local/share/grassdata. Once
you have entered the new LOCATION, MAPSET and DATABASE, you can
continue with <ESC><ENTER>. Because this LOCATION does not exist yet,
the following menu appears:

LOCATION <spearfishNAD83> - doesn’t exist

Available locations:

Would you like to create location <spearfishNAD83> ? (y/n)

Type y and you will get the following message (here slightly modified):

To create a new LOCATION,you will need the follow. information:

1. The coordinate system for the database
X,y (for imagery and other unreferenced data)
Latitude-Longitude
UTM
Other Projection
2. The zone for the UTM database and all the necessary
parameters for project. other than Lat.-Long., x,y, and UTM

40 OPEN SOURCE GIS
3. The coordinates of the area to become the default region

and the grid resolution of this region
4. A short, one-line description or title for the location

Do you have all information for location <spearfishNAD83>? y

You can again type y and you will be asked to specify the new coordinate
system:

A X, ¥

B Latitude-Longitude
c UTM

D Other Projection

Type the appropriate letter, in our example it will be C for UTM. Note that the
following sequence of questions will vary for different coordinate systems that
require different parameters, as we will show in some additional examples:

Please enter a one line descript. for location <spearfishNAD83>
> Spearfish UTM/NAD83
ok? (y/n) [y]

Do you wish to specify a geodetic datum for this location? vy

Please specify datum name

Enter ’list’ for the list of available datums

or ’"custom’ if you wish to enter custom parameters

Hit RETURN to cancel request

>list

Short Name Long Name / Description

agd66 Australian_Geodetic_Datum_1966
(australian ellipsoid)

[...]

Hit RETURN to cancel request

>nad83

Now select Datum Transformation Parameters

Enter ’'list’ to see the list of available Parameter sets
Enter the corresponding number, or <RETURN> to cancel request
>list

Number Details

1 Used in Florida
(PROJ.4 Params nadgrids=FL)
Transforms 0ld NAD83’ to 'HPGN NAD83’

6 Used in Default nad83 region
(PROJ.4 Params towgs84=0.000,0.000,0.000)
Default 3-Parameter Transformation

Getting started with GRASS 41

Now select Datum Transformation Parameters

Enter "list’ to see the list of available Parameter sets
Enter the corresponding number, or <RETURN> to cancel request
>6

Enter Zone: 13
Is this South Hemisphere (y/n) [n] n

These are all the parameters needed for UTM (the system knows the other
parameters like the valid ellipsoid GRS80). Next, you will be prompted to
define your default region by defining the boundary coordinates of the project
area and the default raster resolution:

DEFINE THE DEFAULT REGION

====== DEFAULT REGION =======
NORTH EDGE: 4928040 |

589980 |608940__
SOUTH EDGE: 4914510 I

|
[
WEST EDGE | |EAST EDGE
[
|

PROJECTION: 1 (UTM) ZONE: 13
GRID RESOLUTION
East-West: 30
North-South: 30

AFTER COMPLETING ALL ANSWERS, HIT <ESC><ENTER> TO CONTINUE
(OR <Ctrl-C> TO CANCEL)

The default raster resolution (GRID RESOLUTION) is arbitrary, because you
can change it later based on the needs of your application. However, it is useful
to choose a meaningful number, for example, based on the resolution of data
that you want to import or the resolution that you plan to use in your work. In
our example, we have chosen 30 meters. This resolution does not affect the
vector and site data, which are stored with precise coordinates. Also, every
raster map may have its own resolution (see more about raster data resolution
in Chapter 5). You can leave this screen with <ESC><ENTER> and then check
the list of parameters that appears:

projection: 1 (UTM)
zone: 13
north: 4928040
south: 4914510
east: 608940

west : 589980

42 OPEN SOURCE GIS

e-w res: 30
n-s res: 30
total rows: 451
total cols: 632
total cells: 285,032

Do you accept this region? (y/n) [y] > vy
LOCATION <spearfishNAD83> created!
Hit RETURN -->

If everything is correct, type v and RETURN and you will get back to the
startup screen. Type <ESC><ENTER> again and you will get the message
that your MAPSET does not exist yet (note that the MAPSET PERMANENT

was created automatically):

Mapset <<userl>> is not available

Mapsets in location <>

(+) PERMANENT

note: you only have access to mapsets marked with (+)

Would you like to create < userl > as a new mapset? {(y/n) y

Type y and your new LOCATION with your MAPSET are created and GRASS
prompt appears. You are now working in GRASS. You can check the definition
of your LOCATION by running:

g.projinfo -p
g.region -p
g.region -1

which gives you the projection, coordinate system and units information that
you have defined as well as the minimum and maximum coordinates and reso-
lution in the LOCATION coordinate system with the flag —p or in geographic
coordinates with the flag —1. Now you can start working on your project, by
importing some data as explained in the chapters about raster, vector and site
data processing.

3.23 State Plane

As we have mentioned, the dialog used for the LOCATION definitions will
vary depending on the coordinate system. We will illustrate it by the following
example, where we use the State Plane Coordinate System. First we need to
find out the coordinates of our study region as well as the ellipsoid and datum
information (e.g., from the metadata of the file that we plan to import). Then

Getting started with GRASS 43

we can start GRASS, provide the name of the new LOCATION, in our exam-
ple, wake-spm and MAPSET, e.g., userl. Then type <ESC><ENTER> and
after going through the previously described steps, you will be prompted for
coordinate system. Select D for other and proceed as follows:

Please specify the coordinate system for location <spearfishSPF>

A X,y
B Latitude-Longitude
c UTM

D Other Projection
RETURN to cancel

> D

[...]

Please enter a one line description for location <spearfishSPF>
> Spearfish State Plane Feet NAD27

(...1

Please specify projection name
Enter ’list’ for the list of available projections
Hit RETURN to cancel request

> list

11 —- Lat/Lon

utm —-- Universe Transverse Mercator
stp ~-- State Plane

aea —— Albers Equal Area

[...]

Based on a list of supported projections, select stp for State Plane and then we
continue by providing the rest of the parameters similarly, using 1ist to get
the supported options and then selecting the one that applies to our case (we
show only the question and answer here, State FIPS code for South Dakota is
46, County FIPS code for Lawrence county is 81):

>stp

Do you wish to specify a geodetic datum for this location? [y]
Please specify datum name
>nad27

Now select Datum Transformation Parameters
>10

Specify State FIPS (numeric) code
>46
You have chosen state SD, Correct(y/n) (y] y

Specify County FIPS (numeric) code for state SD
>81
You have chosen LAWRENCE county, correct{y/n) [y] y

44 OPEN SOURCE GIS

Specify State Plane 1927 or 1983
Enter ‘27’ or ’83’

Hit RETURN to cancel request

>27

Specify the correct units to use:
Enter the corresponding number

1. US Survey Foot {(Default for State Plane 1927)
2. International Foot

3. Meter

>1

After providing the units you will get to the DEFINE THE DEFAULT RE-
GION screen (see our previous example). Now provide the coordinates of the
north, south, west and east edge of your project area (in our case N: 271680,
S: 195240, W: 977640, E: 1068000) and a suitable resolution (for exam-
ple 30 m, remember, that you may change it for your work any time using
g.region):

projection: 2 (State Plane)

zone: 0

datum: nad27
ellipsoid: a=6378206.4 es=0.006768657997291094
north: 271680
south: 195240
west: 977640
east: 1068000
e-w res: 30

n-s res: 30

total rows: 2548
total cols: 3012

total cells: 7,674,576

Do you accept this region? (y/n) [y] > vy

After approving your region parameters and new MAPSET creations (see the
previous example) you will get the GRASS prompt and you can start working
with your Spearfish data in State Plane coordinate system.

3.24 Non-georeferenced xy coordinate system

If you need to work with non-georeferenced data or you do not know the pa-
rameters of your coordinate system, or your coordinate system is not supported
by GRASS, you can define a LOCATION in a general, non-georeferenced co-
ordinate system xy.

Getting started with GRASS 45

To define a new xy LOCATION, start grass53 and enter new names for
LOCATION and MAPSET; for example, area-xy and userl. Similarly to
the procedure described in Section 3.2 proceed to the question ‘“Please specify
the coordinate system for location area-xy”. The coordinate system we need
here is A “x,y”. After entering a one line description, you reach the LOCA-
TION region definition screen. Now define the region size in x and y direction
(rows and columns). It should cover at least the size of the image or map that
you want to import. The xy LOCATION can be defined larger than needed be-
cause the actual memory used depends only on the size of your imported file.
When working with imagery data, set the west and south values to 0 (zero) and
the north and east values to the number of rows and columns of the image (or
more, compare Figure 3.7). The GRID RESOLUTION can be set to 1, because
the units are pixels. After leaving this menu and accepting the definition, the
new LOCATION is created. You can return to the GRASS startup screen and
leave it again to create the MAPSET and to enter GRASS.

Later on, in Section 9.2.1, we describe a method for automatic creation of a
LOCATION from a raster data set.

3.3. COORDINATE SYSTEM TRANSFORMATIONS

Geospatial data for a given study area are often provided in different coor-
dinate systems (for example, combination of the UTM, State Plane and geo-
graphic coordinates is quite common in USA). It is therefore important to have
the capability to transform data between different projections and coordinate
systems.

North: rows (y)
(from image)

|
|
|
West: 0 East: cols (x) |
(from image) |
|
|
|

Resolution: East-West: 1
North-South: 1

Figure 3.7. Definition of a region for xy LOCATION suitable for importing an image or
scanned map. Units are pixels

46 OPEN SOURCE GIS

GRASS and its projection support through PROJ4. The projection library
in GRASS 5.3 is either the PROJ 4.3.3 developed by USGS (Evenden, 1995)
or any later PROJ4 version used as an external library. The PROJ4 library is
now maintained by volunteers® and contains a stand-alone program cs2cs for
reprojection of coordinate lists. Use GRASS with a recent version of PROJ4
recommended, as it also supports datum transformations from version 4.4.5
onwards. The general procedure for transforming between two projections is
(internally) always performed through geographical coordinates:

Projection1 ~~ latitude-longitude ~+ Projection 2

The projection information in a GRASS LOCATION is stored in the PER-
MANENT MAPSET in files PROJ INFO and PROJ UNITS. The following
parameters may appear depending on the actual projection: proj (projection
type), name (projection name), ellps (ellipsoid), a (ellipsoid: equatorial ra-
dius), es (ellipsoid: eccentricity squared), zone (zone for the area), unfact
(conversion factor from meters to other units, e.g. feet), lat 0 (standard par-
allel), lon_0 (central meridian), k (scale factor), x_0 (false easting) and y 0
(false northing).

To simplify the definition of a projection, PROJ4 provides support for
EPSG (European Petroleum Survey Group) codes, aimed at standardization
of common projection definitions. Projections and coordinate systems in-
cluding geodetic datum can either be constructed or selected via EPSG code
from predefined list entries. The list of EPSG codes is usually installed at
/usr/local/share/proj/epsg.

Depending on the type of data that need to be transformed, transformations
can be done in two ways:

a ASCII file coordinate lists can be transformed between any of the more
than 120 supported projections by running the external command cs2cs
provided by PROJ4;

m raster, vector and site map layers are transformed between two existing
LOCATIONS with given coordinate systems using the commands r.proj,
v.proj and s.proj.

3.3.1 Coordinates lists

PROJ4 provides the command cs2cs for reprojection of point lists given
by coordinate pairs; for example, resulting from GPS or for map corners. On
command line, the source and the target projections have to be defined. Sub-
sequently, the coordinate pairs are queried or read from an ASCII file, trans-
formed, and written either to the screen or redirected to an output file. The
program also reports the built-in projections (p, extended list with P), ellip-
soids (e), prime meridians (m), datums (d) and units (u):

Getting started with GRASS 47

cs2cs -lp
cs2cs -1P
cs2cs -le
cs2cs —1lm
cs2cs -1d
cs2cs -lu

For example, to transform the corner points of the Spearfish LOCATION
from UTM/Clark66/NAD27 to latitude-longitude/WGS84, we run (enter in
one line):

cs2cs -v tproj=utm +zone=13 +ellps=clrk66 +datum=NAD27 \
+units=m +to +proj=latlong

This command prints out the projection parameters (due to the -v flag) and
then waits for input. Now you can type in UTM coordinate pairs, optionally
with the related elevation. Entering for example the north/west map corner of
the Spearfish LOCATION delivers:

589980 4928010
103d5277.399"W 44d30’'6.293"N 0.000

which represents the corresponding latitude-longitude/WGS84 coordinates.
The command cs2cs performs the required datum transformation.

As other example, we transform coordinates from UTM/Clark66/NAD27
(Spearfish LOCATION) to LAEA/Sphere/no datum. We will store the values
in a file. To get the LOCATION corner coordinates, start GRASS with the
Spearfish LOCATION and run:

g.region -pd

From the reported values we create a file spearfishUTM NAD27.txt con-
taining the following four corners. The input file must be written in plain
ASCII format containing row-wise easting and northing:

589980 4928010
609000 4928010
609000 4913700
589980 4913700

Now we convert the coordinates in the file to the standard raster map projection
of the National Atlas of the U.S.”, which is Lambert Azimuthal Equal Area
(LAEA) on a Sphere:

cat spearfishUTM_NAD27.txt | cs2cs —-v +proj=utm +zone=13 \
+ellps=clrk66 +datum=NAD27 +units=m +to \
+proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_0=0 +ellps=sphere)\
+tunits=m > spearfishLAEA.txt

48 OPEN SOURCE GIS

The command line will reproject the coordinate pairs stored in file
spearfishUTM NAD27.txt to coordinates in Lambert Azimuthal Equal
Area on a Sphere without geodetic datum and write the result to file
spearfishlAEA. txt:

-306676.27 -48094.86 0.00
-287744.36 -49261.79 0.00
-288620.30 -63563.34 0.00
-307552.56 -62397.59 0.00

3.3.2 Map layers

The projection of raster, vector and site map layers between two different
coordinate systems requires two LOCATIONs: one LOCATION holding the
source map layer and input coordinate system information, and another LO-
CATION for reading the target coordinate system information and storing the
projected map layer.

We will illustrate the procedure using the following example. All maps such
as the elevation raster map of the Spearfish region is available in UTM/NAD27
coordinate system (in the sample spearfish LOCATION, PERMANENT
MAPSET). We want to transform this map into the spearfishNAD83 LO-
CATION we have defined in Section 3.2.2. We now start GRASS with the
spearfishNAD83 LOCATION and “pull” the elevation map layer from the
source LOCATION spearfish into our current LOCATION as follows:

r.proj in=elevation.dem location=spearfish \
mapset=PERMANENT method=nearest

d.mon x0

d.rast elevation.dem

After some computation time, the source map is available projected in the cur-
rent LOCATION and MAPSET. Per default, the resulting map is saved with
same name. Note that the resolution and region (map extent) of the projected
map layer depends on the current region settings in the target LOCATION
spearfishNAD83, you can verify the settings with g.region -p. Like
that you can also limit transformations to subregions with desired resolution.
Please refer to the manual page of r.proj for the interpolation methods used
during the transformation.
Similarly, you can project the vector and site map layers:

v.proj -s in=roads location=spearfish mapset=PERMANENT
d.vect roads

s.proj in=archsites location=spearfish mapset=PERMANENT
d.sites archsites

For the vector data, the entire map is always projected, because creation of sub-
regions is not supported. Again, keep in mind that the included datum transfor-

Getting started with GRASS 49

mations (here from NAD27 to NADS3) are only supported from GRASS 5.3
onwards.

3.3.3 Reprojecting with GDAL/OGR tools

Map reprojection and spatial subsetting of GIS data sets is also possible out-
side of GRASS. Sometimes it is more convenient to reproject maps to a desired
projection (or coordinate system, ellipsoid, geodetic datum) before importing
it into a GRASS LOCATION. The free GDAL/OGR libraries® provide a set
of tools to perform such map preprocessing. GDAL is the raster data engine,
while OGR supports vector data.

GDAL and raster data. GDAL is a translator library for raster geospatial
data formats. Several tools are provided, we introduce some of them here. The
general command structure is:

gdalinfo --formats

gdalinfo [flags] rastmap
gdal_translate [flags] [parameters] inrastmap outrastmap
gdalwarp [flags] [parameters] inrastmap outrastmap

The following example shows how to convert a free LANDSAT-TM7 scene
for the Spearfish region, as available from GLCF Maryland’, from WGS84 to
NAD27 to match the Spearfish LOCATION projection:

gdalinfo p033r029_7t20000712_z13_nnl0.tif

#EPSG codes available in /usr/local/share/proj/epsg

#

#Reprojection from UTM/WGS84 to UTM/NAD27/Clarkeé6é

(use -tr xres yres to maintain original resolution):

gdalwarp -t_srs ’‘+init=epsg:26713' -tr 28.5 28.5 \
p033r029_7t20000712_z13_nnl0.tif \
p033r029_7t20000712_z13_nnl0_NAD27.tif

#Cut out region of interest:

boundary coordinates W N E S

gdal_translate -projwin 589980 4928010 609000 4913700 \
p033r029_7t20000712_213_nnl0O_NAD27.tif \
p033r029_7t20000712_z13_nnlQ_NAD27_small.tif

#verification:

gdalinfo p033r029_7t20000712_2z13_nnl0_NAD27_small.tif

The preprocessed LANDSAT-7 band is ready now for import into the Spearfish
LOCATION with r.in.gdal. You can also download the prepared data set
from the book related Web page.'

50 OPEN SOURCE GIS

OGR and vector data. Vector maps can be reprojected and preprocessed
using the OGR library, with the SHAPE format as default output. We use the
program ogrinfo to report vector map metadata and ogr2ogr to perform
map reprojections. The general command structure is:

ogrinfo --formats

ogrinfo [flags] [parameters] vectmap [layer [layer ...]]
ogr2ogr [flags] [parameters] outvectmap invectmap [parameters]

In our OGR example we use the geological map from the National Atlas
of the U.S. The map is provided in SHAPE format. We prepare it here for
import into the Spearfish LOCATION which requires reprojection and spatial
subsetting:

ogrinfo -summary geolgyp.shp geolgyp

#Assign missing projection information (create SHAPE .prj file):

Vector maps of National Atlas of the U.S. are in

latitude-longitude on a Sphere

ogr2ogr -—a_srs '+proj=latlong tellps=sphere’ \
geolgyp_LL_sphere.shp geolgyp.shp

#Verification:

ogrinfo -summary geolgyp_LL_sphere.shp geolgyp_LL_sphere

Now the SHAPE file contains the projection information. Next we reproject
to UTM/NAD27/Clarke66 as required for the Spearfish LOCATION and cut
out the region of interest. For convenience we use the EPSG code to select
the output projection parameters. Note, that it is necessary to have the NAD
datum shift files installed (see the PROJ4 web page, section “Frequently Asked
Questions” for details):

#EPSG codes available in /usr/local/share/proj/epsg

#

#Reprojection from LatLong/Sphere to UTM/NAD27/Clarke66

#

#Cut out region of interest (boundary coords. W S E N):

ogr2ogr -t_srs ’‘+init=epsg:26713 +nadgrids=ntvl_can.dat’ \
~spat -103.87111 44.37293 -103.62943 44.50174 \
geolgyp UTM_NAD27_small.shp \
geolgyp_LL_sphere.shp

#Verification:

ogrinfo -summary geolgyp_UTM_NAD27_small.shp \
geolgyp_UTM_NAD27_small

The resulting SHAPE map can be imported into the Spearfish LOCATION.

Getting started with GRASS

NOTES

1

(O8]

GRASS 5.3 users manual,
http://grass.itc.it/gdp/online.html
FreeGIS Web portal, http://www.freegis.org
OpenOSX site, http://openosx.com/products.html
Source for Spearfish data set:
http://grass.itc.it (section “sample data”)
Description of Spearfish data set,
http://grass.itc.it/gdp/tutorial/spearDB.ps.gz
PROJ4 Web site, http: //www. remotesensing.org/proj/
National Atlas of the U.S. download area,
http://nationalatlas.gov/atlasftp.html
GDAL library, http://www.remotesensing.org/gdal/
OGR library, http://www.remotesensing.org/gdal/ogr/
GLCF Maryland LANDSAT data for Spearfish (SD) region,
ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/
p033/r029/

10 Spearfish LANDSAT-TM?7 scene, spatial subset, reprojected to

UTM/NAD27: http://mpa.itc.it/grasstutor/, data sets,
filep033r029 20000712 NAD27 small.tar.gz

51

Chapter 4

GRASS DATA MODELS AND DATA EXCHANGE

GRASS stores the georeferenced data as raster, vector and site map layers.
In this chapter, we explain the basic properties of GRASS data models and
their management. The import and export for the various raster, vector and
point data formats is presented, including a number of examples.

4.1. RASTER DATA

Raster data, stored in GRASS as a matrix of values, represent either a con-
tinuous field (surface), an image, or geometric objects (points, lines, areas)
corresponding to discrete fields (Figure 4.1). For surfaces, the values in the
matrix are assigned to the center points of grid cells. They represent the actual
measured or computed values (e.g. elevation, slope, temperature). For non-
continuous fields (images, geometric objects), the values are assigned to the
entire cell area and represent the category number.

4.1.1 GRASS raster data model

A raster map layer is stored in GRASS as a set of files, which include the
raster data and their description, organized as follows:

® generic matrix of values in a compressed format which depends on the
raster data type (integer, floating point or 3D grid);

» map header which contains georeferencing data, resolution, number of
rows and columns, range of values and histogram;

= optional category file which contains text or numeric labels;

m optional color table;

54 OPEN SOURCE GIS

& optional timestamp;

® history file which contains metadata such as the data source or other infor-
mation provided by the user;

s reclass table for a map that is a reclassification of another map.

All this information is stored in the relevant subdirectories in the LOCA-
TION/MAPSET directory. In the following sections, we describe how these
components are managed and queried.

In GRASS, raster data can be stored as a 2D integer grid, 2D floating point
grid (single or double precision), or a 3D floating point grid (single or double
precision). The internal GRASS raster data storage format is architecture in-
dependent and portable between 32 bit and 64 bit machines. As a result of that
a GRASS DATABASE may be accessed in a heterogeneous network file sys-

Figure 4.1. Types of raster data: a) continuous field, b) discrete areas

GRASS data models and data exchange 55

tem (NFS) without compatibility problems for raster data (from GRASS 5.7
onwards vector data is portable across different architectures). Internally, the
integer format is called CELL, single precision floating point is called FCELL,
and double precision floating point is DCELL.

The choice of the integer or floating point data depends on the user’s appli-
cation. Their use can be described in general as follows:

Integer raster map layers: Rasterized geometric objects (points, lines, ar-
eas) are represented by non-continuous (discrete) fields. Each raster cell
is assigned an integer value called category number. Each of the categories
may have a label (usually a character string but a number can be used as
well) describing the meaning or properties of these categories. Such cate-
gory data as well as reclassified data and image data are stored in integer
format (GRASS CELL type).

Floating point raster map layers: Continuous fields such as elevation sur-
faces are often stored as floating point data (GRASS FCELL and DCELL
types). It is possible to label these data by defining ranges of values (which
can be interpreted as classes) and assigning each range a label (text or num-
ber).

3D floating point raster map layers: Raster volumes are stored as a voxel
(volume pixel) data model (GRASS GRID3D type) designed to support
representation of trivariate continuous fields.

Note that continuous field data can be represented in integer format (for exam-
ple, some digital elevation models). This is a limitation of the data quality, and
such data should be treated as continuous field representations! We will point
out the related specific issues depending on the application later in this chapter
and in Chapter 12.

GRASS also allows the user to create raster map layers by re-defining the
classes as described in Section 5.1.5. In such a case, the reclassified map layer
does not contain any data, but serves as a reference to another map layer along
with a reclass table that is used to reclassify the values of the referenced raster
map. From the user’s point of view such a map behaves as a regular raster
map. Few GRASS modules do not work with reclassed maps; in such a case
the module will report an error and suggest that the user generates a true copy
of such a map (see Section 5.1.3).

4.1.2 Managing raster map resolution and boundaries
GRASS differs from other systems in the way it handles region (map extent)

and resolution. While each raster map layer has its own resolution defined in

its header, the operations with raster data are performed using the “working”

56 OPEN SOURCE GIS

(or current) region and a resolution set by g.region. If the current region is
smaller than the map extent of the raster that is being processed, the operation
is applied only to the subset of the raster file defined by the current region.
If the resolution is different, the raster is automatically resampled (see Sec-
tion 5.3.4). This approach is also used when exporting raster data. It makes
exporting subsets of raster maps very convenient, including export at a lower
resolution. Note that the GRID RESOLUTION defined when setting up a LO-
CATION is the default region resolution and will be used only if the current
region is set to the default region.

To adjust the current region to different values, you can use g.region. Af-
ter starting the module, you get to the menu which allows you to modify the
current region boundaries and resolution. If necessary, you can save the current
region settings as a region file. This is sometimes useful when working on dif-
ferent subregions within the given LOCATION. This module can be efficiently
used in the command line mode, for example:

g.region res=12.5

will set the resolution to 12.5 map units (e.g. meters). The region can be also
defined from existing maps:

g.region rast=elevation.dem -p

which will adjust the current region according to elevation.dem. The flag
-p additionally prints the current settings to the screen as follows (UTM pro-
jection):

projection: 1 (UTM)

zone: 13
datum: nad27
ellipsoid: clark66
north: 4928000
south: 4914020
west: 590010
east: 609000
nsres: 30
ewres: 30
rOwWs: 466
cols: 633

If you want to reset to the default region (boundary coordinates and raster
resolution) of the LOCATION use the —d flag:

g.region ~dp

While the 3D capabilities are still in the development stage, we should men-
tion at least briefly management of boundaries and resolution for volume data.

GRASS data models and data exchange 57

The 3D region is managed with g3.region or, with its command line ver-
sion, g3.setregion, similar to 2D GRASS regions. If no 3D region exists
yet, it must be created with g3.createwind. This module extends the 2D
region definition by the third spatial dimension along with a user defined voxel
resolution.

4.1.3 Import of georeferenced raster data

When importing raster data, we need to distinguish three general raster for-
mat types:

w Binary image formats, which include only positive integer values (e.g.,
JPG, PPM, PNG etc.);

» Binary raster formats: integer and floating point supported, both negative
and positive values, single and multiple bands, single and multiple resolu-
tions (such as ERDAS IMG, HDF, GeoTIFF etc.);

= ASClII raster formats, which can have integer and floating point values, both
negative and positive (e.g., ARC-ASCII, ASCII-GRID, GRASS-ASCII
etc.).

All common GIS raster formats are supported. Note that only a few of them
(e.g., ASCII) handle negative and floating point values. When obtaining data,
make sure to get information about the coordinate system (projection, datum,
etc.). For some formats, the metadata are directly stored in support files which
are read when importing the data.

Most raster maps can be imported with r.in.gdal. It requires the GDAL
library' which is included in the GRASS binary releases. It supports a wide
(and growing) range of formats and is able to auto-detect them. When import-
ing with this command, you can automatically extend the LOCATION defini-
tion by using the flag —e in case that the imported map is larger than the default
region:

r.in.gdal -e in=d44103d7.tif out=d44103d7

If your data set does not contain projection information and you are sure than
the data projection matches the projection of the LOCATION, the -o flag al-
lows you to use the LOCATION projection information for the imported map.

When using the tcltkgrass user interface select: “IMPORT” ~»
“RASTER MAP”~+ “Various formats”. The opened window contains a
button “file” which provides a small file manager for selecting the source file.
A new name which represents the name in GRASS DATABASE has to be
typed into the second line.

58 OPEN SOURCE GIS

After a successful import, it is useful to run the module r.support with
-t flag on the recently imported data set. It will calculate statistical data, such
as the range, which is required by other modules:

r.support —-r d44103d7

The import of multispectral satellite data is explained in Section 9.2.1.

Generating a new LOCATION from an external raster map. The mod-
ule r.in.gdal provides an additional, very useful functionality by automat-
ically generating a LOCATION from an external raster data set. For this pur-
pose, it has to be run within another LOCATION (this LOCATION can be
completely unrelated to the imported data and its setting won’t be affected
by r.in.gdal execution). For example, you can import a new 10 m DEM
for Spearfish area, provided as ArcGRID coverage 09233536 in geographic
coordinate system (NAD83 datum), and at the same time create a new LOCA-
TION spearfishllnad83 thatis defined with the parameter location.
The projection information is taken from the input data set, in our case stored in
the file 09233536 /PRJ.ADF. To import the DEM run the r.in.gdal com-
mand from the spearfish LOCATION that we have created in Section 3.2.1:

unzip 09233536.zip
cd 09233536/
r.in.gdal 09233536 location=spearfishllnad83 output=nedlOm.11

To display the imported DEM, exit GRASS and start it with new
spearfishllnad83 LOCATION. You should see your imported file
nedlOm. 11 when yourun g.list rast and check the coordinate system
information using g.projinfo. Note that the datum is NADS3, therefore we
could not directly import this map into the spearfishl.l, LOCATION used
in Section 3.1.3 that uses datum NAD27.

Generally, if no projection information is present, the new LOCATION will
not have the coordinate system definitions. The module g. setproj can then
be used within the new LOCATION to generate the projection information. Be
careful to use g.setproj only in a new LOCATION! The module does not
perform any coordinate transformation of data (see Section 3.3 to learn how to
do that).

Import of TIFF raster files. Data in the TIFF/TFW format usually consist
of two files: your maptif and your map.tfw. Make sure to get both files
when obtaining data. For GeoTIFF format it will be a single file which may
also contain projection information and one or several maps. Using the module
r.in.gdal itis quite easy to import such a data set:

r.in.gdal -e in=your_map.tif out=your_map

GRASS data models and data exchange 59

The flag —e allows you to automatically extend the LOCATION DEFAULT -
WIND based on new data set, if the imported map is larger. If the imported
TIFF image consists of several bands, they are extracted respectively into the
current MAPSET. This will usually occur when importing aerial color images
which are delivered in RGB (red, green, blue) channels. It may happen that
the data set does not contain the projection information. The module will not
import the file unless you use the —o flag (override). In this case you are using
the projection information of the current LOCATION which makes sense when
the map belongs to this LOCATION and it is in the identical coordinate system.

Import of ASCII raster files. Raster data in ASCII format can be in dif-
ferent GIS formats. Besides the GRASS ASCII raster format (supported by
r.in.ascii and r.out.ascii), the ARC/INFO ASCII GRID format is
commonly used. It can be imported by r.in.gdal. Data in ARC/INFO
ASCII GRID sometimes have an associated map .prj file which contains pro-
jection information. If not available, the —o flag in r.in.gdal allows us to
use the current projection information from the LOCATION.

Another method to generate raster area or lines from given coordinates is
supported by r.in.poly. The module accepts text files containing coor-
dinate pairs with labels. FEither raster area (“A”) or raster line (“L”) type
can be specified. An example for a single area (store next code as text file
rasterarea.txt, we use UTM coordinates for Spearfish region):

A

591316.80 4926455.50
591410.25 4926482.40
591434,60 4926393.60
591341.20 4926368.70
= 42 stadium

It is important to define the raster resolution before importing this “vector” file
(e.g. 1 meter raster resolution). The import of this file with r.in.poly will
generate a raster area with given corner points and labeled as “42 stadium™:

g.region res=1
r.in.poly in=rasterarea.txt out=stadium
r.info stadium

The resulting map contains the desired stadium area.

Import of ARC/INFO Binary GRID files. The ARC/INFO Binary GRID
coverages can be imported directly using r.in.gdal, as shown above (see
paragraph about generating a new LOCATION). As an input, you can either
specify the grid coverage directory or the w001001.adf grid file inside the
grid directory.

60 OPEN SOURCE GIS

Import of USGS DOQ flies. It is also possible to import DOQ (Digital Or-
thophoto (Quarter) Quadrangles) data from USGS using r.in.gdal. The in-
cluded projection information is respected as well as other metadata. Be sure
to avoid the DOQ data in MrSID format because it is proprietary and therefore
not supported. Conversion with the proprietary converter is done as follows
(but it will not transfer projection information):

$#but it will not transfer projection information:
mrsiddecode ~tif -input 144103d7_a.sid -output 144103d7_a.tif

#verification:
gdalinfo 144103d7_a.tif

As explained in Section 3.3.3, the missing projection information can be reas-
signed with gdal translate.

Import of binary arrays: GTOPO30 DEM, Etopo-5 DEM, Globe DEM,
BIL, AVHRR and GMT flies. The module r.in.bin reads numerous bi-
nary array grids such as GTOPO30 DEM (worldwide elevation data in 30 arc-
seconds resolution, USGS), Etopo-5 DEM (worldwide elevation data in 5 min-
utes resolution), Globe DEM (worldwide elevation data in 30 arc-seconds res-
olution, NOAA), BIL, AVHRR (Advanced Very High Resolution Radiometer)
and GMT (Generic Mapping Tool). Please refer to the related manual page
(g.manual r.in.bin) for encoding details. Examples are:

s import of GTOPO30 DEM data (you can add anull=-9999 if you want
the sea level be set to NULL):

r.in.bin -s input=EQ20N%Q.DEM out=gtopo30 bytes=2\
north=90 south=40 east=60 west=20 r=6000 c=4800

= import of a GMT type 1 (float) binary array (-b may be used to swap bytes
if required):

r.in.bin -hf input=your_map.grd out=gmtmap

= import of a AVHRR image (here the raster map will be assigned a
north=128, south=0, east=128, west=0 as rows and cols are defined):

r.in.bin in=p07_b6.dat out=avhrr c=128 r=128

Import of DTED files. The module r.in.gdal supports import of DTED
(Military Terrain Elevation Data) at Levels 1 and 2. The DTED data include
projection information which is respected.

GRASS data models and data exchange 61

Import of USGS SDTS DEM flies. The USGS SDTS DEM data sets con-
sist of a number of files. Again, use r.in.gdal to import such a data set.
Each DEM should have one file with a name like mapcatd.ddf which has
to be specified as the import file. Projection and georeferencing information is
respected.

Import of raster files in common image formats. You can directly im-
port raster maps and images in the following formats: PNG (Portable Network
Graphics), PNM (netpbm), uncompressed GIF, TIFF and JPEG. The module
r.in.gdal will read these formats. As most of them do not provide projec-
tion information, you will have to apply the georeferencing manually. See the
next paragraph how to do that.

Import of raster data without ancillary georeferencing flies. If you obtain
a raster map in a common format such as TIFF, but without the related TFW
file, you can update the geocoding manually. Of course you have to get the
related georeference information from the data provider.

First, import the map with r.in.gdal. The lower left corner coordinates
of the imported map will be at the origin of the LOCATION coordinate system,
which is usually outside the study area. To georeference the map, the informa-
tion in its header needs to be modified using the module r.support. After
starting it, specify the map name. Then go through following dialog:

1 “Edit the header?” y. Rows and columns can be checked now. The values
should be correct.

2 Pressing <ESC><ENTER> changes into the coordinates menu which looks
similar to the LOCATION definition screen.

3 Now you have to update the boundary coordinates. Enter the correct coor-
dinates and GRID RESOLUTION for this map by moving around with the
cursor keys. Afterward hit <ESC><ENTER> to proceed.

4 The additional questions can be skipped with <ENTER>.

Further information on capabilities of the module r.support (e.g. changes
of the color map) can be found in the GRASS manual of r.support.

414 Import and geocoding of scanned maps

In this section we explain rectification and georeferencing of a scanned map.
For this procedure, it is important to be aware of the relation between geomet-
rical length, scale and spatial extension. This general cartographical relation is
also valid when transforming an analog map into a digital map. Because you
will most likely be using a scanner (at least to create a backdrop map for the

62 OPEN SOURCE GIS

vectorization within the GIS when you don’t have access to a digitizer board),
these terms are of great importance. Also, keep in mind the proper handling of
copyright restrictions when scanning maps.

Determining scanning parameters. The relationship between distance in
“nature” (ground truth) and corresponding length of a raster cell is determined
by the scanning resolution. When working with toposheets, scanning resolu-
tion somewhere between 150 and 300 dpi is recommended. Of course the text
labels on the map should stay readable. Depending on the number of colors
in the map, the image can be scanned as color image with 256 colors. As an
example let us assume a scanning resolution of 300 dpi. First we calculate the
equivalent in centimeters:
lines lines

.546m—]]8.ll o (4.1)
Suppose that the scale of the scanned map is 1:25,000. Thus, one centimeter
on the map is equivalent to 25,000 cm in nature. Now we can calculate the
distance in nature corresponding to the length of a raster cell:

300d pi = 300

distance in nature 25,000cm 211.6 cm 5 12 m 4.2)
scanned lines per cm — 118.11lines = " line =~ " line '

The resulting value of 2.12 m is the spatial resolution of the map at the 300 dpi

scan resolution. If you want the spatial resolution to be an integer, do the

inverse calculation and adjust the scanning resolution accordingly.

Geocoding of scanned maps. After scanning the map, we store it in an ex-
ternal file. If needed, we can convert it to a GRASS supported format using
gimp, display or xv which are available for many operating systems, as
well as the netpbm tools® which can be run on command line.

To geocode a scanned map, we first import it into a temporal xy LOCA-
TION, assign related coordinates to a few (usually 4) known points, and rectify
it into a target LOCATION using a specific GRASS module. Note that the pro-
jection of the target LOCATION must be identical to that of the scanned map.
We recommend getting the four points from the paper map. The general idea
is shown in Figure 4.2. We will be using image processing tools for geocoding
which are also explained in Section 9.4.1.

First, we have to create a xy LOCATION with a region large enough for the
imported map. If you do not know the number of rows and columns of the
scanned map, you can find it using one of the above mentioned image viewers.
Start GRASS and define a new xy LOCATION (rows and columns according
to the size of the scanned map, GRID RESOLUTION is 1 pixel). It does not
matter if you define the xy LOCATION larger; unused cells will not affect the

GRASS data models and data exchange

External GIS data (for area "Harz region")

unreferenced map:
- scanned biotope map

maps with geocoding:

- elevation model
— geocoded topo map 1:25000

GRASS modules
for data import
(e.g. import with r.in.gdal)

xy location "biotope”

y

T biotope
X

map:

GRASS modules
for geocoding

GRASS

(i.group, i.target, i.points, i.rectify)

/

direct import possible due to geocoding

FAR A e 0°N equator

GRASS modules
for data import

topo map (e.g. mit r.in.gdal)
elevation model (e.g. with r.in.arc)

9°E Y
: topo map
elevation model
geocoded
biotope map
GRASS

Gauss-Kruger location "harzregion”

Figure 4.2. Sample workflow to import GIS data and to geocode scanned maps

63

allocated space on the hard drive. Now you can import the map using, for

example, r.in.gdal.

After importing the map, the process is as follows (we need to use some
commands here that will be the main topic in Chapter 9). The scanned map has

64 OPEN SOURCE GIS

to be added to a so-called “image group”. This is simply a list of raster maps
to be processed which is required to work with the i.* (image) modules. In
our case, we only add this single map to the group list. To set up such an image
group, run i.group either on the command line or interactively:

= enter a name for this group, for example: mapscan. Hit <ESC><ENTER>
to reach the main menu and confirm the new group name;

» mark the scanned map with a x; hit <KESC><ENTER> to exit;
m Jeave the module with <ENTER>.

The next step is to define a target LOCATION (for example in UTM). For
this purpose run i.target: select the group and enter the name of LOCA-
TION and MAPSET (use 1ist, <ESC><ENTER> to get a list of available
LOCATIONS and MAPSETS).

After having successfully set the image group and the target LOCATION,
we now define the geographic reference points. They have to be set to “tell” the
transformation module about a reference between the pixel coordinates of the
scanned map and the related coordinates for every pixel in the projected LO-
CATION. Ideal points would be close to the four corners of the scanned map.
It is recommended to read coordinates from the map using the grid printed
on the map. The related coordinates can be typed in later during the assign-
ment. GRASS provides a tool for convenient assignment of these geographic
reference points using a mouse. To do that, first start a GRASS monitor with
d.mon x0, then the module i.points. It will prompt for the image group
(which just contains the scanned map), in our example the group “mapscan”.
In the GRASS monitor, the scanned map has to be selected and then it will
be displayed. In the graphical menu of i.points, you find a ZOOM entry.
Using BOX you can enlarge the first corner of the scanned map. Make sure
to zoom-in so that you can see each pixel well without losing the orientation
on the map. Then, using a mouse click, select a point for which you have the
coordinates from the paper map. Within the terminal window, GRASS asks
you for the easting and northing of this point — type it in using the keyboard
(delimited by a blank, see Figure 4.3). The same procedure has to be done for
the other three corner points.

The quality of the point positioning can be directly analyzed using the AN-
ALYZE menu entry. It calculates the “RMS error” after setting at least three
reference points.* It should not be larger than half of the true resolution of the
scanned map as we have calculated above. The overall RMS error is a sum of
all partial errors (one for every matching point). Ifit is too large, you can delete
a point from the ANALYZE table (double click to toggle a point on and off)
and select a new point. Once all four points are selected and assigned properly,
leave i.points, and the points will be saved automatically.

GRASS data models and data exchange 65

Finally, we perform the transformation of the scanned map using the mod-
ule i.rectify with 1st order transformation. After starting i.rectify,
select a 1st order polynomial (as “order of transformation™). This will perform
the linear transformation (stretching and rotating). Next, enter a name for the
scanned map for storage in the projected LOCATION (it may be identical).
Now you have two options:

1. Use the current region in the target location
2. Determine the smallest region which covers the image

The first method is useful when you want only a subset of the scanned map
(e.g. to cut off the borders). It uses the current settings of the target LOCA-
TION. You have to be careful to preset the resolution and the current region
according to the target coordinates of the scanned map. Otherwise you may
obtain unwanted results. This method is useful after you get some experience.

The second method calculates the smallest region in the target LOCATION
which covers the map. It may be sometimes larger than the DEFAULT_WIND
definition of the target LOCATION. Here you can adjust the boundary coordi-
nates and the desired target resolution manually. When accepting the settings,
you can directly set the current region of the target LOCATION to the new
settings.

I e e e |
Foint 1 marked on image at |

East: 5173
Horth: 7370

I
|Enter coordinates as east rorth: 3577350 S770000f)

| vD ""‘.m@"‘”’ Ploernos Poanos [marios f

Figure 4.3. Geocoding of a scanned map with i .points

66 OPEN SOURCE GIS

The module i.rectify then starts to transform the map. This may re-
quire some time, depending on map size, resolution, and hardware. As UNIX
is capable of multitasking, you can continue working with GRASS, or even
leave it, while the computation runs in the background. After the transforma-
tion has finished (at which point 1 .rectify sends an email), you can look at
the new map in the target LOCATION. After restarting GRASS with the pro-
jected LOCATION and opening a GRASS monitor, the transformed map can
be displayed with d.rast.

Quality control. The process described above takes a bit of time but leads
to very accurate results when carried out with care. Quality control is al-
ways recommended, however. In combination with the zooming (d.zoom)
the d.what .rast module allows us to check the coordinates of the four cor-
ner points used for the rectification. These should, of course, correlate with the
equivalent points in the printed map. If the result is not satisfactory, we have
to leave the target LOCATION and restart GRASS with the xy LOCATION.
Now i.points can be called directly, because the group and target definition
as well as the POINTS are still available. The accuracy can be increased by
checking and improving the POINTS assignment. A new run of i.rectify
is then necessary and the result should be checked again. The temporal xy
LOCATION can be deleted after finishing the rectification as described in Sec-
tion 3.1.4.

Note that this procedure is valid only for scanned, unreferenced maps. If you
have digital data which are already geocoded and need to change the coordinate
system, refer to Section 3.3 for an automated map transformation.

Seamless geocoding of multiple scanned maps. The transformation de-
scribed in the preceding section can be used also for importing several scanned
maps without gaps between boundaries. This is a way to import large maps
which are too big for common scanners. The solution is to scan a large map in
multiple parts. This is somewhat time consuming but useful if you do not have
a large, expensive scanner.

The scanning of the map should be done with overlapping borders, to im-
prove the identification of matching reference points. We assume that the map
portions are available in a GRASS supported raster format. There also needs
to be a target LOCATION, large enough to cover the complete map area.

Now set up a xy LOCATION as described above. Beware that the extent
of the xy LOCATION has to cover the maximum extent of a scanned map
portion. Import all map files into this xy LOCATION. Each portion will go
into its own image group (so that it only contains one map) with i.group.
Set the transformation target for all groups to the projected LOCATION with

GRASS data models and data exchange 67

i.target. Then assign coordinates for each map portion to the four map
corners with i.points and the keyboard. Using i.rectify (again with
a lst order polynomial) the map portions are transformed into the projected
LOCATION.

Once all scanned maps are transformed, the result can be checked in the
projected LOCATION, leave the xy LOCATION for this. Now all individual
maps should be checked for their correct positioning and orientation, the base
accuracy. Set the current region to the maximum (i.e. the default value) with:

g.region —-dp
Open a GRASS monitor and display each map by:

d.rast -o mapportion

The overlay mode (flag —o) allows us to overlay adjacent maps. With d. zoom
you can now inspect whether distortions are visible between the maps. Next,
cut off unwanted map borders and patch the portions to a seamless map. We
explain this later on in Section 5.4.2.

415 Export

The export of raster data can be done in several ways. In GRASS 5.3 there
is no general export tool available, this is planned for GRASS 5.7. There-
fore a set of export modules exists which allows us to write various formats:
GRASS ASCII (r.out.ascii), ARC/INFO ASCII GRID (r.out.arc),
BIL (r.out.bil), BINARY ARRAY (r.out.bin), PPM (r.out.ppm),
MPEG (r.out .mpeg), TIFF (r.out.tiff) and TARGA (r.out.tga).

As mentioned above, only the map portion of the current region will be
exported. The export modules can be used on command line as well as inter-
actively with menus. A few modules such as the ARC/INFO ASCII GRID,
GRASS ASCII and PPM export modules optionally allow us to use UNIX pip-
ing, i.e. redirecting the data stream to another module. A piping example to
produce a 8 bit GIF image is:

r.out.ppm elevation.dem out=- | ppmquant 256 | ppmtogif>elev.gif

The result of r.out.ppm is directly sent to ppmgquant to quantize the 774
elevation categories to 8 bit (256 colors), then to ppmtogif. The data trans-
fer is done through “standard out” (stdout) indicated by — (dash). The GIF
data stream resulting from ppmtogif is written to the elev.gif file. The
produced GIF file is stored into the current directory.

68 OPEN SOURCE GIS

Export to XYZ ASCII format. A common format for raster data exchange
to other GIS is the plain XYZ ASCII format (i.e. X, y coordinates with the ac-
cording z value). Unlike the GRASS ASCII raster export with r.out .ascii
(which exports the data as an ASCII matrix), the following command pro-
duces a file with one line for each cell information, each line containing three
columns (easting, northing, z):

r.stats —-1g elevation.dem nv="-9999" > altitudes.txt

The category label (attribute of the raster cell) is exported when using the -1
flag, the optional nv parameter allows us to replace the NULL value with a
different character or string.

42. VECTORDATA

Line, area and point features can be represented in GRASS by vector data
model. It stores the feature’s geometry, attributes and topology. Three different
vector types are used to store polygons (called vector areas in GRASS), lines
(vector lines), and points (vector sites). The latter are convertible from and to
the native GRASS sites data model.

4.2.1 GRASS vector data model

GRASS stores vector data using graphic elements (primitives) such as point,
line, and area boundary (GRASS 5.7 stores additionally the centroid). Vector
lines may consist of a single line (arc) or multiple connected lines (polylines).
A closed ring of line segments defines a vector area. The end points of a vector

label point
/ nodes\ vertices —

'FHM - B

vertices node line
vector line vector area

Figure 4.4. Vector types in GIS: vector line and vector area

GRASS data models and data exchange 69

line are called nodes, points along a line are vertices (see Figure 4.4). An area
in an area is called island.

Vector lines and areas have attribute data assigned as a category number (at-
tribute ID, also called CAT_ID) and an optional category label (attribute text,
also called CAT_DESC). Both category number and category label may be
shared with other vectors. Unlike in other systems, the internal unique vector
ID is not visible to the user in GRASS 5.3. To assign attribute information to
vector data, a label point, which links the attribute information to the geomet-
rical data, is required. While vector lines have the label point positioned on the
line, vector areas keep their label point within the area. GRASS is capable of
managing only one attribute per vector internally, but a quasi infinite number
when connecting the system to an external DBMS such as PostgreSQL. The
internal structure of a roads map with vector ID, CAT_ID and CAT_DESC
may look like this:

ID CAT_ID CAT_DESC

5 "unimproved road"

"unimproved road"

"unimproved road"

"unimproved road"

"unimproved road"

"unimproved road"

"light-duty road, improved surface"
"unimproved road"

— O oUW N
o0

-]

This is the logical structure of GRASS vector data category numbers and la-
bels. In the GRASS database, the internal ID (left column) is not visible to the
user.

GRASS vector data model includes topology, describing spatial relations
between the graphic elements that define the feature location and geometry.
With this type of data structure, the common boundary between two adjacent
areas is stored as a single line, and shared nodes do not have to be duplicated.
With topological information, it is possible to answer the following questions
from a vector data set (Bartelme, 1995:18):

m find neighborhood relationships between objects;

a analyze if one object contains another object (island areas);
s find intersections of objects;

® analyze vicinity of two objects.

Detailed rules for digitizing vector data in a topological GIS are given in the
digitizing section. For discussions on general computational geometry, see the
book of O’Rourke, 1998.

70 OPEN SOURCE GIS

GRASS allows users to store the geometrical component of a vector map
layer in the binary vector format, which is the default, and optionally in the
ASCII vector format, mostly used for data exchange or modification by text
editor. The category labels are always stored in ASCII format, and both the
category numbers file and the category labels file are shared between ASCII
and binary vector format.

It is generally recommended to store vector line features and vector area
features in separate map layers.

GIS vector data are available in a wide range of different formats, with
no single standard available, although some formats (e.g. ESRI SHAPE) are
more common than others. Because of the complex data structure, exchange
of vector data is often more complicated than is the case for raster data. In
GRASS 5.3, the import is handled by a specific command for each different
format; a vector equivalent to r.in.gdal is available from GRASS 5.7 on-
wards (v.in.ogr).

4.2.2 Import of vector data

After running the appropriate command, the imported vector data are stored
in the GRASS binary vector format. For each vector map layer, topology has
to be built. This is done either by the import module by specifying the relevant
flag, or it needs to be done after the import using the module v. support. If
the vector map does not have the topology built, commands which need the
topology will print a related error message. The actual topology status can be
queried with v.info.

Import of SHAPE files. Vector data in the commonly used ESRI SHAPE
format are imported using the module v.in.shape. It is important to know
that SHAPE files are not stored in a topological format but as “Simple Fea-
tures”. This may lead to problems because common area boundaries are stored
duplicated (can lead to gaps and slivers problems). The module v.in. shape
contains an internal “topology engine” which fixes a lot of common SHAPE
file problems. The parameters snapdist and sliver are useful when im-
porting a manually digitized SHAPE map to properly snap common lines. Files
can be read from any directory; if no path is specified, the current directory is
used. Because GRASS 5.3 internally supports only a single attribute per vec-
tor, you have to select the column with the attribute that you want to store
while importing. When using the flag -1, only the table field definitions (field
names and types) of the associated .dbf file are listed. For the data import,
the columns used for category number and category label have to be selected
from the DBF table:

GRASS data models and data exchange 71

v.in.shape -1 roads.shp out=myroads
v.in.shape roads.shp out=myroads scale=1:24000 att=CAT_ID\
label=CAT_DESC

Because the map scale is not stored in the SHAPE files, the appropriate scale
should be specified during import. Please refer to the module manual page for
details.

Import of E00 files. Vector data in the ESRI EOO format are imported with
m.in.e00. The EOO format is preferred to the SHAPE files because it keeps a
better data structure as well as the projection information. The attribute import
differs from v.in.shape in that m.in.e00 imports all attribute columns
and stores them in different category label files while generating a single map
containing the vector geometry. To illustrate how to create vector map layers
with the desired attributes we import the vector map:

m.in.e00 -s roads.e00

The name of the imported file in GRASS will be roads and, with the flag
—s, the topology is automatically built. Assume that this EQO file contains the
columns with attributes called “width” and “velocity”. The best way to create
the two vector map layers (one for each attribute) is to generate copies of the
vector geometry map with the same names as the category label files. This
leads to replicated geometry files but is the only way to make all attributes
available without external DBMS. For this modification you can look into the
GRASS DATABASE to get the names of the category label files. The proce-
dure is somewhat inconventient, a much smarter attibute management is pro-
vided with GRASS 5.7. First we change into the GRASS DATABASE into
the MAPSET subdirectory. The g.gisenv command delivers the required
variable names:

cd ‘g.gisenv GISDBASE®

cd ‘g.gisenv LOCATION_NAME‘/‘g.gisenv MAPSET®
cd dig_cats/

1s -1ltr

The flag -1 generates a long (complete) directory listing; the flag —t sorts by
timestamp and -r reverses the sort order to have the newest files at bottom
for convenience. By running this command you will see the names of the
recently generated category label files. In our example there will be the files
roads.width and roads.velocity according to the attribute columns in
the EOO file. We have to preserve the category label files from overwriting
during this procedure, so we change their names to temporary names:

mv roads.width roads.width.tmp
mv roads.velocity roads.velocity.tmp

72 OPEN SOURCE GIS

Now copy the vector geometry map to the desired new names:

g.copy vect=roads,roads.width
mv roads.width.tmp roads.width
v.info roads.width

g.copy vect=roads,roads.velocity
mv roads.velocity.tmp roads.velocity
v.info roads.velocity

The v.info command should report that both vectors and attributes are stored
in the map. Generally this procedure can be performed for all category label
files in the dig cats/ directory which were generated by m.in.e00 during
a E00 file import.

The module can read EQO files from any directory. If no path is specified,
the current directory is used.

Import of UNGENERATE files. The ESRI UNGENERATE format is a
generic ASCII vector exchange format which is supported by numerous GIS.
Depending on the vector map type (line vectors or polygon vectors) it consists
of a differing number of files. Line vector maps, also called “line coverages”,
are two files with .1in (vector lines) and .dat (line attributes) extension.
Polygon vector maps, also called “polygon coverages”, consist of three files
with .pol (vectorpolygons), .pnt (attribute label points) and .dat (polygon
attributes) extensions. You have to take care to receive or provide a complete
set of files when exchanging data in UNGENERATE format.

These data are imported with v.in.arc. An import example for a polygon
map:

v.in.arc type=polygon lines_in=topol2.pol points_in=topol2.pnt\
text_in=topol2.dat vector_out=topol2 idcol=1l attcol=2 catcol=4

It is important to specify the correct columns for the parameters idcol,
catcol and attcol. The parameter idcol links to a numerical field con-
taining the vector IDs (line-IDs). The parameter attcol links to the category
numbers (attribute IDs) which also contains numbers. The parameter catcol
links to the category labels which may be an attribute text label. Files can be
read from any directory. If no path is specified, the current directory is used.
An import example for a line map:

v.in.arc type=line lines_in=topol2.lin text in=topol2.dat\
vector_out=topol2 idcol=1 attcol=2 catcol=3

After import the topology has to be built by:

v.support topol2

GRASS data models and data exchange 73

Generally, we recommended setting the map scale to the true map scale. As
the scale is unfortunately not stored in the UNGENERATE format (GRASS
will set an imported UNGENERATE map to 1:1 scale per default), the map
scale can be set with the module v.digit. The first metadata screen after
loading the vector map (for “Select digitizer” select “none”) provides the entry
for the map scale. After leaving this screen with <ESC><ENTER>, v. digit
can be left: Either answer “Shall we continue? [y]” with n or leave it from the
main menu with Q (quit).

Import of GRASS ASCII vector files. The generic GRASS ASCII vector
format is very similar to the UNGENERATE format. For lines, the label points
are positioned on the vector lines. For polygons, the label points are stored
within the polygons. If these rules are not fulfilled, v.support will print a
warning (“PNT_TO_AREA failed”). If you have an imported binary vector
map with some topological problems, exporting the map to ASCII format is a
way to investigate the data. Each line or polygon is written into an ASCII file
which can be edited with a text editor. This file has an associated label points
file and an attribute table.

The module v.in.ascii expects the vector lines file within the LOCA-
TION and MAPSET in subdirectory dig ascii/. The category labels (at-
tributes) have to be stored in dig cats/ (in this directory, GRASS keeps its
category label table as ASCII files). The label points file is written into the
directory dig att/. To get some experience, it is a good idea to export an
existing vector map layer and study the resulting files — for an example, see the
paragraph “Export into GRASS ASCII vector format” in the next Section.

The ASCII vector map can be converted to a GRASS binary vector map
with v.in.ascii. As mentioned, the module will read the associated files
from the dig ascii/, dig att/ and dig cats/ directory. The result-
ing GRASS binary vector file is stored in dig/ while the other files remain
unchanged.

Import of SDTS files. SDTS (Spatial Data Transfer Standard) and the TVP
(Topological Vector Profile) define two basic types of spatial objects: simple
spatial objects, i.e., lines, polygons, nodes, etc. and composite objects, which
are made up of one or more other simple and/or composite spatial objects.
SDTS composite objects, which GRASS cannot handle directly, are imported
as records in DBMS-ready tables.

v.in.sdts creates one or more GRASS vector maps in the current MAPSET
from a Spatial Data Transfer Standard data set conforming to the Topological
Vector Profile (TVP). The program generates file within the LOCATION in the
directories dig/, dig att/, and dig cats/. Ifrequested, files of attributes
in database-ready form are created, along with scripts to create an appropriate

74 OPEN SOURCE GIS

SQL-compliant relational database and load the attribute files into the new
database. Special database-ready files of tables linking the attributes to the
GRASS vector map layer or layers are also generated. The source SDTS data
set must be in the user’s current directory. Before importing, it is possible to
look at the file’s contents with flag -1:

v.in.sdts -i catd=ROADCATD.DDF
v.in.sdts catd=ROADCATD.DDF output=sdtsroads

We can use the module m.sdts.read for querying info about SDTS files,
such as the data quality, lineage, etc. It reads SDTS or other data from files in
ISO 8211 (FIPS 123) format and dumps contents to screen and/or file:

m.sdts.read in=ROADCATD.DDF
m.sdts.read -s in=FFFFCATD.DDF out=sdtsdump

With first command the data are shown record-wise, the second command
dumps the data into text file sdtsdump. For further details please refer to
the manual pages.

Import of DXF files. GRASS supports import and export of vector maps in
DXF format. Both 2D and 3D DXF are supported for reading, but GRASS 5.3
stores the vector information as 2D vectors with an attribute.

As an example we show the import of a 3D DXF contour line map. This
requires a few steps. When only specifying the map name and no further pa-
rameters, the DXF map is completely imported. In case of different map layers
existing within the DXF file, these layers will be written into separate GRASS
vector maps. Alternatively, you can specify the 1ine selector to only import
a subset of layers or just a single layer. As an example, we import the layer
“CURVES” from the DXF file contour.dxf which is stored in the current
directory. The first command v.in.dxf will print a warning “WARNING:
3-d data in dxf file” in case 3D data such as contour lines are present. This
indicates that v.in.dx£3d should be run afterward to attach the elevation
information to the line vectors (not required for 2D DXF files):

.in.dxf dxf=contour.dxf line=CURVES
.in.dxf3d dxf=contour.dxf line=CURVES
.support contour.CURVES

.vect contour.CURVES

.what.vect

oI o R A

The GRASS vector name is a composition of the imported DXF file name and
the selected layer. The layer names, as stored in the DXF layer, are displayed
at the end of the import process. For an inspection, the imported map may
be displayed with d.vect and queried. The query module d.what .vect

GRASS data models and data exchange 75

allows us to select vectors by mouse and to print their attributes. Such vector
queries are explained in Section 6.3.1 in further detail.

Note that, apart from the GRASS binary format, DXF files can be imported
also into GRASS ASCII format using the flag —-a (v.in.dxf). This will
require a subsequent run of v.in.ascii to convert the map to a GRASS
BINARY vector map for the later usage with other vector modules. Please
refer to the manual page for further details. If desired, you can also specify
the optional parameter prefix which allows us to define the name of the map
within GRASS. The prefix is extended with the layer name extension.

When importing DXF polygons, a problem occurs because the second men-
tioned module v.in.dxf3d works correctly only for line vectors. As a
workaround you can run v.line2area after importing the DXF file to con-
vert the vector type from lines to polygons. Subsequently use v.alabel to
label the polygon vectors. Finally, use v. support to build the topology.

When importing DXF contour maps, it is possible to import a 3D contour
DXF file in one step with the script v.in.dxf3d.sh. It internally runs the
v.in.dxf, v.in.dxf3d and v.support modules. It requires to specify
the DXF layer names for the layer keeping the contour information and the
layer for the “z” values (the name may be identical):

v.in.dxf3d.sh dxf=contour.dxf 1inel=CURVES line2=CURVES

Coordinate transformation for xy DXF vector data. Often DXF data are
delivered in non-georeferenced xy coordinates. To use them along with other
GIS data, these coordinates have to be transformed to the coordinate system
of the current LOCATION. The module v.transform requires a table of
ground control points (GCPs, also called tie points) to perform this transfor-
mation. It is a table of points with Xy coordinates and their corresponding
georeferenced coordinates. To generate this table, coordinates of points such
as road intersections etc. are identified in the DXF map and another corre-
sponding reference map. Also, GPS points measurements can be used.

In GRASS, the DXF map geocoding process is three-fold. First, the DXF
data are imported into the projected LOCATION, although the DXF map keeps
its Xy coordinates reference. Second, the ground control points are identified
within the imported DXF map as well as the reference map or taken from
GPS measurements and stored in a text GCPs table. Finally, the imported map
is transformed to the current LOCATION coordinate system by shifting and
rotating the input DXF map using the GCPs table.

To illustrate the procedure we will import the DXF map vmap.dxf (xy
coordinates) and transform it to the map refmap stored in a georeferenced
LOCATION, in this case in the Gauss-Boaga Grid System (Italian national
grid system). To start, the DXF map is imported into this LOCATION as a
GRASS ASCII vector map:

76 OPEN SOURCE GIS
v.in.dxf -a dxf=vmap.dxf prefix=vmap

For every DXF layer (DXF lines, DXF labels, ...), an ASCII vector map is cre-
ated within the LOCATION in the subdirectory dig ascii/. In ourexample
it will be an ASCII vector map vmap.lines. To build its topology, this map
then needs to be converted to the GRASS binary vector map vmap_ xy:

v.in.ascii in=vmap.lines out=vmap_xy
V.support vmap_xy

Now the DXF map is in the xy coordinate system in the LOCATION with
Gauss-Boaga Grid System. Next step is to identify the ground control points
by selecting them from the maps displayed in the GRASS monitor. To do that,
we have to reset the current region to the imported DXF map before using the
display command, otherwise we would see nothing (i.e., the map is located
outside the displayed area). The adjustment of the current region is done with
g.region by specifying the vector map name. The optional flag -p will also
output the map boundary coordinates:

g.region -p vect=vmap_xy
d.erase
d.vect vmap_xy

The command d.erase sends the updated coordinates to the GRASS monitor
and erases the screen, and then d.vect displays the map.

Because we do not expect internal map distortions, we have to identify only
four ground control points for the transformation. To get these GCP xy co-
ordinates for the imported DXF map, we can use d.where. We store the
coordinates of these four GCPs of the xy vector map in an ASCII file (e.g.
called POINTS) in the SHOME directory. We can use any text editor to write
each xy coordinate pair on a separate line. The next step is to find the corre-
sponding four GCPs in the projected reference map or to assign corresponding
coordinates from a GPS measurement. When using GPS data, just enter the
georeferenced coordinates values. When using a reference map in the current
LOCATION, for example the vector map refmap, the current region has to be
reset to this map and the map should be displayed:

g.region -p vect=refmap
d.erase
d.vect refmap

Again, d.where helps to get the corresponding four GCP coordinate pairs
from the reference map. Store these values in the ASCII table next to the
related xy coordinates as EASTING NORTHING with all values delimited by
a space. Such a table may look as follows (the first two values are the X and Y
coordinates, the second two values are EASTING and NORTHING):

GRASS data models and data exchange 77

838.8 244.2 1661701.3 5108172.
796.2 192.6 1661643.2 5108204.
796.2 91.6 1661543.7 5108181.
1110.6 379.0 1661864.4 5108076.

N O W

Now the coordinate transformation from xy coordinates to Gauss-Boaga coor-
dinates can be performed. The module v.transform will read the GRASS
ASCII vector file vmap . 1ines which is stored within the LOCATION in the
related MAPSET subdirectory dig ascii/. The command sequence for our
example is:

v.transform in=vmap.lines out=vmap_trans point=$HOME/POINTS
v.in.ascii in=vmap_trans out=vmap_trans
v.support -r vmap_trans

The module transforms the coordinates of the nodes and vertices of the DXF
map and prints out the RMS (root mean square) error for each GCP. An accept-
able RMS error for a 1:24,000 map would be 1.2 to 2.4 meters. If this is not
reached, the selection of the GCPs should be redone. Finally, the transformed
map must be converted to the binary vector format with v.in.ascii for later
usage (same names are allowed) and the topology generated.

To verify the transformation result, we have to reset the current region to the
transformed map. Then we can display it over the reference map:

g.region —-p vect=vmap_trans
d.vect refmap
d.vect vmap_trans col=red

Both maps should match well.

Import of GSHHS Shoreline files. An interesting vector data set with ex-

cellent accuracy is the GSHHS (Global Self-consistent, Hierarchical, High-
resolution Shoreline Database, Wessel and Smith, 1996). The sources of data
were the CIA World Data Bank II, designed for a scale of about 1:2,000,000,
and the NOAA World Vector Shoreline, which is at a scale of 1:250,000.
The GSHHS shorelines are constructed entirely from hierarchically arranged
closed polygons. The data can be used to simplify data searches and data selec-
tions, or to study the statistical characteristics of shorelines and land-masses.
The data set can be accessed from the GSHHS Web site’ and from the Na-
tional Geophysical Data Center (NGDC), Boulder, Colorado (USA). The re-
lated GRASS module is v.in.gshhs. It optionally allows us to geographi-
cally limit the import to a subregion. The GSHHS data are freely available at
five differentresolutions: crude, low, intermediate, high, and full. The [c,Li,h]-
versions were derived from the GSHHS full resolution file using the Douglas-
Peucker algorithm which simplifies a line segment given a tolerance (0.2 km

78 OPEN SOURCE GIS

to 25 km). GSHHS coordinates are originally in the latitude-longitude coordi-
nate system. If required, they can be transformed during import to the current
LOCATION coordinate system. A selected subarea can be imported by speci-
fying boundary coordinates, or by using the flag -g to use the current GRASS
region as boundary constraints. The flag -a allows us to import vector data as
area type (defaultis line type). The following example imports an intermediate
resolution shoreline map file into GRASS using the current GRASS region and
automatically runs v.support after import:

v.in.gshhs -gs gshhs_i.b out=shoreline.lowres

This imports the map into the current region, clipping it to the region bound-
aries and builds the topology.

423 Export of vector data

Data exchange of GRASS vector data with other GIS is supported in various
formats.

Export into SHAPE format. To export GRASS vector files to ESRI SHAPE
format, the module v.out .shape can be used. A GRASS vector file to be
exported to SHAPE may contain both vector lines and vector polygons. If you
select the parameter type=both for conversion, two layers will be produced
with the appended suffixes line and area respectively for lines and poly-
gons. However, lines used as area edges are not duplicated in the lines layer.
Please keep in mind that it is generally recommended to store vector lines and
areas in separate map layers. The cats parameter allows us to optionally ex-
port category labels if they are present. They may be written according to their
type as character string, integer, or float number into the associated DBF file.
The flag -v enables verbose output to see the export progress.

As an example, we export the vector roads map of the Spearfish data set,
stored in MAPSET PERMANENT. The stored vector types can be checked
with v.info which reports whether the topology is present, the numbers of
category labels, vector lines, areas and islands (areas in areas). To export, the
vector type has to be set accordingly (“line”, “area” or “both”). An example
for the Spearfish roads map which contains only lines is:

v.info roads
v.out.shape -v roads type=line mapset=PERMANENT cats=string

Three files are written into the current directory: roads.shx, roads.shp
and roads.dbf. From GRASS 5.7 onwards also the corresponding .prj
file containing the projection information will be generated when exporting to
SHAPE format. The written DBF file may be inspected with gnumeric, a
free spreadsheet software.

GRASS data models and data exchange 79

Export into E00 format. A recommended format for exporting GRASS
vector data is the ESRI EQO format. It is performed by v.out.e00, which
writes a vector map to an ARC/INFO line/polygon coverage. We can export
the roads map of the Spearfish data set as follows:

v.out.e00 roads mapset=PERMANENT out=roads.e00

It is required to specify an output name, otherwise the EOO data stream will be
written to “standard out” (stdout). The file is stored in the current directory.

Export into UNGENERATE format. Export of GRASS vector maps to
ESRI UNGENERATE file format is possible with v.out.arc. A GRASS
vector file to be exported to ARC/INFO must either contain only linear features
(line vectors) or only area features (polygon vectors). The vector type, line or
polygon has to be specified. To inspect a vector file, use v.info. As an
example we export the roads vector map by:

v.info roads
v.out.arc roads type=line arc_prefix=roads

Export into GRASS ASCII vector format. The module v.out.ascii
allows us to export a GRASS vector map to GRASS ASCII format. As an
intended exception, the exported file will be stored within the LOCATION in
a subdirectory dig ascii/ and not in the current directory. The category
labels are stored in ASCII format at dig cats/ (however, the file is identical
to the binary GRASS binary format). The label points file will be found in the
directory dig att/ which is also identical to the GRASS binary format.

Export into SDTS format. To export a vector map to SDTS data set con-
forming to the Topological Vector Profile (TVP) we can run the module
v.out.sdts. The usage is very simple:

v.out.sdts roads output=ROAD

The parameter output is a prefix for the SDTS output files which must be 4
upper-case characters and/or digits. The resulting files are stored in the subdi-
rectory named according to the output parameter, generated in the current di-
rectory or a directory defined with path parameter. The output data set is in the
mandatory ISO 8211 (FIPS 123) format. When desired, the ISO 8211/SDTS
output files can be inspected withm. sdts.read. Two flags are available: -a
restricts the output to areas while omitting lines, the flag -m accesses a user-
defined metadata file. This file is typically, but not necessarily, created with
v.sdts.meta. SDTS data sets are required to contain 5 different data qual-
ity report modules, for lineage, positional accuracy, attribute accuracy, logical
consistency, and completeness. When v.out.sdts is run, it searches in the

80 OPEN SOURCE GIS

user’s MAPSET dig misc directory for appropriate files, one for each mod-
ule, containing narrative text in ASCII format as written by v.sdts.meta, a
TclTk based application with menu entries to supply the metadata information.
If metadata files generated with v. sdts.meta is found, they are converted to
SDTS/ISO 8211 format and added to the export data set; warning messages
are displayed if any data quality modules are missing.

In addition to the files created by v.out .sdts, every SDTS transfer must
contain a README file. This file is not generated by v.out . sdts, and must
be created by hand (see the manual page for this command).

Export into DXF format. To export GRASS vector files to DXF format, the
module v.out .dxf can be used. The usage is very simple, as we demonstrate
with the roads map again:

v.out.dxf roads out=roads.dxf

The DXEF file is written to the current directory.

4.3. SITES DATA

In addition to the vector format, features that are spatially referenced to a
single point can also be stored in the GRASS site format. Note that other GIS
software may not support handling of site data separately from vector data.

4.3.1 GRASS sites data model

The multi-dimensional, multi-attribute ASCII sites format includes a coor-
dinate entry followed by a category (with a # as prefix), optional floating point
attributes (% as prefix), and optional character string labels (@ as prefix). All
character strings that include a space must be enclosed with quotes “ . The
coordinates are separated by a vertical bar | while the rest of the fields are
separated by a space. The format in general is as follows:

east|north|[z[|...]][#cat_int] [%at_fp [%at_fp...]]\
[@at_str [%at_str...]]

The GRASS sites model also supports an optional header which describes the
data stored in the sites file. Example of such a header is as follows:

name |myname

desc|Soil chemical data

time|l5 Jan 1994

labels|east north elevation ID pH Nitrogen
form| | | #%%

GRASS data models and data exchange 81

The following example of soil profile data entry includes location coordinates
easting and northing, site ID as an integer category, pH value as a floating point
attribute, and character strings describing the soil texture and land cover. In our
example, the file header includes only two lines describing the name of the file
and the label for each field:

name|Soil data
label|east north ID pH texture vegetation
356700015787000(#1 %4.2 @"sandy soil" @"forest"

For points in geographical coordinates, the header and data entry may look like
this:

labels|longitude latitude ID elevation
75:33:55.34W(33:44:59.21N(|#1 %225.2

43.2 Import of sites data

There are several approaches to import a sites map layer. Site data can
be directly entered into the GRASS DATABASE by copying an ASCII file
in the prescribed format into the site lists/ subdirectory in the LOCA-
TION/MAPSET directory, or the data can be imported from a number of sup-
ported formats (e.g., CSV, ArcView, dBase, Maplnfo). Finally, the points can
be digitized from a map.

GRASS provides modules to import point data in various formats
such as s.in.mif for Maplnfo point data, s.in.shape for ArcView,
s.1in.atkisdgm for German ATKIS (elevation data transfer format), and
s.1in.dbf for the dBase data. Site data measured by GPS can be imported as
sites using s.in.garmin. sh oras vector data using v.in.garmin. sh and
then converted to sites using v.to.sites. Timestamps or time ranges are
supported with a date parameter for s.in.ascii and s.in.dbf. Please
refer to Section 5.1.4 how to define a timestamp or time range.

Importing ASCII tables. Point data in ASCIl format can be im-
ported directly with s.in.ascii. The data should be arranged as
east north value:

3246000.0 5877000.0 23.0
3246012.5 5877012.5 24.4
3246025.0 5877025.0 22.3

Then, they can be imported as follows:
s.in.ascii sites=mygrasssites input=myasciisites

Optionally, you can define a timestamp for the map (parameter date). Note
that s.in.ascii will insert a file header and a category number (ID) after

82 OPEN SOURCE GIS

your east and north coordinates and import your value as a floating point at-
tribute, so your data in GRASS sites format will look like this:

name [mygrasssites

desc|s.in.ascii sites=mygrasssites input=myasciisites fs=space
3246000|58770001#1 %23

3246012.515877012.5|#2 %24.4

3246025|5877025#3 %22.3

If the input point data include a third dimension (depth, elevation) and the
values are separated by commas (CSV format), you can import them with
s.in.ascii, using the parameter d for setting the number of dimensions
and f£s for a delimiter as follows:

s.in.ascii sites=grasssites3d input=myasciisites3d d=3 fs=,

Depending on application, elevation z can be handled either as a third dimen-
sion east north|z]or as a floating point attribute east |north|#id %z.

As we have shown in the Section 5.1.6, UNIX provides an effective tool for
working with ASCII data called awk. You can use it to modify your ASCII
data to conform to the GRASS site format. For example, if your data in
points.dat are organized as:

ID north east elevation

you can remove the ID and change the order of coordinates as required by
GRASS using:

cat points.dat | awk ’'{print $3, $2, $4}' | s.in.ascii mysites

which writes the values from the third (east), second (north) and fourth (el-
evation) column and then imports this file by s.in.ascii. You will find
more detailed explanation of awk and related examples in Appendix A which
describes the use of UNIX text editing tools.

Importing site data in geographical coordinates. Latitude-longitude data
can be imported either in DD format (decimal degree, see Section 2.2.2) with
longitude given in the first and latitude in the second column:

8.314824 54.921730 sitel
8.897605 54.872353 site2
9.549371 54.834080 site3

or in DMS (degree, minutes, seconds) format:

8:18:53.3664E 54:55:18.228N sitel
8:53:51.378E 54:52:20.471N site?2
8:32:57.7356E 54:50:02.688N site3

The module s.in.ascii will accept point data written in any of these two
formats.

GRASS data models and data exchange 83

4.3.3 Export of sites data

Site data can be exported to an external ASCII file by s.out.ascii. The
s.out.e00 program is designed to create an ARC/INFO E0O0 ASCII points
file. Alternatively, point data can be converted to raster data by s.to.rast
and exported to ARC/INFO ASCII GRID by r.out .arc or other GIS raster
formats.

NOTES

1 GDAL library, http://www.remotesensing.org/gdal/

2 Spearfish 10 m LatLong/NAD83 DEM ArcGRID coverage file, section data
sets, http://mpa.itc.it/grasstutor/

3 Netpbm tools, http://sourceforge.net/projects/netpbm/

4 The “RMS error” represents the distance of the set matching point towards
the ideal placed matching point. Itis calculated through:
rms =/ (x = Xorig)* + (¥ — Yorig)?

5 GSHHS shoreline data Web site,
http://www.soest.hawaii.edu/wessel/gshhs/gshhs.html

Chapter 5

WORKING WITH RASTER DATA

In this chapter we explain the processing of raster data within GRASS, in-
cluding some examples of spatial analysis. The raster data model, especially
when combined with map algebra, provides wide range of capabilities for spa-
tial modeling, all of which would be impossible to cover within a single chap-
ter. Therefore, this chapter provides the basic description of the tools; more
can be learned from the manual pages, tutorials and publications provided on
the GRASS Web site.

For a description of the GRASS raster data model, as well as raster data
import and export, please refer to Section 4.1.3.

3.1. VIEWING AND MANAGING RASTER MAP
LAYERS

In this section we continue to use the Spearfish data set to illustrate our ex-
amples. Please refer to Section 3.1.3 on how to start GRASS with the Spearfish
LOCATION.

5.1.1 Displaying raster data and assigning a color table

Raster map layers can be displayed using the d.rast module. First open
the GRASS monitor, then run the display module:

d.mon x0
d.rast elevation.dem

The map will be displayed in the GRASS monitor. The module d.rast
offers two useful optional parameters, catlist and vallist. When us-

86 OPEN SOURCE GIS

ing catlist you can selectively display categories for integer map, while
vallist applies to floating point maps. For example,

d.rast geology catlist=4,5 bg=black

shows only categories 4 and 5 of the geology map (i.e. sandstone and lime-
stone for the Spearfish area) with black color for the other raster cells. You can
run

d.rast aspect vallist=225-315 bg=blue

to see southern exposed slopes (note that in GRASS the aspect angles are cal-
culated from east counterclockwise). The GRASS monitor can be erased with
d.erase.

A nice script is slide.show.sh which just requires an open GRASS mon-
itor. When running it, it will show all available raster maps. Optionally you
can define a name prefix to see only selected maps. To learn how to view raster
data in 3D using the nviz module, see Chapter 8.

Color tables. Each raster map has its own color table. When no color table
file is present, the rainbow color coding will be used (which may not be sat-
isfying in many cases). Colors can be assigned with r.colors. The module
provides a range of pre-defined color tables. To give it a try, change the color
table of the aspect map to waves:

.rast aspect
.colors help
.colors aspect col=wave
.rast aspect

O KN R QO

As the chosen color coding may be unusual for an aspect map, we can restore
the typical color coding for aspect maps by:

r.colors aspect col=aspect

Later on, in Section 5.4.4, we will show how to fine-tune a color table using
user defined color values and you will find a number of examples for creating
color tables in Chapter 12.

Displaying a legend and a scale. The legends for raster maps can be dis-
played using the module d. legend:

d.rast fields
d.legend fields

If you want to define the location and extent of the legend using the mouse, in-
clude the -m flag. Then click the left mouse button to “Establish a corner” and

Working with raster data 87

subsequently the right button to “Accept box for legend”. The menus for these
interactive display commands are always explained in the terminal window.
For continuous field data such as elevation models, the -s flag can be used
to draw a continuous color gradient legend. If you have selectively displayed
only certain categories or values using the catlist or vallist options for
the d.rast command, you can selectively display the relevant colors in your
legend using the use option for a list of categories and the range option for a
range the map values.

You can place a map scale with d.barscale, choosing its location using
mouse.

5.1.2 Raster map queries and profiles

One of the most common tasks when working with digital maps is querying
the values at a given location. This can be done either interactively using a
mouse, or on the command line for a location given by its coordinates. To
query a single or multiple map layers interactively use d.what . rast:

d.rast geology
d.what.rast geology
d.what.rast texture,geoclogy

By clicking at a certain location, you will get the coordinates at that point as
well as the category values and labels in the given map layer(s). The command
d.what .rast will also work without specifying a map name when a raster
map is displayed in the GRASS monitor. When you are finished with the query,
don’t forget to end the request mode using the right mouse button within the
GRASS monitor. To get only the coordinates at a point by mouse click, use
d.where.

To generate a profile, you can run d.profile. It allows you to inter-
actively draw profiles within the GRASS monitor. You may try it with the
elevation map:

d.profile elevation.dem

Then follow the menu provided within the monitor.

Non-interactive query can be performed either at individual points or at a
transect (profile along a line). With module r.what you can query the map at
a point given by its coordinates:

r.what -f geology east_north=598514,4921908

With - £ flag, the category label is included in the output.
To generate a profile with parameters provided on the command line, you
can use r.profile. It outputs the raster map values located on user-defined

88 OPEN SOURCE GIS

line(s). You can write the result to a file or to standard output (stdout). For
example, we want to get a profile along a line specified by coordinates of two
GPS tracking points:

r.profile geology out=- profile=595346,4921504,595518,4915456

The output list has two columns. The first column shows the cumulative tran-
sect length (cum_length), the second column contains the category value found
at the corresponding location. If you additionally specify the flag -g, you get
the output: easting, northing, cum_length, map_value. Alternatively, you can
use r.transect for profiles defined by a starting point, direction and dis-
tance.

The module r.report can be used to report statistics for raster maps. For
the given raster map, it will write out a table containing category numbers (cell
values), category labels, and optionally area sizes in units selected by the user
for the parameter units (see examples of the output in Chapter 12). Unlike
the overall statistics calculated by r.report, the command r.stats oper-
ates cell-wise. It outputs individual cell values (left to right, top to bottom) in
a format that can be customized using flags. Often, the result is piped to other
tools such as awk for further processing (see an example in Section 5.1.6).

5.1.3 Zooming and generating subsets from raster maps

You can interactively zoom into a selected location within a map displayed
in the GRASS monitor using the command:

d.zoom

Use the left mouse button to define the first corner point, then move around the
mouse to open the zoom box and use the middle mouse button to set the second
zoom box corner. If the zoom level is acceptable, confirm it with right mouse-
click. The related mouse button menus are explained in the terminal window.
To zoom out with d.zoom, use the middle mouse button. You can save the
region defined interactively by d.zoom using the g.region command. The
GRASS monitor can be erased with d.erase.

Besides zooming, g.region can be used to adjust the current region set-
tings to well defined region boundary values. Note that you have to run
d.redraw (or the sequence d.erase;d.rast map) after using g.region
as the GRASS monitor needs to get the information about the changed current
region. The d.erase which is internally used by the d.redraw script sends
the updated coordinates to the monitor while erasing its contents. Therefore, a
redraw is required to get the map(s) back.

To get a list of the maps currently displayed in the GRASS monitor, run:

d.frame -1

Working with raster data 89

Generating map subsets. If you have a large raster map, but you want to
work only on a small subset of that area, the subset of interest can be selected
and stored into a separate map. This will save you processing time, especially
when you want to try a more complex calculation before applying it to the full
map.

GRASS raster computations are always limited to the current region at cur-
rent resolution. After defining the area of interest with g. region or d. zoom,
you can use the module r.mapcalc to extract the map portion into a new
map:

r.mapcalc "newmap=oldmap"

Through this simple expression the map portion defined by the current region
is saved as newmap, copying the cell values from the larger original map
oldmap. As an example, let us copy the residential area in the north-west
of the Spearfish area from the SPOT satellite image. We can use g.region
to first adjust the current region settings (map boundaries and resolution) to a
map, in this case the satellite image spot .image. After adjusting the region
(you need to have open a GRASS monitor, if not, run d.mon x0) we display
the SPOT image. Then we zoom into the residential area in the north-west
of the satellite image. You will see the highway and, in blue shades, the resi-
dential area with the dense street network. This spot . image is a false color
composite, so the colors are unnatural. For now, it is sufficient if you roughly
zoom into the residential area. When zooming, always follow the mouse menu
settings explained in the terminal window. Now we can extract the residential
map through copying it from the base image (d.erase is required to send the
new boundary coordinates to the GRASS monitor):

.region rast=spot.image

.erase

.rast spot.image

. zoom

.mapcalc "residential=spot.image"

N Q0 0«

The new raster map residential contains only the zoomed subset of
spot . image. You can look at it by running:

d.erase
d.rast residential

When zooming out (d.zoom, middle mouse button, right to quit), you will
realize that the image residential contains only the desired portion of the
source, this area is surrounded by no-data (NULL) raster cells.

90 OPEN SOURCE GIS

5.14 Managing metadata of raster maps

Information about the data source, accuracy, producer, date of mapping
or image acquisition, date of map production, and eventual modifications, is
called metadata (“data describing data”). Data documentation is crucial for
GIS work, for evaluation of data quality and suitability for a given task. This
is particularly important for long-term projects, or where GIS data are shared
with other users.

GRASS offers the option of maintaining a “history file” for documentation
of a map. Many analytical modules save their calculation steps into the history
file automatically. Butit may be necessary to store additional information. The
“map history” can be modified using the command:

r.support

in interactive mode, i.e. starting it without any parameter. After entering the
map name you may proceed with <ENTER> to the question: “Edit the history
file for [map]?”. Confirming with y an input screen showing the metadata for
this map opens up. Especially the fields for “Data source” and “Data Descrip-
tion” should be filled in. For example, we may want to edit the metadata for the
recently created map residential (see above). Start r.support, select
the map residential and proceed to the “history” screen. You can see that
map date, title, creator, a description containing the map creating method “gen-
erated by r.mapcalc” and a few more entries are already stored there. You may
fill the field “data source” with “SPOT 1 MSS false color composite 5/27/89”.
With <ESC><ENTER> you reach the next screen where you may apply fur-
ther comments. Another <ESC><ENTER> takes you back to the questionnaire
mode of r.support; you can skip the rest of the questions with <ENTER>
and leave the module.
To display the metadata of a raster map, use:

r.info residential

This will display the data description, boundary coordinates, and data range. If
desired, you can even email this information to yourself or to someone else:

r.info residential | mail -s "residential map" recip@domain.org

Raster map timestamps. Because a lot of mapping and monitoring pro-
duces time series of spatial data, it is important to store the relevant temporal
information. GRASS allows us to store it separately from the history file using
the module r.timestamp. This command has two modes of operation. If
no date argument is supplied, then the current timestamp for the raster map is
printed. If a date argument is specified, then the timestamp for the raster map
is set to the specified date(s). An example for an absolute timestamp:

Working with raster data 91
r.timestamp residential date="27 may 1989 17:58:48 -0700"

Another call to

r.timestamp residential

will query and show the defined timestamp. When specifying two comma-
separated timestamps (e.g. date="27 may 1989, 28 may 1989"), they
are treated as time range. Also relative timestamps can be specified:

r.timestamp rastermapl date="15 hours 25 minutes 35.34 seconds"
r.timestamp rastermap? date="100 days"

Timestamps can be removed by:

r.timestamp residential date=none
r.timestamp residential

These timestamp definition rules also apply for related vector and sites mod-
ules.

5.1.5 Reclassification of raster maps

Reclassification of a raster map creates a new map based on the transfor-
mation of existing categories in the original map to a new set of categories.
Usually, ranges of categories are grouped into a new class using the module
r.reclass. Those category numbers which are not explicitly reclassified to
anew value will be reclassified to NULL. Before using r.reclass you need
to know:

s transformation rules (reclass table) describing which old categories will be
assigned into which new categories;

s optionally, names for the new categories (category labels).

We recommend using the module on the command line and storing the reclass
table in a file. This is convenient in the case that additional modification of
the reclass table is required. The file containing the reclass rules is read from
standard input (i.e., from the keyboard, redirected from a file, or piped through
another program). The following examples illustrate the concept.

First, we will reclassify the raster map roads, which includes five cate-
gories (you may check that with r.report roads). The new map will in-
clude class 1 (good quality) which will be assigned to the categories 1, 2 and
3 in the input raster, and the class 2 (poor quality) which will include the cate-
gories 4 and 5. We store the required reclass rules into a text file roads . recl:

1 2 3 =1 good quality
4 5 = 2 poor quality

92 OPEN SOURCE GIS

To apply the rules to the roads map and create a new reclassed map
roads.qual, we run:

cat roads.recl
cat roads.recl | r.reclass roads out=roads.qual\
title="Road quality"

The first command just shows the table. We send the table to the GRASS
module using the pipe into the second command. With d.rast or r.report
you can check the resulting map roads.qual.

The second example explains reclassification of a continuous field map. We
want to reclass the elevation map into elevation ranges reflecting the typical
vegetation. To cover all elevations appearing in the map, it makes sense to
check the data range in advance:

r.info elevation.dem

Then we create a reclass rules table elevation.recl:

1000 thru 1299 = 1 mountainous zone
1300 thru 1499 2 subalpine zone
1500 thru 1749 = 3 alpine zone

]

Note that these values are only for illustration and do not reflect the real situa-
tion in the Spearfish area.

cat elevation.recl

cat elevation.recl | r.reclass elevation.dem\
out=elevation.zones title="Elevation zones"

d.rast elevation.zones

As another example, we show a mixture of the reclass rules described above.
The mixed rules table reclasses the landuse map to a reduced number of
classes:

1 thru 4 = 1 urban area

5 = 2 reservoirs

6 7 = 3 unvegetated and mining areas
8

*

il

4 transportation and utilities
NULL

i

As above, we store this table to a file landuse.recl andrun r.reclass
on the landuse map:

cat landuse.recl
cat landuse.recl | r.reclass landuse out=landuse.simple\
title="Landuses"

A hint: To minimize typing efforts, you can start from the category table of the
landuse map, store it to the file landuse.recl and modify it accordingly.

Working with raster data 93

The module r.cats outputs the category table; we can redirect it to an initial
reclasstable:

r.cats landuse > landuse.recl

Use a text editor to prepare the reclass table from file landuse.recl. Be
cautious with reclass maps. Since r.reclass generates a table referencing
the original raster map rather than creating a real raster map, a reclass map will
no longer be accessible if the original raster map upon which it was based is
later removed. However, g.remove prints a warning if such a case occurs.
Use r.mapcalc to convert a reclass map to a regular raster map:

r.mapcalc "landuse.new=landuse.recl"

In case that you need to filter areas by size, use r.reclass.area:

r.report vegcover
r.reclass.area in=vegcover out=vegcover.1000 great=1000
r.report vegcover.1000

This script will generate a new map vegcover.1000 where the minimum
area size is 1000 hectares, setting the omitted small areas to NULL. These no-
data area could be filled again with surrounding values (r.neighbors, e.g.
mode parameter, see Section 5.4.1).

5.1.6 Assigning category labels

Raster maps may include category labels that are stored in a special category
table. Sometimes, this table does not exist, for example, when the map has
been created by r.mapcalc or when it was imported without labels. In other
cases you may want to modify/update existing labels.

Modifying existing category labels for a raster map. The module
r.support is used to update existing category labels. As an example, we
modify existing labels of the soils map by replacing some of the soil type
acronyms with the full description. First, let us look at the original map:

r.report soils

Because the map is stored in the read-only PERMANENT MAPSET we cannot
modify it (see Section 3.1.2 for explanations). In order to do it, we have to
create a copy within our MAPSET:

g.copy soils,mysoils

The category label editor is included in the module r . support. Start it with-
out parameters and enter the map name mysoils. Then proceed with <EN-
TER> to “Edit the category file for [mysoils]?”, and enter y here. You will

94 OPEN SOURCE GIS

get to the first screen where the highest category number should be defined.
Because you are not going to change the number of categories, you can ac-
cept the current value and continue with <ESC><ENTER>. This takes you to
the category table where you can move around with cursor keys. The table
displays the first 10 categories, the rest is on the next page(s). If you want to
change just few categories, you can get directly to it by entering it’s number
into the field “Next category ”. As an example, proceed to the category number
24: Enter 24 in that bottom line and hit <ESC><ENTER>. Now you have the
requested category number on top of the table which should read “McD”. Go
to the line and enter the full name “Midway-Razor silty clay loams”.! You can
then go to the category number 10 and then to 20 to learn how it is working.
To leave this mode, either scroll through the full table with <ESC><ENTER>
orjust type end into the line “Next category ”. Now you get back to the ques-
tionnaire mode of r.support, you can skip the rest of the questions with
<ENTER> to exit the module. Finally, check the updated table with r.cats
or r.report. This procedure looks a bit old-fashioned, but you can use it
even remotely through low-bandwidth network access because no graphical
user interface is required.

Note that you can create categories for floating point maps representing
continuous fields such as elevation or precipitation. To do this, you can run
r.support and create categories for ranges of FP data. See Section 12.1.3
for an example.

Assigning new attributes to a raster map (f}). The next application is a bit
more sophisticated because we want to automatically assign new attributes to
a raster map based on calculations. For illustration, we create a new raster map
fields.areas by changing the category labels that represent field owners in
the map fields to labels representing field areas. The procedure will read the
map fields, calculate the areas for the individual fields, output the results as
reclass rules and reclass the fields map according to the rules.

To get the area information, we can use r.report or r.stats. Compare
the results of both (we use -h to suppress page headers):

g.region -p rast=fields
r.report -h fields units=me

e +
| Category Information | square |
| #{description | meters|
| o |
LIC. Smith#1 o o000 640, 000]
2]C. Smith#2 « . . o . 0 0 0 0 00 600,000

!
|
| 31P. Biggam#l.« . . .o o] 300,000 |
f...1]

Working with raster data 95

|631Black Hills Natl. Forest [109,420,000}
| *Inodata. <« « +« « < « . . |101,220,000)
[~=——m e |
| TOTAL 1266,000,000]
o +

r.stats —qgan fields
1 640000.000000

2 600000.000000

3 300000.000000
[...]

The -a flag allows us to print the area values in square meters related to a
category, while -n suppresses NULL values. The flag -g suppresses printing
of percent complete messages to standard output. Note that the area calculation
depends on the raster resolution. The results from r.report and r.stats
should be comparable.

However, we cannot use the output of r.stats as rules for reclassification
of the fields map. Since we want to store the area values as category labels
for each field we need to modify the output of r.stats, using a UNIX tool
called awk. It is a “pattern scanning and processing language” which is very
useful for modification of character strings and simple calculations with data
stored in text files (see more details on how to use awk in the Appendix A). It
allows us to modify a data stream on the fly:

r.stats —gan fields
1 640000.000000
2 600000.000000
3 300000.000000
(...]

r.stats —-gan fields | awk ’/{printf "%d=%d %dm*2\n", $1, $1, $2}’
1=1 640000m~2

2=2 600000m~2

3=3 300000m"2

[...]

r.stats —-gan fields | awk ‘{printf "%d=%d %d sgq meters\n", $1,\
$1, $2}' | r.reclass fields out=fields.areas
r.report fields
[...]
I 1]C. Smith#1l |
| 2|C. Smith#2 |
| 3|P. Biggamil
[...]

r.report fields.areas

£,

96 OPEN SOURCE GIS

| 11640000 sq meters

| 2|1600000 sq meters |

[31300000 sg meters

[...]
The redirection is done with UNIX piping which sends the outputof r. stats
directly to awk to do some formatting, then further on to r.reclass for
generating the new map. If desired, you can copy the original color table from
fields to fields.area with r.colors (see Section 5.1.1).

Clumping raster area features. For some applications we may need to cre-
ate an individual category number for each raster area (polygon). For example,
when the raster map includes several areas with the same soil type (assigned
the same category number), we may need to distinguish each area, in case we
are interested in computing the size of each area using r.report.

The module r.clump finds all areas of contiguous cell category values in
the input raster map and assigns a unique category value to each such area
(“clump”) in the resulting output raster map. Assume that we have a simple
soils map with 3 soil types in 10 polygons. After “clumping”, we will have all
10 polygons numbered individually. Based on that you can assign the individ-
ual area sizes as shown above.

g.region -p rast=soils
r.report soils units=h

[...]

| #ldescription | hectares|
[—m = i
I'1lAab. & . o o v o0 o oo e e e e s e e e 16.5201
[...]

[S541Wb o o0 oo s e e s e e e 375.040]
| *Ino data. . . «~ oo o 00 268.680]
et et [
| TOTAL |26,600.000]

r.clump soils out=soils.clump
r.report soils.clump units=h

[...]

| #ldescription | hectares|
|~=mmm—— e I
| 1] | 0.160/{
[...]

16831 « v . v o o e o e e e e e e e e e e e e e 1405.760]|
| *Inodata. . . ««1 268.680]
[= e I
| TOTAL 126,600.000]

Working with raster data 97

While some soil names are assigned to several raster polygons in the original
soils map, all raster polygons in the soils.clump map are numbered in-
dividually. This is useful, e.g. to calculate area sizes of the individual patches.

5.1.7 Masking and handling of no-data values

Raster MASK allows the user to block out certain areas of a map from anal-
ysis by hiding them from sight of other GRASS modules. Effectively, MASK
is a raster map which contains the values 1 and NULL. Internally, the maps
in use are multiplied pixel-wise with the MASK map. Those cells where the
MASK map shows value 1 are available for display and computations while
those masked by NULL are hidden. The map name MASK is a reserved file-
name for raster maps, if you have it in your MAPSET, it will be used as a mask
in all raster operations.

To create a MASK, you need a base map. This map is used to select which
values will represent the hidden and the active areas. As an example, we may
decide to work only with areas belonging to “private ownership”, stored in the
map owner. Now start the module

r.mask

and select menu entry “2 Identify a new mask”. It requests a map name with
“Enter name of data layer to be used for mask”. For our example enter owner
here. A new screen appears showing the categories of the owner map.

IDENTIFY THOSE CATEGORIES TO BE INCLUDED IN THE MASK

OLD CATEGORY NAME CAT
NUM
no data . . . N 0 0
private ownershlp . e e e e e e e e e 1 0
United States Forest Serv1ce, Black Hills . . . 2 0
Next category: end__ (0 thru 2)

You can move around with cursor keys and select “private ownership” by
entering 1 on the related line. Continue with <ESC><ENTER> and leave
r.mask with another <ENTER>. Now, for any map that you display, you
will see only the areas belonging to private ownership. Note that at the time
of writing this book, the screen shown above listed no-data as 0, which is not
correct and will be changed to NULL. Note that this MASK does not apply to
vector and sites maps.

You can also generate MASK directly by creating a MASK file with
r.mapcalc using if-condition as we explain later, or you can rename an ex-
isting binary raster map to MASK with g. rename.

98 OPEN SOURCE GIS

Finally, you can remove MASK either with g.remove MASK
or by renaming it to another name for later re-use; for example,
g.rename MASK, mymask. Also r.mask can be used to remove the
MASK file.

Zero and NULL value management. GRASS distinguishes between 0
(zero) and no-data (NULL). While zero may represent a true value such as
temperature, NULL is used where no value is available. In some situations
you may want to modify the current values, such as setting a specific value
to NULL or setting NULL to a true value. Here we explain how to exchange
NULLs with a single other value. Later on, when talking about r.mapcalc
we introduce more complex replacement methods.

The NULL values can be managed using the module r.null. To change a
certain value (e.g. -9999) to NULL, the setnull parameter is used:

r.null mymap setnull=-9999

This will change the value -9999 to NULL in map mymap. To replace the
NULLSs by another number, the null parameter is used:

r.null mymap null=-9999

This will change NULL to -9999. Note that during import of raster data the
values to be considered as NULL can be specified. This is important because
other GISs may have a different NULL encoding.

Filling data holes in a raster map. Sometimes NULL values appear in map
areas where they need to be replaced. This can be done using two approaches:

w replace the NULL values with another value;
= fill the holes according to the hole-boundary values.

The first approach can be done with r.null as explained above. For the
second option, you can use the script r.£illnulls. It will internally fill
the holes using interpolated values from the no-data area boundaries using
s.surf.rst based spline interpolation. That means that the hole boundaries
are stored in a separate map which forms a set of “NULL lakes”. The values
for the “lakes” are interpolated and merged back into the original map. Only
the holes are filled with the new values, the original non-NULL values remain
unchanged.

It is important to realize that, depending on the shape of the NULL data
area(s), problems may occur due to an insufficient number of input cell values
for the interpolation process. Most problems will occur if an area containing
NULLSs reaches the map boundary. You will have to carefully check the re-
sult using r.mapcalc (generating a difference map to the input map) and/or
d.what.rast to query individual cell values.

Working with raster data 99
5.2. RASTER MAP ALGEBRA

Raster map algebra is a powerful tool for spatial analysis and modeling us-
ing raster data. In GRASS, map algebra is performed with r.mapcalc.
In principle, r.mapcalc is used in the following way:

newmap = expression(mapl, map2, ...)

where expression is any legal arithmetic expression involving existing raster
map layers, integer or floating point constants, and functions known to the
calculator. The expression can be provided in a command line mode enclosed
within quotes

r.mapcalc "newmap=expression(mapl, map2, ...)"

or you can type r.mapcalc, then enter one or more expressions at a prompt
(quotes are not necessary), and the expressions are executed after you type end:

r.mapcalc

mapcalc> newmapl=expressionl (mapl, map2, ...)
mapcalc> newmap2=expression2{map2, map3, ...)
mapcalc> end

The following operators are available in r.mapcalc:

% modulus (remainder upondivision)
/ division
* multiplication
+ addition
- subtraction
== equal
I= notequal
> greater than
< lessthan
>= greater than or equal
<= less than or equal
&& and
Il or
color separator into R, G, and B color portions

The following functions are available in r.mapcalc:

abs(x) return absolute value of x

atan(x) inverse tangent of x (result in degree)

cos(x) cosine of x (x in degree)

double(x) convert x to double-precision floating point

eval([x.y,...,]z) evaluates the values of the given expression,
pass results to z

exp(x) exponential function of x

exp(x,y) X to the power of y

100 OPEN SOURCE GIS

XMy alternative for x to the power y

float(x) converts x to single-precision floating point

if decision operator

if(x) 1, if x does not equal 0, otherwise 0

if(x,a) a, if x does not equal 0, otherwise 0

if(x,a,b) a, if x does not equal 0, otherwise b

if(x,a,b,c) a,if x>0, bifx equals 0, cifx <0

int(x) converts X to integer [truncates]

isnull(x) 1, if x equals “no data” (NULL)

log(x) natural log of x

log(x,b) log of x base b

max(x,y[,z...]) largest of the listed values

median(x,y[,z...]) determines median of the listed values

min(x,y[,z...]) determines smallest of the listed values

mode(x,y[,z...]) determines mode of the listed values

not(x) 1 if x is zero, 0 otherwise

rand(low,high) generates random number between the values
low and high

round(x) rounds X to the nearest integer

sin(x) sine of x (x in degree)

sqrt(x) square root of x

tan(x) tangent of x (x in degree)

r.mapcalc provides some additional, internal variables, which are related
to the “moving window” used for calculations:

x() current x-coordinate of moving window
y0 current y-coordinate of moving window
col() current col of moving window

row() current row of moving window

nsres() current north-south resolution

ewres() current east-west resolution

null() NULL value

The value NULL (no-data) is specified with null (). As denoted before,
NULL differs from 0 (zero).

Integer and floating point data. In map algebra operations, the resulting
raster type is defined by the type of the input raster maps and constants. The
result of an expression including integer maps and constants will be an integer
map; it will be a floating point map if at least one of the constants or input
maps is floating point. For example, when dividing two integer maps, it is
important to use multiplication by 1.0 to store the result as a floating point map
and preserve the decimal values. To illustrate this rule, we will add a constant
to an integer map:

mapcalc> newmapl = old_int_map + 123
mapcalc> newmap2 = old_int_map + 123.

Working with raster data 101

2 | a3 | a2 ~a
32 [26 | 25 i X

26 | 21 | 19

Figure 5.1. “Moving window” method for neighborhood operations in raster map algebra. The
raster cell value X of the new map is calculated from a 3x3 matrix of the old map

The resulting map newmapl will be stored as integer, while newmap2 will be
stored as floating point. To transform an integer map into a floating point map,
simply multiply it by 1.0 or use the float() or double() functions:

mapcalc> newmap = 1.0 * old_integer_map
mapcalc> newmap = float (old_integer_map)

The calculation of the “normalized difference vegetation index” (NDVI from
LANDSAT-TMS) is a good example of an application where the function of
integer maps needs to be stored as a floating point map:

mapcalc> ndvi = 1.0 * (tm4 - tm3) / (tmd4 + tm3)
mapcalc> ndvi = fleat((tm4 - tm3) / (tmd4 + tm3))

There is an alternative NDVI algorithm which uses a different function:
mapcalc> ndvi2 = 255.0 / 90.0 atan((tm4 - tm3) / (tmd4 + tm3))
The maps ndvi and ndvi2 are the new floating point raster output maps, tm3
and tm4 are LANDSAT-TMS channels used as integer input maps. Without

the multiplication by 1.0, the result would be saved as integer and important
information would be lost.

Examples of basic calculations. Cell-wise addition of two or more raster
maps is one of the common map algebra tasks. For example, we can add the
height of the buildings stored in a map buildings to an elevation model
stored in a map dem:

r.mapcalc "dem_with _buildings = buildings + dem"

Or we can calculate a weighted average of two maps (here decimal points are
used to ensure that the resulting newmap is stored in floating point format):

r.mapcalc "newmap = (5. * mapl + 3. * map2) / 8."

102 OPEN SOURCE GIS

Handling of NULL values in r.mapcalc. The basic rule to remember
when working with NULL data in map algebra is that operations on NULL
cells lead to NULL cells. For example, if one of the maps included in the
r.mapcalc expression has NULLs in the given area, the resulting map will
have NULLs in this area too (both for addition and multiplication functions). In
this way, NULL behaves differently from zero, which will have in this area ze-
roes for multiplication but not necessarily for addition. Therefore, if we want to
do operations with NULL data, we need to use a special function isnull ().
For example, if we want to fill the NULLs in mapl with values from map2
(in other words, when cell value in map1 is NULL, then write corresponding
value of map2, otherwise use value in mapl) we run:

r.mapcalc "new=if (isnull (mapl), map2, mapl)"

We can also apply a function of map2 to the replaced NULL values (in our
example we just add a constant 1000.0) as follows:

r.mapcalc "new=if (isnull (mapl), map2 + 1000., mapl)"

Ifyou don’tuse the isnull () function, the NULL values will remain in the
output map.

In another example we want to add the maps mapl and map2, where the
map2 contains NULLs. To get a new map with NULLs replaced by 0 (zero)
you have to enter:

r.mapcalc "new=mapl + if (isnull (map2), 0, map2)"

The above examples show that it is important to carefully evaluate the use of
the function 1 snull () when applying map algebra to raster maps containing
NULLs.

Working with “if”’ conditions. Various logical operations can be performed
with raster data by combining the operators with the if () functions. For
example, we can create a new raster newmap by applying the if () function
to an existing raster map and a set of other raster maps or values a, b, c:

m fmap = a then b else c is coded:
newmap = if {((map == a),b,c)

a jfmap is not equal a then b else c is coded:
newmap = if ((map != a),b,c)

® jfmap >= a then b else c is coded:

newmap = if ((map >= a),b,c)

Working with raster data 103

® fmap >= a and map <= b then c else d is coded:

newmap = if (((map >= a) && (map <= b)), c,d)

The 1 £ () functions can be combined to define more complex logical opera-
tions:

m Select the values 1 and 2 from map and save them in newmap while setting
all other values to 0:

newmap = if ((map==1),1,0) + if((nmap==2),2,0)

w Select the values 1 and 2 from map and save them in newmap as a binary
map (only the values 0 and 1, representing “yes” and “no”

newmap = if ((map==1),1,0) || if ((map==2),1,0)
m Conditions with NULL values:

— Change NULL values into a new value (if map=NULL then 3 else map):
newmap = if (isnull (map), 3, map)

— Change all cell values smaller than 5 into NULL value, all other values
to 5 (if map < 5 then NULL else 5):

newmap = if (map<5,null(}),5)

Neighborhood operations with relative coordinates. The usage of the rela-
tive coordinates of the moving window is another useful option provided by
r.mapcalc (see Figure 5.1). Neighboring cells can be used in calculations,
and larger, possibly asymmetrical moving windows beyond the common 3x3
matrix can be defined. An example:

newmap = oldmap(l,1] + oldmap(-1,-1]

will read only the offset cells bottom right [1,1) and top left f-1,-1] in an 3x3
matrix for calculating the new map. This option is applicable to different input
maps as well. Current row and column values can be integrated into expres-
sions using row () and col (), the current coordinates of the moving window
withx () andy ().

Note that the offset format is map [r, c], where r is the row (y) offset and
c is the column (x) offset. For example, map [1,2] refers to the cell one row
below and two columns to the right of the current cell, map [-2, -1] refers
to the cell two rows above and one column to the left of the current cell, and
map [0,1] refers to the cell one column to the right of the current cell.

104 OPEN SOURCE GIS

Using r.mapcalc on command line. In order to have cursor key support

when writing expressions, use r.mapcalc on the command line. Remem-

ber that the expression must be quoted in this case. To illustrate the usage

we will generate a map mosaic using the following rules. If the coordinates

in x and y direction are smaller than the given values, then store the values

from a map aspect in the resulting newmap, otherwise store the values from

elevation.dem:

r.mapcalc "newmap = if ((x()<599490 && y()<4920855),\
aspect,elevation.dem)”

d.rast newmap

In the above example the variable containing the current coordinates of the
moving windows was used. Note that color values of the original maps are not

transferred.

Creating MASK with r.mapcalc. A convenient, non-interactive way to
create MASK is to use r.mapcalc. As an example, we will create MASK that
will allow us to perform operations only in areas with a given range of eleva-
tions. We define an expression which assigns the value 1 to the cells that have
elevations between 1300 m and 1400 m in the given elevation.dem map
and NULLs will be assigned elsewhere. In the following sequence of com-
mands, we will display the elevation map (you need to have a monitor open),
build the MASK map, display the elevation map again to see the difference,
rename MASK to another name to disable it, and display again:

d.rast elevation.dem

r.mapcalc "MASK=if (elevation.dem > 1300 &&\
elevation.dem < 1400, 1, null{())"

d.rast elevation.dem

g.rename MASK,maskfile

d.rast elevation.dem

You will see that the second display command only shows the selected eleva-
tions. All raster map operations performed after setting MASK are performed
only in the non-masked areas. After MASK is renamed, the entire elevation
map is displayed again.

Evaluation of internal temporary variables. To perform multiple steps
within one expression, we can use the function eval (). It evaluates tempo-
rary variables without the need to store them in a raster map. The intermediate
steps are written within the eval () function, delimited by comma and the last
result is saved as a raster map. As a simple example, we will round a floating
point map mapl, store the result for each cell in a temporary variable “a”, and
subsequently perform a decision based on a condition (if rounded cell value of
map==3, then keep 3, otherwise set NULL):

Working with raster data 105
r.mapcalc "newmap=eval (a=round{map), if(a==3,3,null()))"

Note that in this simple example the result can be also calculated directly as:
r.mapcalc "newmap=if{ round(map)==3,3,null())"

In another example we select a range subset from a floating point map, while
the NULL values will be kept. This shows a more complex expression using
the variables “t1” and “t2” for temporary results (if a<=map<=b then c else d
while leaving NULL cells unchanged):

newmap = eval (tl=round(map), t2=if(((tl >= a) && (tl <= b))\
,c,d), if(isnull (map), map, t2))

Remember that when using the backslash (\) blank must not follow this char-
acter.

A useful alternative for value replacement is the module r.recode (see
Section 5.3.5). For complex value replacements this may be more convenient
than writing lengthy “if” statements in r.mapcalc.

As a final example of an application with internal variables we can generate
a tilted plane, dipping to the northwest with starting altitude 100 m (we have
to specify 98 m, as row and column each start with 1):

newmap = 98 + row() + col({()

Many interesting examples of r.mapcalc applications for GRASS4.* can be
found in Shapiro and Westervelt, 1992.

5.3. RASTER DATA TRANSFORMATION AND
INTERPOLATION

GRASS provides capabilities for transformation of raster data to vector and
site data model using various approaches, depending on the type of raster data
and application. In this section, we also explain how to interpolate raster data.

5.3.1 Automated vectorization of discrete raster data

If the raster data represent linear features or homogeneous areas these fea-
tures can be transformed to vector data representation. Two modules are avail-
able: r.line transforms raster line features to vector lines, while r.poly
transforms raster areas to vector polygons (see Figure 5.2).

Vectorizing lines. It is often necessary to thin (skeletonize) raster lines to a
single pixel width using the module r.thin before they can be transformed
to vector data. The lines are then vectorized using r.line. For example, to
vectorize the raster map streams, we run:

106 OPEN SOURCE GIS

Raster data Vector data
r.contour .
surfaces Lot isolines
r.pol
areas el - polygons
lines r.thin + r.line - lines

A

v.digit (manual digitizing)

Figure 5.2. Modules for transformation of different types of raster data to vector representation

.rast streams

.thin streams out=streams.thin
.line streams.thin out=mystreams
.vect mystreams col=blue

.vect streams col=red

0 R O

Note that the streams vector map is already available; you may use it for a
comparison. Due to the low resolution of the streams raster map, the result-
ing lines have a geometry that follows the original grid pattern, but in spite of
this deficiency, the stream network should fit well with the original streams
vector map displayed in red color. You may try to do the same later with a
stream map derived from a higher resolution elevation model.

Vectorizing raster polygons. A different method is needed for vectorization
of raster polygons. Such polygons may be generated by reclassification of a
raster map (see Section 5.1.5). Using the area borders, we can convert the
raster polygons to vector areas. Note that vectorizing of areas does not require
thinning. It can be done directly with r.poly. As an example, we vectorize
the map elevation.zones which we created above:

.rast elevation.zones

.poly -1 elevation.zones out=elevation.zones
.support elevation.zones

.erase

.vect.area ~r elevation.zones

o< R Q

The r.poly flag —1 smoothes corners when generating vector lines. The com-
mand v . support is required to build the topology of the vector file. We will
explain this in more detail in the next chapter. The command d.vect.area
with flag —r can be used to display color-filled vector polygons.

Working with raster data 107

532 Generating isolines representing continuous fields

If the raster data represent a continuous field, their vector representation is
by isolines, or in the case of an elevation surface, contours. The module for
generating isolines is r.contour. You can let GRASS determine the mini-
mum and the maximum isoline values, and provide only the contour interval
by the step parameter. To generate contours with a 100 m interval for our
elevation.dem, we can run:

.region rast=elevation.dem -p

.rast elevation.dem

.contour -qn elevation.dem step=100 out=contourl00
.vect contourl00

[o N e S o F(e]

The vector topology is built automatically and the resulting contour lines are
stored in the vector map contourl00 which can be displayed using d.vect.

A related question is how densely the contour lines should be generated.
On the one hand they should not hide an underlying map, on the other hand,
the information content should be sufficient to get good representation of the
surface. In case that there are no additional requirements on the contour in-
terval, the optimal value (step parameter) can be computed by the following
formula, developed by Imhof (in Hake and Griinreich, 1994:382):

A = nxlognxtano with 5.1
M
n = 100 +1 (5.2)

where A is the contour interval (vertical distance) [meter], o is the slope angle
class depending of relief type [in degree], M is map scale [scale number].
The value of o is selected based on the relief type:

® mountainous region: o = 45°
= hilly region: o = 25°
» plains: o0 = 10°

For example, in a hilly region (0t =25°), for a map scale of 1:50,000 the optimal
vertical distance is close to 15m. This value can be used in r.contour as
step parameter. To find out the average slope for the selection of 0. you may
calculate the univariate statistics of the s1ope map:

r.univar slope

The average slope is shown as “Arithmetic mean”. We will show later how to
generate a slope map from the elevation data. The mathematical descriptions
of the equations behind r.univar are given in the Appendix B.

108 OPEN SOURCE GIS

5.3.3 Raster data transformation to sites

For some applications, it is useful to transform the raster map into a sites
(points) map. GRASS provides the module r.to.sites for this purpose.
Use the —a flag to output the cell values as a decimal attribute rather than a
category number (which would be an integer).

The density of sites is controlled by the current region GRID RESOLU-
TION which you can adjust with g.region. To see how it works, we generate
a sites map from the raster map transport.misc as follows:

.region res=30 -p

.erase

.rast transport.misc

.to.sites -a transport.misc out=transport.misc
.sites transport.misc

0 R 0O QW

The sites are shown per default as grey crosses which can be adjusted as de-
scribed in Chapter 7 about site data processing. You can learn about additional
methods for generating sites from raster data, such as r.random, in this chap-
ter as well.

534 Interpolation of raster data and resampling

Transformation of a raster map layer to a different resolution is done inter-
nally whenever the region settings are changed. It is done by simple resam-
pling which assigns the same values found in the original map to the cells in
the resampled map, leading to a discontinuous surface. This approach has been
designed for rasters representing classes. When changing resolution of rasters
that represent continuous fields, interpolation should be used (Figure 5.3). In-
terpolation is also needed when filling gaps in merged raster data or when raster
data are patchy and contain NULL values that need to be replaced to achieve
continuous coverage.

Inverse distance weighted average (IDW) interpolation. Two modules
for IDW interpolation of raster data are available: r.surf.idw and
r.surf.idw2. Both modules compute the value at a grid point as a weighted
average of a given number of neighboring grid points (default number of points
is 12). The weight is depends on a distance between the computed grid point
and the given point (see the equation in Appendix B.2). The main difference
between the two modules is in the search method used for finding the neigh-
boring grid points. The module r.surf.idw uses a more efficient approach
and it also supports interpolation of data in geographic coordinates (latitude-
longitude). A new resolution for the resulting raster map should be set using
g.region before running the interpolation command.

Working with raster data 109

Figure 5.3. Difference between a) resampling and b) interpolation to higher resolution by RST

Regularized spline with tension (RST) interpolation. If there are large
gaps in the raster data, it is advisable to use splines for the interpolation.
If appropriate parameters are selected, the result will be much better than
with the IDW method. The splines interpolation is available for raster, vec-
tor and site data, as r.resamp. rst, v.surf.rst and s.surf.rst. Be-
cause in GRASS 5.3 (which has been used in this book) the raster version
r.resamp.rst was not sufficiently tested, we recommend transforming the
raster map into sites, using r.to.sites or r.random (see Chapter 7.1.2
and Chapter 12) and using the s.surf.rst module. As in the previous case,
the new resolution is selected using g.region before the module is executed.

Besides the interpolation, the s.surf.rst module can also calculate topo-
graphic parameters such as slope angles, aspect angles and curvatures (profile,
tangential and mean). For details about the spline interpolation see the Sec-
tion 7.3, Appendix B.2 and papers by Mitas and Mitasova, 1999, Mitasova and
Mitas, 1993 and Mitasova and Hofierka, 1993.

When using interpolation it is important to check the quality of the resulting
map, for example by computing the difference between the input and output
raster maps and by viewing the associated slope and aspect maps to identify
possible artifacts.

Bilinear interpolation. The bilinear interpolation is performed with
r.bilinear. The interpolation function with constant gradient (a plane)
is derived from the values of 4 points defining the cell centers in a given
rectangular area. It can therefore be applied only to the raster maps with
no NULL data values. The gradient of the interpolation function changes
discontinuously across lines intersecting the cell centers of the input raster, so
the method is useful only for small changes in resolution. For larger changes

110 OPEN SOURCE GIS

in resolution, a check board structure may appear. On the other hand, the
method is very fast and simple and has a special option for “wrap-around”
interpolation of latitude-longitude rasters.

Resampling. GRASS uses automatic resampling when the region resolution
is different from the resolution of the given raster map. Resampling can be
also applied to a raster map by r.resample. When resampling from lower
to higher resolution, the high resolution cells are assigned the same values as
the cell within which they are located. When resampling from higher to lower
resolution, the low resolution cell is assigned the value of the high resolution
cell which is located the closest to its center (nearest neighbor). Resampling
is designed for raster data which represent geometrical features, such as lines
and areas (raster maps with categories). If applied to raster maps representing
continuous fields, the resulting surface may have a checkerboard pattern (see
Figure 5.3).

53.5 Recoding of raster map types and value replacements

Sometimes we need to convert between different raster map types. The
module r.recode has routines for conversion between every possible com-
bination of raster type (e.g. INT to DOUBLE, DOUBLE to FLOAT, etc). The
recoding is based on the rules which are read from standard input (i.e., from
the keyboard, redirected from a file, or piped through another program). Stan-
dard output floating point raster data precision is FLOAT, with -d DOUBLE
precision will be written. The general form of a recoding rule is:

oldmin:oldmax:newmin:newmax

To simply convert a raster between types, for example from INT to FLOAT,
run the command with the following rule:

r.recode in=intmap out=fpmap << EOF
200:1500:200.0:1500.0
EOF

This will convert an INT raster map to a new FLOAT raster map with the same
range of values. To convert the map from INT to DOUBLE while simultane-
ously changing the range of values we can use:

r.recode -d in=intmap out=doublemap << EOF
200:1500:0.0005:0.000008
EOF

You will find additional alternatives for defining the rules in the r.recode
manual page. Note that in the above examples we use another UNIX method
to direct data such as the recode rules into the command r.recode. This

Working with raster data 111

method is very convenient, especially for script programming. In the first line
EOF (end of file) is specified, the module reads input unless the second EOF
appears.

Value replacement. In order to replace existing cell values with different
ones, you can again use the module r.recode. The formatting of the recoding
rules is the same as described above. In the following example, the old values
1, 2 and 3 are replaced by 1.1, 7.5 and 0.4 respectively:

r.recode in=oldmap out=newmap << EOF
1:1:1.1:1.1

2:2:7.5:7.5

3:3:0.4:0.4
EOF

Each value appears twice because the module expects ranges for the old and
new values to be specified. This value replacement method is often faster
than formulating complex “if” conditions with raster map algebra through
r.mapcalc.

54. SPATIAL ANALYSIS WITH RASTER DATA

A wide range of spatial analysis tasks can be performed using GRASS raster
modules. Map overlay, generation of buffers, finding of shortest paths, and
deriving topographic parameters can be combined to analyze complex spatial
relationships. We describe some of the modules in the following section.

54.1 Map statistics and neighborhood analysis

To compute univariate statistics for a raster map use r.univar. It com-
putes the number of cells, minimum, maximum, range, arithmetic mean, vari-
ance, standard deviation, and the variation coefficient. As an example, we
apply it to the map elevation.dem:

g.region -p rast=elevation.dem
r.univar elevation.dem

[...1]

Number of cells: 292317
Minimum: 1066

Maximum: 1840

Range: 774

Arithmetic mean: 1353.67
Variance: 31343.4

Standard deviation: 177.041
Variation coefficient: 13.0786 %

112 OPEN SOURCE GIS

Please refer to Appendix B for equations. The area statistics for each cate-
gory or floating point range is computed by r. stats, which we have already
described in Section 5.1.6.

Neighborhood analysis. The neighborhood operators determine a new value
for each cell as a function of the values in its neighboring cells. All cells in
a raster map layer, except the cells at the map boundaries, become the cen-
ter cell of a neighborhood as the neighborhood window moves from cell to
cell throughout the map layer. The following neighborhood operators, with
user defined sizes of the moving window, are available in r.neighbors (see
Appendix B for equations):

m average: the average value within the neighborhood;

s median: the value found half-way through a list of the neighborhood’s cell
values, when these are arranged in numerical order;

®# mode: the most frequently occurring cell value in the neighborhood;
® minimum: the minimum cell value within the neighborhood;
& maximum: the maximum cell value within the neighborhood;

m stddev: the statistical standard deviation of cell values within the neighbor-
hood (rounded to the nearest integer);

a sum: sum of cell values within the neighborhood;

a variance: the statistical variance of cell values within the neighborhood
(rounded to the nearest integer);

a diversity: the number of different cell values within the neighborhood;

m interspersion: the percentage of cells containing categories which differ
from the category assigned the center cell in the neighborhood, plus 1.

As an example, we can compute a simple “biodiversity” map as follows:

r.neighbors vegcover out=veg.diversity method=diversity size=5
d.rast veg.diversity
d.legend -m veg.diversity

You can experiment with different neighborhood window size to see its impact
on the resulting map. Please refer to the manual page of r.neighbors for
further details.

To find an average of values in a cover map within areas assigned the same
category numbers in a base map, you can use r.average. For example, we
can compute the average elevation for each field as:

Working with raster data 113

r.average base=fields cover=elevation.dem ocut=elevation.byfield
d.rast elevation.byfield

To compute the average of values which are stored as category labels, we need
to use the flag —c. In this case, the category label for each category in the cover
map must be a valid number (integer or decimal). For example, to compute the
average K factor (soil erodibility factor) for each field, we run:

r.average -c base=fields cover=soils.Kfactor out=Kfact.byfield
d.rast Kfact.byfield

A module working in a similar manneris r.median which finds the median
of values in a cover map within areas assigned the same category value in a user
specified base map.

The area of a surface represented by a raster map can be computed by
r.surf.area which calculates both the area of the horizontal plane for the
given region and an area of the 3D surface estimated as a sum of triangle areas
created by splitting each rectangular cell by a diagonal.

Volume calculation. To compute volume of an object defined by a surface
(or its subsection defined by clumps) and a horizontal plane, you can use
r.volume. In our example, we assume that a football stadium with a park-
ing lot and related facilities will be built in Spearfish. For the construction the
earth’s surface has to be excavated to a minimum depth of 5 m. To calculate the
costs for the excavation work, we have to find the corresponding soil volume.
The corners of the stadium area may be known from GPS measurements. To
create a raster map of this area, store the coordinates of the stadium in the file
stadium. txt in the following format (UTM coordinates for an area within
Spearfish city):

A

591316.80 4926455.50
591410.25 4926482.40
591434.60 4926393.60
591341.20 4926368.70
= 1 stadium

This will define a raster area by its corner points labeled as “1 stadium”. As
we operate only in Spearfish city, you may zoom into the city area before
continuing. To zoom and import the raster polygon coordinates file, run:

.rast roads

.zoom

.region -pa res=1

.in.poly in=stadium.txt out=stadium
.erase

O 8 QO Q0 Q

114 OPEN SOURCE GIS

d.rast roads
d.rast -o stadium

The flag —a aligns the region to the resolution, i.e. slightly extends it so that the
resolution is a whole number. The resulting map contains the desired stadium
area. We can now calculate the volume of the material that needs to be taken
out (note that the map elevation.dem is only at 30 m resolution and an
integer map, so the results will not be very accurate). Because we need to
compute the volume only for a certain subarea, we will first set MASK to the
area defined by the raster map stadium. Then, we “normalize” the excavation
to have the bottom of the volume at zero elevation. This can be done easily
by subtracting the desired minimum elevation from the DEM. We can find
the minimum by running e.g. r.univar after masking all areas except the
stadium:

g.copy stadium, MASK
r.univar elevation.dem
[...]

Minimum: 1120
Maximum: 1139

[...]

When using MASK the elevation statistics is calculated only for the stadium
area. We store the portion of the DEM as defined by the current region into
a new map and subtract the minimum height of the terrain and the desired
excavation depth. Because part of the volume is below zero elevation now, we
“lift” it up to achieve zero elevation as minimum. Then we can calculate the
volume:

r.mapcalc "excavation=elevation.dem - 1120 + 5"
d.rast excavation
r.univar excavation

[...]

Minimum: 5

Maximum: 24

(...]

r.volume excavation

Cat Average Data # Cells Centroid Total
Number in clump Total in clump Easting Northing Volume
1 12.17 107461 8832 591375.50 4926425.50 107461.00

Total Volume = 107461.00

g.remove rast=MASK

The soil volume to be excavated for the stadium is roughly 107,400 m?,

Working with raster data 115

Cross-category reports. We can easily generate reports for two or more
maps which include occurrence of categories in the second map for each cat-
egory in the first map. As an example, we can create a report which includes
the areas in each land use category listed for each field owner category:

g.region -p rast=fields

r.report fields,vegcover units=h
[...]
|IMAPS: SCS farmfields (fields in PERMANENT) |
| Vegetation Cover (vegcover in PERMANENT) |

| #ldescription | hectares|
e e e e |
| 11C. Smith#l | 64.000]|
| i |————— |
|]1}irrigated agriculture. | 4,.000]
| |2jrangeland. | 57.000]
| |6ldisturbed. | 3.000/|
== e e e e e | ——=—— I
i 2|C. Smith#2 | 60.000|
| e |- |
| lljirrigated agriculture. | 48.000]
| |{2{rangeland. . . . | 8.000]
| |4 |deciduous forest | 4.000]
[

-]

If you want to build a table using a set of maps, you can select them with
g.mlist and send the list to the module in one line:

g.mlist type=rast pattern="soil*" sep=,
MAP=‘g.mlist type=rast pattern="soil*" sep=,"‘
r,report map=$MAP

The * ° characters have a special meaning in a shell (on the command line
or in scripts). A command enclosed by these characters is executed and the
message sent by the command can be stored in an environmental variable (in
our case MAP) as above.

54.2 Overlaying and merging raster maps

As we have already mentioned, it is possible to overlay raster maps visually
in the GRASS monitor using d.rast —o. However, to store such a raster map
overlay in a new map, a different method is needed. To merge two maps into
a single new map, use r.patch. It requires the input maps and a name for
the new output map. The specified input map order determines the result: The
NULL areas in the first map (which is on top of the virtual map stack) are filled
with values from the second map and so forth for further maps. Overlaying or

116 OPEN SOURCE GIS

Figure 5.4. Map composite of roads, land use map and elevation model created with r.patch
(Spearfish area)

combining adjacent image raster maps with large number of colors is a slight
problem, because the GRASS display color model significantly slows down
when more than 8000 colors are used in a map. In case of 24 bit images, such
as color aerial photos, the color channels R, G, B are usually kept separated.
A workaround for patching high-color maps together without slowing down
GRASS is the script i.image.mosaic. It merges the color tables of adjacent
maps accordingly while patching the maps.

For example, multiple adjacent digital elevation models can be imported and
merged as follows:

.in.arc 1n=392619.asc out=392612.deml2
.in.arc in=392620.asc out=392620.deml2
.in.arc in=392626.,asc out=392626.deml2
.patch in=392619.deml2,392620.deml2,392626.deml2 out=deml2.5

[a e S o S o

To modify the color table to a suitable one for a DEM (from green over yellow
to red), run:

r.colors map=deml2.5 col=gyr
d.rast deml2.5

Working with raster data 117

In another example, we will compose several maps within the same area.
Except for the Spearfish map elevation.dem, all maps contain NULL val-
ues which are filled by the underlying map(s) (in case that they contain non-
NULL values in these particular cells):

r.patch in=roads,railroads, fields,elevation.dem out=map.comp
d.rast map.comp

Here, the roads network is on top, followed by the other maps. The DEM is
filling all areas not being filled by other maps (see Figure 5.4). Map overlays
can also be done with r.mapcalc. The “r.mapcalc tutorial” (Shapiro and
Westervelt, 1992) describes several examples.

Figure 5.5 shows the differences between a map merge using r.patch or
r.mapcalc respectively. The module r.patch patches on a basis of over-
lays, while r.mapcalc combines the raster map layers base on a user defined
expression, as described in the Section 5.2.

For validation, the module r.cross checks the plausibility of merged maps
against the input maps. Using the interactive mode of r. cross, you first have
to enter the names of the source maps which have been merged earlier (at
least two). When all source maps are specified, press <ENTER> one more

NS
”""””"""’ M,
A A T A

gy r
T

Wy N
TSNS

— 4, -, ",/ if, ... (formula)
r.mapcalc

r.patch

i
NN SRS TSSSTSS ST SN,
l”""l”"’l"’ 77
S AT AT AT M A F 77/
lll’"ll’l"ﬂ
""‘r;""

L L Lk
""""”"" Y 7777777

Figure 5.5. Raster data merging with r.patch (left) and r.mapcalc (right)

118 OPEN SOURCE GIS

time to finish the dialog mode. Now you have to specify a name for the output
control map containing the resulting validation. This map can be displayed and
checked using d.what .rast to see whether the results are equivalent to the
source data or not. In case that you want to display only the table with category
labels (attributes), use r.cats in conjunction with the r.cross output map.

543 Buffering of raster features

A method to widen linear or area features in space is buffering. The imple-
mentation in the GRASS r.buffer module allows us to define one or several
buffers with different spatial extents.

As an example, we want to find out the noise distribution along the interstate
for the Spearfish area. To illustrate the use of buffers we use a simplified model
which does not take wind into account. We want to know which residential
areas are influenced by different levels of noise. The result may determine
whether noise protection walls have to be installed or not. The buffer zones
may be 250 m (high disturbance), 500 m (moderate disturbance) and more
than 500 m (low disturbance).

First, we have to select the interstate and store it into a new map. This can
be done, for example, with r.mapcalc (if-condition) or r.reclass. Here
we use the latter command to demonstrate another way of entering the class
values. First, we check the category value of the interstate with r.report,
and then we create the raster map interstate:

r.report roads
r.reclass roads out=interstate << EOF
1 = 1 interstate
EOF
d.rast interstate

We can now apply the buffer zones:

.buffer interstate out=interstate.buf dist=250,500,2500
.rast interstate.buf

.poly interstate.buf out=interstate.buf

.support interstate.buf

4R o

We have selected the last buffer to be 2,500 meters in order to reach “quasi
infinity” (of course, that’s highly dependent of the wind direction). Finally,
we have to intersect the buffered interstate map with the landuse map which
contains the residential areas:

r.report landuse
r.mapcalc "noise=if (landuse==1, interstate.buf, null(})"

Using some additional commands, we can look at the noise map. The num-
bers as drawn by d.rast.labels represent the categories 2 (0 m to 250 m),

Working with raster data 119

Figure 5.6. Spearfish noise impact map from interstate (simple noise buffer model)

3 (250 m to 500 m) and 4 (500 m to 2500 m) which we have used for the
buffering:

.rast
.vect
.rast
.vect

Qo 0o

.rast.

noise

roads col=grey

-0 interstate

interstate.buf col=green

labels noise col=black attr=cat

echo "Noise impact from interstate" | d.text col=black line=18
d.barscale at=5,90

The resulting map shows only those residential areas which are influenced by
the interstate according to the noise definition (see Figure 5.6). You can also
query the map directly or print a report of affected residential area sizes (filter-
ing all NULL values):

d.what.

rast

r.report -n noise units=h

120 OPEN SOURCE GIS

544 Cost surfaces

Cost surfaces are raster maps showing the cumulative costs of moving be-
tween different geographic locations in an input raster map. Since GRASS 5.3
does not provide vector network analysis tools (but GRASS 5.7 will), this is an
approach to reach similar functionality. Each raster cell in the input raster map
will contain a value which represents the cost of traversing that cell. r.cost
will produce an output raster map layer in which each cell contains the lowest
total cost of traversing the space between each cell and user-specified points.

Let us start with an application — assume a wildfire in the Spearfish region
at coordinates 597192E and 4915574N reported by an automated system. The
fire was detected near an unimproved road in the Black Hills National Forest.
Our task is to notify the fire brigade either in Spearfish (city north-west in our
area) or Whitewood (village north-east in our area). The decision is influenced
by two parameters: the potential speed to reach the destination depends on the
roads condition and the distance to the fire. To solve the problem we have to
calculate a “cost surface”.

The roads map is available as a vector map. We transform the vector map to
a raster map with 50 m resolution. For that, we change the current resolution
to 50 m, then transform the vector map to a new raster map:

.region vect=roads res=50 -pa
.erase

.vect roads

.to.rast roads out=roads50m
.rast roads50m

0 < 0 QW

Note that the optional flag —a of g.region aligns the region boundary coor-
dinates according to the resolution: the current region is slightly expanded to
get a whole resolution number, in this case 50 m.

To store the location of the fire in a fire map, we use a sites module
s.in.ascii which will be explained later in more detail in Chapter 7:

echo "597192 4915574 1" | s.in.ascii sites=fire
d.sites fire col=red

The echo command is a UNIX command to display a line of text. In this case
we pipe the coordinates string to the module s.in.ascii which is effectively
the same as storing the coordinates string into a text file and subsequently im-
porting it. Next we have to reclass the roads50m map to obtain a map of
potential specific travel time. This may be the inverse of the potential speed in
km/h depending on the road quality. The reason to use the specific travel time
instead of the speed is that r.cost considers high values as costly.

For the potential speed, you can use r.report to get the roads qual-
ity labels. Since reclassifications would only lead to integer maps, we use

Working with raster data 121

r.recode to replace the road quality in roads50m with the specific travel
time (which is a floating point value) in a new map. An example to understand
the specific travel time: Considering 100 km/h as potential speed on the in-
terstate for a fire brigade (label 1 in roads map), we calculate 1/100 = 0.01
h/km as specific travel time. To store these recode rules, we create a table
roads . recode for all calculated values. This will replace the roads quality
values with the specific travel time in a new map (refer to Section 5.3.5 for
details):

1:1:0.0100:0.0100
2:2:0.0125:0.0125
3:3:0.0167:0.0167
4:4:0.0200:0.0200
5:5:0.0500:0.0500

Based on these recode rules, we generate a new map roads.travel:

cat roads.recode | r.recode roads50m out=roads.travel
r.report roads.travel

To make the map more meaningful, we define a new color table with high
potential speed represented as green and the lowest potential speed as red with
yellow in between:

r.colors roads.travel col=rules
0.0 green

0.0167 yellow

0.1 red

end

d.rast roads.travel
d.sites fire col=red

To ensure that the full data range is covered, we define a lower specific travel
time than the actual minimum value as green and a higher value as red. The
value in the middle is taken from the above recode table.

The new map of specific travel time is the input to the cost surface module,
which also requires the location of the wildfire. The costs to travel along the
roads based on the inverse speed are then calculated from this location. Again,
we redefine the color table for cost map, to make the map more communicative:

.cost -kv in=roads.travel out=roads.cost coord=597192,4915574
.colors roads.cost col=gyr

.rast roads.cost

.sites fire col=red

The fire brigade in Spearfish may be located at 590772.6E and 4926787.3N
while for Whitewood it may be at 608297.8E and 4924206.0N. By visual in-
spection of the resulting cost map, mouse querying or using r.what you can

[RN I

122 OPEN SOURCE GIS

find out which fire brigade is closer in terms of distance and potential speed to
reach the fire. The result depends on the parameters used to prepare the input
maps. Using r.what is probably the best idea, as we can directly enter the
above coordinates of the fire brigades:

r.what roads.cost east_north=590772.6,4926787.3
590772.614926787.3117.8173332214

r.what roads.cost east_north=608297.8,4924206.0
608297.814924206.0117.7000617981

The result tells us that the fire brigade in Whitewood can reach the wildfire
slightly faster (costs are lower) according to our definitions.

Of course we are also interested in getting the optimal route through the
route network. The optimal routing module r.drain, which analyzes the cost
surface, needs the coordinates of the fire brigades. Additionally we specify the
flag —n to count the number of cells along the path (a simple indicator for the
distance):

r.drain -n in=roads.cost out=spear.route\
coord=590772.6,4926787.3

d.rast spear.route

r.drain -n in=roads.cost out=white.route\
coord=608297.8,4924206.0

d.rast white.route

d.vect roads col=red

This delivers two path maps with accumulated numbers of cells, indicating the
distance. Precise distance measure could be done by converting the raster lines
to vector lines and generating a related line length report.

Note that r.cost only calculates along non-NULL values. In case that a
starting point falls into a NULL area in the input map, you have to replace the
NULL values with something meaningful for that application (in the above ex-
ample a minimum speed). Eitheruse r.mapcalc withan isnull () function
to replace the NULL values, especially when you want to replace the NULLSs
with another underlying map, or use the r.null module when replacing the
NULLs with a single value.

In our example we did not take into account that Deadwood, the closest
town to our wildfire, is located south-east of the area. Another drawback is
that some roads that appear connected on the raster map do not cross in reality,
for example, if there is an overpass over the highway.

Computing a distance map. To compute the shortest distance of each pixel
from raster lines, such as determining the shortest distances of households to
the nearby road, you can use cost surfaces with cost value 1. The calculation
is done with r.cost as follows (example for Spearfish region):

Working with raster data 123

.region rast=roads -p

.mapcalc "area.one=1"

.cost -k input=area,one output=distance start_rast=roads
.mapcalc "dist_meters=distance * (ewres() + nsres())/2."
.rast dist_meters

.zoom

.rast.num dist_meters

Q0 QR R RQ

The map area.one is used as cost information, for calculating distances we
use costs of 1. The distances are calculated from the roads network. Note that
d.rast.num which prints the cell values as text labels into raster cells, only
works when zooming into a map portion. The resulting distance map carries
distance information in number of cells to the closest road. To calculate a real
distance map (in meters), the cell values have to be multiplied with the cell
resolution. In our example, we assume square pixels with identical resolution
in north-south and west-east directions.

54.5 DEM and watershed analysis

Topographic analysis (or surface analysis) provides a wide range of param-
eters that describe the geometrical properties of the studied surface, such as:

a) summary parameters and profiles, for example volumes, surface areas,
roughness, fractal dimension;

b) point parameters describing the geometry of the surface in the given point
such as slope, aspect and different types of curvatures;

¢) flow parameters based on integration along flowlines, such as slope length,
upslope contributing area, watershed (basin), stream network;

d) ray tracing parameters based on lines (rays) emitted from or towards the
surface, such as line of sight, insolation.

We will cover a subset of the above mentioned tasks in the following para-
graphs.

Slope, aspect and curvatures. The module r.slope.aspect generates
raster map layers of slope, aspect, curvatures and partial derivatives from a
raster map layer of true elevation values. The slope values are calculated per
default in degrees, or you may change the units to percentage using the pa-
rameter format. In case you are working in a coordinate system that uses
feet (or units other meter), the module automatically converts the horizontal
distances to meters. You must use parameter zfactor to convert elevation to
meters to obtain correct values of slope, curvatures and derivatives. The aspect
values represent the direction of flow (they point downslope) measured in de-
grees from east, increasing counterclockwise: 90° is north, 180° is west, 270°

124 OPEN SOURCE GIS

is south and 360° is east. Additionally, you can calculate a profile curvature
map (measured in the direction of the steepest slope) and a tangential curvature
map (measured in the direction of the contour tangent). For exact definition of
slope, aspect and curvatures see the equations in the Appendix B.3. Further
explanation and applications of these parameters in relation to DEM quality
assessment and modeling of processes is in Chapter 12. For general explana-
tion of curvatures see, for example, Alexandrov et al., 1989 or Mitasova and
Hofierka, 1993.

The module computes topographic parameters based on approximation of
the terrain surface by a second order polynomial. This leads to the computation
of partial derivatives, needed for estimation of slope and aspect, as weighted
averages of elevation differences in the 3x3 neighborhood of the given grid
point (see Appendix B.3). The equations are also known as Horn’s formula
(Horn, 1981). When applied to DEM represented by integer meters the as-
pect is biased in certain directions and reinterpolation to floating point DEM is
recommended (see Section 12.1).

For example, to compute slope, aspect and profile curvature using the ele-
vation map in the Spearfish data set simply run:

r.slope.aspect el=elevation.dem slope=slope asp=aspect\
pcurv=profcurv

Find more application examples of this command in Chapter 12.

Flow parameters and watersheds. Flow parameters are derived by flow-
tracing and are “integral” rather than “point” parameters (the value at each cell
is computed based on a sum of values from other cells — in our case along the
flowpath). Flow routing is based on flowlines, which are curves perpendicular
to contours with direction given by aspect (minus gradient). The basic flow
parameters are:

m watershed (basin) areas (upslope area for a given outlet);
B stream network;
» flowpath length (also hillslope length);

& flow accumulation (also flowline density, used to compute upslope con-
tributing area).

Numerous algorithms have been developed for flow routing, based on the ap-
proach for estimation of the steepest slope direction and distribution of “water”
to the downslope cells:

» single flow direction (SFD, D8) moves flow into a single downslope cell, it
isused by r.watershedand r.terraflow;

Working with raster data 125

s D-infinity or vector-grid approach used by r.flow;

» multiple flow direction (MFD) partitions the flow into 2 or more downs-
lope directions, it is used by r.terraflow; r.topmodel, and the
r.mapcalc flow implementation described in “r.mapcalc tutorial”
(Shapiro and Westervelt, 1992);

m bivariate (2D) flow used by r.hydro.CASC2D and an experimental mod-
uler.sim.water.

See Chapter 12 for examples of the practical applications of flow routing and
comparison of the different approaches.

Watershed basin analysis is performed with r.watershed. As an example
we calculate watershed basins from the elevation map in Spearfish region:

r.watershed el=elevation.dem basin=basins thresh=1000\
stream=rivers

d.rast rivers

d.rast basins

d.rast.labels basins

The threshold parameter is required to define the minimum basin size through
cell numbers or overland flow units. The stream segment values correspond to
the watershed basin numbers. Basins which are incomplete within the current
region are omitted. This module does not require filling of depressions in DEM
prior to its application because it uses shortest path algorithm to traverse the
elevation surface to the outlet. In applications to new type of DEMs, based on
LIDAR or radar surveys, this often leads to more accurate results compared to
traditional methods.

For the flow accumulation and drainage direction analysis, the
r.watershed module provides the option to use a binary depression (sinks)
input map which contains lakes or other depressions in landscape that are large
enough to store surface runoff. Such a depression map can be generated with
r.fill.dir within two steps. First the DEM is filled, then the resulting
filled DEM is subtracted from the original elevation map using r.mapcalc,
with the result binarized on the fly using if-condition. The binary difference
map is the depression map for r.watershed. In some cases, such as for the
Spearfish elevation map, it is necessary to run r.£i11.dir repeatedly (using
output from one run as input to the next run) before all depressions are filled:

.fill.dir in=elevation.dem elev=elevation.filll dir=directl

.fill.dir in=elevation.filll elev=elevation.fill2 dir=direct?2

.fill.dir in=elevation.fill2 elev=elevation.fill3 dir=direct3

.mapcalc "depressions.bin=if ({elevation.dem - \
elevation.fill3)< 0., 1, 0)"

d.rast depressions.bin

[T T o S

126 OPEN SOURCE GIS

Because the D8 algorithm used in r.watershed is not suitable for dispersal
flow on hillslopes, the module r.flow should be used for applications where
overland flow pattern is needed. The program allows us to trace flow upslope or
downslope and compute raster map layers representing flowline accumulation,
flowline length, and a vector map for flowlines.

For computation of flow accumulation from massive DEMs that cannot be
handled by r.watershed use the new r.terraflow module (Arge et al.,
2003). This module is also useful for generating smooth flow pattern over hill-
slopes using the MFD option with the possibility to switch to D8 single flow
direction (SFD) routing for extracting the streams. You can learn more about
flow tracing and watershed analysis in Chapter 12, which includes several ap-
plications related to land use management.

Geomorphology. The GRASS module r.param.scale extracts terrain
parameters from a DEM with parameter feature. The morphometric fea-
tures which are calculated are peaks, ridges, passes, channels, pits and planes.
The resulting map depends on the moving window size. As an example, we
extract morphometric features from the Spearfish elevation map:

r.param.scale elevation.dem out=morphology size=7 param=feature
d.rast morphology
d.legend -m morphology

The resulting map contains the above mentioned categories. If you plan to
use this module for a serious research or applications we suggest that you read
Wood, 1996, which provides detailed explanations and equations used in the
module.

Sun illumination and solar energy maps. Many earth processes are in-
fluenced by the received solar energy. In environmental modeling, incoming
radiation is needed as an input for evapotranspiration models; in urban plan-
ning and design, it is important for designing buildings and parks. For solar
illumination effects and potential radiation calculations, GRASS provides two
modules: r.sunmask to calculate a cast shadow map, and r. sun to calculate
solar radiation (irradiance and energy) maps.

The module r.sunmask uses the SOLPOS2 algorithm from NREL (Na-
tional Renewable Energy Laboratory) to calculate the position of sun in the
sky for a given date, time, and a location on earth. You may use this feature for
other purposes in case you need the sun position (r.sunmask provides a flag
-s to calculate the sun position and exit then). For example, we can compute
the cast shadow map in our Spearfish area for November 29, 2001 at 11:15h
as:

r.sunmask -v elevation.dem out=shadow year=2001 month=11\
day=29 hour=11 minute=15 sec=0 timezone=-7

Working with raster data 127

As mentioned, the sun position and date calculation results from r.sunmask
may be used as input for r.sun (Hofierka and Stri, 2002b, Sdri and Hofierka,
2004), which requires the latitude and the day-of-the-year for the given loca-
tion as input:

r.sun elevin=elevation.dem aspin=aspect slopein=slope 1in=2.5\
alb=0.2 beam_rad=b80 diff_rad=d80 refl_rad=r80 insol_time=it80\
lat=44.4342 day=80

The radiation output maps b80, d80, and r80 contain direct (cloudless direct
beam radiation), diffuse, and reflected radiation for the given day, respectively.
The sunshine duration is recorded in 1£t80 map. Optionally you can incor-
porate a shadowing effect of terrain using the —s flag. In mountainous and
even hilly areas this can lead to very different results! Note that calculating the
shadowing effect of relief can be computationally demanding.

Recall that you can get the map center coordinates for the current region
with:

g.region -c
g.region -1

The first flag —c reports these coordinates in the current coordinate system,
while the second flag -1 reports in latitude-longitude. See Section 12.2.3 later
on for another application with r.sun.

Synthetic DEMs. To support terrain analysis, GRASS provides the module
r.surf.fractal to create synthetic elevation models of selected character-
istics (see Wood, 1996). The elevation models are created based on a given
fractal dimension (Mandelbrot, 1983). This dimension D lies between the Eu-
clidian dimensions 2 (plane) and 3 (volume), the closer D is to 3 the more
rugged is the generated relief. We can compute a synthetic DEM with dimen-
sion 2.01 and display it as a shaded relief map as follows:

.region res=50 -p

.surf.fractal out=fractdem.201 d=2.01
.info fractdem.201

.colors fractdem.201 col=gyr

.rast fractdem.201

.slope.aspect fractdem.20l as=aspect.201
.his h=fractdem.201 i=aspect.201

Q8 QR B8Q

More structured elevation models can be obtained by increasing the fractal
dimension D given as a parameter d.

Line of sight. The line of sight analysis creates a viewshed for a specific
point in an area based on the digital elevation model. The module r.los gen-
erates a raster map output with the cells that are visible from a user-specified

128 OPEN SOURCE GIS

Figure5.7. Visibility impact analysis of sample windpower plant east of Spearfish (cross north-
west on the map, east of Spearfish). The visibility map is overlayed over the elevation model,
and it is displayed together with the vector roads map

observer location at a given altitude over the ground. The output map cell val-
ues represent the vertical angle (in degree) required to see those cells from the
observer location. We introduce the usage of this module with an example:

Suppose that there is a plan to build a wind power plant east of Spearfish at
coordinates 593670E and 4926877N. Concerns about visual and noise impacts
may arise for the residents in Spearfish, and our task is to find out where the
50 m high power plant will be visible. For the sake of simplicity, assume that
sound propagates similarly to light. To perform this type of analysis, we can
use a “line of sight” method implemented in the module r.los. Note that the
module does not include any wind direction algorithm which may be needed
to further analyze the noise distribution. We use the elevation model as an
input for analysis, specify the coordinates and the height of the power plant.
The max parameter is needed to define the maximum visibility distance (here
50 km):

r.los in=elevation.dem out=plant.los coord=593670,4926877\
obs=50 max=50000

d.rast elevation.dem

d.rast -o roads

Working with raster data 129

d.rast -o plant.los
d.barscale -m

The results show that the wind power plant is not visible in Spearfish, but
widely in the other directions (compare Figure 5.7). Further impact studies
would be required in the real world to identify the implications of planning a
wind power plant. Potential wind power and other impacts have to be analyzed
as well as other issues. Figure 5.8 shows a simplified planning procedure to
find a location for a windpower plant. The wind power conditions may be
coded in r.mapcalc to derive the final map from a set of input maps.

5.4.6 Landscape structure analysis and modeling

Because we could not cover every command and capability useful for pro-
cessing and analyzing raster data, we would like to encourage you to further
explore additional modules, such as r.le commands (Baker and Cai, 1992;

Landuse
Analysis of prevalent stress

/ "\

conflict potential conflict potential conflict potential
very high high low

A
power density of
wind
< 100 W/m? 100-180 W/m? >180 W/m?
Y Y l l l
forbidden area with restrictions favored area preferred area

\ i power plant

planning map

Figure 5.8. Simplified planning procedure to find a location for a windpower plant

130 OPEN SOURCE GIS

Baker, 2001) for quantitative analysis of landscape structure: r.le.patch,
r.le.pixel,r.le.setup,r.le.trace; r.topmodel, and r.topidx

for hydrologic modeling, or r.ros for wildfire spread simulation. For com-
plete list of modules see the GRASS users manual called by g.manual.

NOTES

1 Spearfish data set related documents,
http://grass.itc.it/data.html

Chapter 6

WORKING WITH VECTOR DATA

The vector data model is used for representation of geographic phenomena
as geometric objects composed of points, lines and areas. Lines are used for
roads, railroads, streams, or utility networks, while areas can represent soil
types, land use categories, lakes, or zoning in urban areas. Vector data are
stored using their coordinates. In GRASS, the vector data model includes the
description of topology.

At the time of writing this book, the vector data support is undergoing sig-
nificant changes. This chapter reflects the GRASS 5.3 vector capabilities that
are somewhat restricted. Improved tools with 3D vectors and direct DBMS
support are under development for the GRASS 5.7 version.

For the description and import of vector data, please refer to Section 4.2.2.

6.1. DIGITIZING VECTOR DATA

A paper map can be converted to digital form by manual digitizing. In
general, there are two ways to digitize a map:

® using a digitizing board or
s digitizing heads-up (on screen).

In the first case, the map is placed on the digitizer board, which provides
a special digitizing mouse. The corners are selected by a mouse click and
their respective coordinates are entered using the keyboard. This process is
called registering a map. Then the lines and points on the map are digitized
using a mouse. The advantage of this method is that the user always sees the
entire map. However, the high cost of the equipment and the possibility that

132 OPEN SOURCE GIS

the map could be shifted during the digitizing, if it is not properly mounted,
are significant disadvantages. Furthermore, the paper map must be free of
distortions to prevent displacements.

On-screen digitizing requires a scanned and geocoded raster map that
is displayed in the GRASS monitor. All features will be digitized using
the mouse. It is not necessary to register such a map because it is already
geocoded. The advantage of this method is the possibility to zoom in and thus
achieve an improved accuracy. Apart from an access to a scanner, no additional
equipment is needed. The major disadvantage is the more difficult orientation
on the map.

The following section deals only with heads-up digitizing using mouse. The
installation of digitizing boards is described at the GRASS Web site.

6.1.1 General principles for digitizing topological data

To explain the digitizer module, we consider an example of vectorizing fea-
tures from a scanned topographic map. We assume that the map was scanned,
accurately geocoded and imported into GRASS in raster format (see Sec-
tion 4.1.4 on geocoding scanned maps). Although it may be possible to au-
tomate the vectorization of a raster map using r.line or r.poly (see Sec-
tion 5.3.1), problems often arise from overlapping lines, dots, map signatures
etc. and manual digitizing is necessary.

There are few general recommendations for digitizing map features which
can minimize the potential accuracy problems. The recommendations are
mostly based on the fact that to make the map readable some features are ex-
aggerated compared to their their size at a given scale:

= Line features should be digitized along their center-line, e.g. along the
middle of a road. A line label point should be placed on the line;

8 Area features should be digitized by following the center-line of area
boundary lines. An area label point should be placed in the center of the
area;

m Point features should be digitized at the center of the object, e.g. a point in
the center of a map symbol representing the point feature or at the reference
point of such a symbol;

» The points defining the line or polygon boundary should be selected at a
density that is sufficient for preserving the geometry of the digitized fea-
tures.

Working with Vector Data 133

Rules for digitizing in topological GIS. When working in a topological GIS
such as GRASS, following certain rules is recommended, in order to benefit
from the topological features of the software. The following rules apply to the
vector data (from GRASS 5 Programmer’s Tutorial, Neteler, 2000):

s Arcs should not cross each other (i.e., arcs which would cross must be split
at their intersection to form distinct arcs);

® Arcs which share nodes must end at exactly the same points (i.e., must
be snapped together using the snapping function of the digitizing module).
This is particularly important since nodes are not explicitly represented in
the arc file, but only implicitly as end points of arcs;

s Common boundaries should appear only once (i.e., should not be double
digitized);
s Areas must be explicitly closed. This means that it must be possible to

complete each area by following one or more area edges that are connected
by common nodes, and that such tracings result in closed areas;

s It is recommended that area features and linear features be placed in sepa-
rate vector map layers. However, if area features and linear features must
appear in one layer, common boundaries should be digitized only once. An
area edge that is also a line (e.g., a road which is also a field boundary),
should be digitized as an area edge (i.e., feature type A) to complete the
area. The area feature should be labeled as an area (i.e., feature type A in
the dig_att file). Additionally, the common boundary arc itself (i.e., the
area edge which is also a line) should be labeled as a line (i.e., feature type
L in the dig att file) to identify it as a linear feature.

Now we explain the digitizing process in detail.

6.1.2 Digitizing in GRASS

Manual digitizing is done by running v.digit after a GRASS monitor has
been started. First select the digitizing device. To use the mouse digitizer,
choose “none” as digitizing tool. After specifying a new or existing vector
map, you will get to the vector metadata page containing basic information
and the map boundaries. In the case of using an existing map the boundary
coordinates are set according to the map; in the case of a new map the current
region boundary coordinates are defined. Besides the date, map creator and
title, the map scale has to be entered. When working on a new map, we strongly
recommend changing the default “Map’s scale” from 1:1 to the correct scale
of the map (e.g. 1:24,000). This value is important for the snapping tool as
the snapping threshold is calculated from the map scale. A sample metadata
screen may look like this:

134 OPEN SOURCE GIS

Provide the following information:

Your organization GRASS Development Team
Todays date (mon, yr) 8/23/90

Your name grass

Map's name Output from v.patch
Map's date

Map's scale 1:24000

Other info

Zone 3.

West edge of area 587433.541
South edge of area 4912505.24
East edge of area 611556.409
North edge of area 4929524.12

After completing this dialog, you will be transferred to the main menu of
v.digit. The menus of v.digit are used as follows: To reach submenus
from the main menu, enter the first (capitalized) letter of the menu name. A
submenu is left with g. Other entries within the submenus are selected by
entering the related key:

MAP INFORMATION AMOUNT DIGITIZED

| | !
| Name: Output from v.patch) # Lines: 0 |
| Scale: 24000 | # Area edges: 2148)
} Person: grass) # Sites: 0 |
1 Dig. Thresh.: 0.0300 in. |- - - - = - = - |
| Map Thresh.: 18.288 meters t Total points: 37632 |
| | |
' 777 i [-
OPTIONS:
Digitizer: Disabled

GLOBAL MENU: Press first letter of desired command. [Upper Case Only] |

First, we want to display the scanned topographic map in the GRASS moni-
tor to use it as digitizing reference. For this choose the option “Select A Back-
drop CELL Map” (B) from the “Customize” submenu (C). You can list the
available raster maps by entering 1ist. After selecting the raster map, it will
be shown in the background. It is also possible to display a vector map. For
this, choose “Select An Overlay Vector Map” (0). Leave the “Customize” sub-
menu with g to reach the main menu. We are now ready to start the digitizing
procedure.

Working with Vector Data 135

Note that v.digit provides a context help system which shows the mean-
ing of each menu entry (use H to reach it).

Digitizing vector sites, lines and areas. The digitizing is started by opening
the Digitizing menu by pressing D. It is important to choose the appropriate
object type (site, line or area) by pressing t (“toggle type”). If desired, switch
on the “auto labeling” function. When activated, the category number and
optionally also the category label are automatically assigned to the vectors.
GRASS will query for both values. An alternate method to enter/modify these
labels is using v.support (menu entry “Edit the category file” in interactive
mode, find details in Section 6.2.2).

o +
| GRASS-DIGIT Modified 4.10 Digitizing menu |
=== |
| Mouse Digitizer { AMOUNT DIGITIZED |
| | # Lines: 0 |
| | # Area edges: 2148]
| | # Sites: 0 |
| - == - == - - - = |
| | Total points: 37632 |

Digitize options: CURRENT DIGITIZER PARAMS.

|
|
<space> Digitize | MODE TYPE
- Toggle MODE | >POINT< line
t - Toggle TYPE | stream >AREA EDGE<
1 - Auto Label | site
| Category: VaE

|

|

|

|

|

|

|

AutoLabel: 444 |
- |
Edit Label Customize Toolbox Window Help Zoom * ! i
|

!

|

!
!
!
|
|
|
|
| g - Quit to main menu
|
|
|
|
!
|

GLOBAL MENU: Press first letter of desired command. [Upper Case Only)

The digitizing process itself is started with <SPACE>. Now switch over
to the GRASS monitor, and start to draw lines using the mouse by clicking
on the points representing the line with the left mouse button. The mouse
menu is shown in the terminal window, the buttons provide different functions
such as drawing nodes and lines, removing the latest drawn node and finish-
ing/omitting a line. This requires a bit of experience but you will quickly feel
familiar with the concept. This way you can digitize line by line (or just vector
sites) while getting the vector features automatically labeled by using the auto-
label function. Labeled lines have a different color than the unlabeled lines.
The labeling status can be checked in the submenu “Toolbox” (T), the labels
themselves are displayed from the submenu “Window” (W).

Generally, we recommend making an extensive use of the “zoom” function
which can improve the digitizing accuracy significantly. The function is avail-
able everywhere, while digitizing as well as with key Z from the main menu.
The “pan” (panning, select while digitizing from the mouse buttons menu)

136 OPEN SOURCE GIS

Figure 6.1. Digitizing common area boundaries in a topological GIS

function allows us to move the map into any direction without changing the
zoom level.

When intersecting lines or connecting to lines, a node has to be inserted at
the intersection. This is done by “breaking” the existing line which you want
to cross or connect to. To break a line, enter the “Edit” menu (E) and select
b (“Break a line”). Then you have to select the line to be broken and insert a
node. You can now snap lines to this node which is explained next. In the same
menu you also find functionality to move nodes, lines, to re-type a vector line
(toggle between line and area type), to smooth a vector line with a spline, and
to remove a block of lines.

When working with polygons, itis important to digitize common boundaries
of adjacent areas only as a single line (see Figure 6.1). GRASS will automat-
ically assign the common boundary to both areas. Never digitize a common
area edge as two parallel lines! To verify, the “Toolbox” menu provides the
function “Display Duplicate lines” (d) which highlights duplicate lines.

Snapping of nodes. Node snapping is necessary when digitizing a line which
consists of several parts, or when closing a vector area. As mentioned above,
closing areas is mandatory because only then is GRASS able to establish vector
topology and assign label points. A great help is the built-in snapping function.
When two nodes are close to each other (depending on the current snapping
threshold), they will be moved into the same node and reduced to one node.
When you receive a message that snapping cannot not be done, you have three
options: you may either reject this area, zoom and vectorize again, or snap the
open area in the “Edit” menu (E) using the “snap” (s) function. Such snapping
problems are usually an indicator that you either have forgotten to change the
map scale from 1:1 to the current map scale or, if it is correct, that you should
zoom further on into the current map portion.

To optimize the snapping function, you can adjust the snapping threshold in
the “Customize” menu using the s (“Set snapping threshold”). The snapping
threshold should be chosen appropriately for the map scale. The value has
to be entered in inches, but it will be converted to metric units based on the

Working with Vector Data 137

label point
open
vector
o i e
/ Snapping
nodes \
A~
line vertices area successfully closed

Figure 6.2. The node snapping function in GIS

projection units of the LOCATION. In general reasonable values for snapping
thresholds depend on the map scale, such as:

m 1:5000 - 1:10000: Snap distance 1-2 m on ground
a 1:10000 - 1:25000: Snap distance 2-5 m on ground
m 1:25000 - 1:50000: Snap distance 5-10 m on ground

You should enter values around 0.002 for “Enter new Dig threshold” to fulfill
the above recommendations. The threshold according to ground distances is
calculated immediately. The module v.digit provides different colors for
distinguishing various vector types and the label status. The color of snapped
nodes will change, with open nodes being green by default, and snapped nodes
turning to magenta.

Digitizing elevation contour lines. To make the digitizing of contour lines
more efficient, GRASS offers a semi-automatic labeling of digitized contours.
First, digitize the contour lines without attributes. Then switch to the “Label”
menu by pressing L. Now hit i for “contour interval” and enter the appropriate
value for interval of lines, default is the increment of 5 per line. The map units
are usually meters, hence this represents 5 m contour intervals. The application
of the values to a set of lines is done by digitizing a new temporal line across the
contour lines for selection. This is done by mouse after pressing ¢ for “Contour
labels”. Now select the lowest and the highest contour line. Both points are
connected by a line crossing the contours in between. If one or both of these
contour lines are not labeled yet, GRASS will ask for the elevation of this
unlabeled line: “Enter elevation for this line”. The labeling of the contours in-
between will only be done if the defined elevation interval matches the values
of the lowest and highest line.

138 OPEN SOURCE GIS

Common digitizing problems and solutions. A common digitizing prob-
lem is that area boundaries are not closed or lines intended to be connected
(“polylines”) are broken. Lines too short and not reaching another traverse
line are called “undershoot”, lines too long which cross another line without
having a node at the intersection are called “overshoot” (see Figure 6.3). To
fix these problems, you should use the snapping function. Note that snapping
is also implemented in additional vector modules such as v.support.

During the editing process within v.digit, the graphics screen can be-
come cluttered for various reasons. Press the key ! to correctly replot the
graphics.

You can find further information about digitizing in the CERL-Tutorial:
v.digit which is available on the GRASS Web site (section “Documentation”).

Post-Digitizing issues. As a general rule, you should always run
v.support after using v.digit to build the topological information
for the vector map. If needed, you can add/modify the category labels for
vectors. You have to start v.support in interactive mode and select the
option “Edit the category file”. See Section 6.2.2 for details.

Maps containing intersecting vectors without nodes at the line intersections
are called “spaghetti maps” which are topologically incorrect. To resolve this
problem, the module v.spag can be used (see Figure 6.4 illustrating the func-
tionality) which inserts nodes at the line intersections. To avoid unintended

Undershoot Overshoot

solution: snapping solution: v.trim

Figure 6.3. “Overshoots” and “undershoots” in vector maps

Working with Vector Data 139

vector problem
problem e i~ resolved
v.spag

node is missing node inserted
at intersection

Figure 6.4. Correction of “spaghetti digitizing”

modifications of your digitized data, running it on a map copy (generate with
g.copy vect=oldmap, newmap) is recommended.

Additional modules for cleaning the vector data are v.clean and
v.prune. Both have to be used carefully. Again, we recommend working
on a copy of the original vector map to avoid complications. The module
v.clean removes “dead lines” from a vector map. “Dead lines” are vectors
that have been marked deleted in v.digit. The module v.prune can be
used to remove excessive nodes from a map. Use it with care as you can sim-
plify complex areas/polygons to squares or triangles if you remove too many
nodes.

6.2. METADATA AND ATTRIBUTES MANAGEMENT

Internally, GRASS 5.3 handles only one attribute per vector. However, by
linking GRASS to an external database management system (DBMS), multi-
ple attribute per vector object can be managed. The management of multiple
attributes for vector data in conjunction with an external database management
system will change substantially for GRASS 5.7 that is under development and
is not covered in this book; please check the Web site for the most current up-
dates. Tofind information about a related module that is already available, run
(preferably in HTML mode):

g.manual database

140 OPEN SOURCE GIS

6.2.1 Managing metadata of vector maps

To display metadata for a vector map, run
v.info map

The output includes a map title, production date, creator, vector level (topology
present or not), number of categories, lines, areas and islands (areas in areas),
projection, map boundary coordinates, map scale, and further comments.

Metadata modifications. Most metadata for vector maps can be managed
with v.digit. After loading the vector map, the metadata screen allows us
the modification of these data. First, make sure that map scale matches the true
map scale, because some vector calculations and the snapping threshold de-
pend on it. If the map scale is not correct, use v.digit to change it within this
metadata screen. You can leave the metadata screen with <ESC><ENTER> if
you don’t intend to digitize the map. Then v.digit can be left either with
answering “Shall we continue? [y]” with n or leave it from the main menu
with Q (quit).

A timestamp representing the date of map generation or last modification
can be applied to the vector map. Use the module v.timestamp to generate,
query or delete a timestamp. Please refer to Section 5.1.4 to learn more about
absolute and relative timestamps and time ranges.

6.2.2 Map attributes modifications

As we have already explained, vector lines and areas have assigned a cate-
gory number (attribute ID) and an optional category label (attribute text). The
internal vector ID is usually not visible to the user. Both category number and
category label may be shared between vectors. For more details please read
Section 4.2.1. Attributes can be modified by the module v.support. Be-
sides building the topological information the module provides access to the
category labels file, the internal attribute table. The module menus are a bit
old-fashioned, but this may change in future.

You have to start v. support in interactive mode to reach the menus (omit-
ting a parameter at startup). For modifying text labels, select the menu entry
“Edit the category file”. If no category labels are present in the map, the “High-
est Category” in the next screen will be zero. In this case, enter the number
of attributes you intend to apply to the map. Otherwise the “Highest Cate-
gory” represents the highest category number appearing in the table. Leave
this screen with <ESC><ENTER> to proceed to the table. Here you can mod-
ify individual entries using the cursor keys. To quickly move around in large
category tables or to reach a certain attribute you can enter a line number in the
bottom line of the window and press <ESC><ENTER> to go there. To leave
it, either scroll to the last screen of the category table or enter end at the bot-

Working with Vector Data 141

tom line of the window and press <ESC><ENTER> to leave the table. With
<CTRL><C> you can interrupt the editing and leave the module with unsaved
changes.

To check a map for unlabeled lines and areas, you can use v.digit (“Tool-
box” and “Window” menu, see Section 6.1.2 for details).

If you have a map without category labels which you want to label with
a unique value or incrementally, the modules v.1label (for line and vector
sites maps) and v.alabel (for area maps) are useful. They will apply labels
to all unlabeled vector objects.

6.3. VIEWING AND ANALYSIS

First, we show how to display vector maps. Then, we explain how to per-
form geometrical operations, and how to modify vector map layers based on
attribute selection.

63.1 Displaying vector map layers

As we have already done earlier, vector data can be displayed in the GRASS
monitor window using the command d.vect. For example, to display the
streams in the Spearfish region run:

d.vect streams col=blue

This will display the selected vector map in the monitor; in the case that another
map is already present, it will be overlayed. If you want to display only selected
vectors in a map, use the catnum parameter. The selection is done by category
number given as a single value or a comma-separated list. If you don’t define
the color, the vector map will be displayed in white, so you need to have a
non-white background or raster map in your monitor to see it.

To zoom within the map, you may use d.zoom. The module is controlled
with the mouse buttons, the context menu is shown in the terminal window.

If you want to display vector areas as filled polygons, run d.vect.area
instead. For example, a colored soils polygons vector map is shown with

d.vect.area -r soils

Optionally the border and polygon fill colors can be defined. The parameter al-
lows us to limit the display areas to selected category numbers (use v.report
to find out associated labels which is explained below).

To display category labels in the map, use d.vect .labels. An example:

d.vect.labels soils attr=string

Font size, colors, label marker etc. can be customized.

142 OPEN SOURCE GIS

To see all or selected vector maps, the script slide.show.sh can be used.
It only requires an open GRASS monitor. When running it with flag -v, it
will show all available vector maps (without this flag it shows raster maps).
Optionally, you can define a name prefix to see only selected maps.

To get a list of the maps currently displayed in the GRASS monitor, use
d.frame -1.

Querying vector information. General information such as map title, cre-
ation date, scale, number of categories, lines and areas, and boundary coordi-
nates from a vector map are provided by the command v.info. It also shows
if the topology for a vector map has been built. If not, v.support should be
run. To get a list of the vector map attributes (category numbers and labels),
optionally with length or area sizes, use v.report:

v.info soils
v.report soils type=area units=h

The latter allows us to query line lengths and area sizes of vector features with
parameter units. The map type, either line or area, has to be provided with
parameter type.

The module v.what retrieves area information from polygons queried by a
list of coordinates. As an example we query two points in the soils map of
Spearfish:

v.what soils east_north=596954,4924870,591797,4926687

It reports the areas for the polygons which include the given coordinates and
the area attributes (here soil names). To get coordinates from screen, use
d.where.

You can interactively query vector data in a GRASS monitor with mouse.
The module d.what .vect allows you to query vector objects in one or more
map layers. As an example, we query the farm fields map and the soils map:

d.what.vect map=fields, soils

The mouse context menu is shown in the terminal window.

The alternate query module is v.area which retrieves area information
(but no lines) by mouse click. Optionally, the desired area can be highlighted
or filled in a different color.

6.3.2 Intersecting and clipping vector maps

Besides visually overlaying maps on the screen, you sometimes need to
merge (intersect) two or more maps. The module v . patch provides this func-
tionality. Unlike merging raster maps, intersection of vector maps is not a triv-
ial task. Internally, new vectors have to be generated, because for each new

Working with Vector Data 143

vector intersection the existing lines have to be broken and a new node has
to be inserted (compare Figure 6.4). Please note that in GRASS 5.3, all vec-
tor modification tools ignore the current geographic region settings and always
operate on the full map. The map boundaries are extracted from the vector
file headers. As an example, we patch the soils map with the farm fields map
(Spearfish region):

v.patch in=soils, fields out=soilsfarms.patch
v.info soilsfarms.patch

In the resulting intersection map soilsfarms.patch, the boundaries of the
geographic region will be expanded to encompass the maximum geographic
region as defined by the patched maps. The scale will be set equal to the small-
est (i.e., most gross) scale used by any of the patched map layers. Remem-
ber that the scale will affect the node-snapping thresholds as implemented in
v.digit, v.support and v.spag. The v.info command confirms that
no topology is present yet. This has to be built with v. support:

v.spag —s soilsfarms.patch
v.support soilsfarms.patch

As there is no duplicate line removal in v.patch, the new map has to either
be edited with v.digit or cleaned with v.spag. The latter must be done
with care as explained above.

Clipping vector maps. To clip a vector map to modified map boundaries the
script v.cutregion.sh is available. You first need to change your current
region to the region of interest with g.region or d.zoom. Then you ap-
ply the script v.cutregion. sh which clips the vector map according to the
current region settings and writes a new vector map.

A vector map intersecting tool which takes into account the shape of poly-
gons is v.cutter. This module generates a new map based on an intersec-
tion of two input maps, cutter and data. The map cutter determines the
“active” areas for the input map while data delivers the area contents. The at-
tributes of created polygons will be generated from the attributes of the data
map. As an example, we cut out the soils only for areas present in the map
rstrct.areas:

.vect.area -r rstrct.areas

.cutter cutter=rstrct.areas data=soils out=soils.cut type=area
.spag —i soils.cut

.support soils.cut

.info soils.cut

.vect.area -r soils.cut

.vect.labels soils.cut size=7 col=red

D Q< < < < Q

v.patch v.cutter

/@-/ /9

Figure 6.5. Possible results of intersecting vector data using v.patch or v.cutter

The new map contains soil information only for the restricted areas. This is
also a convenient way to create masks based on vector maps.

To mask vector maps based on this method, you may digitize a mask area
with v.digit or generate it with other tools. The mask area should be labeled
with a category number (e.g. 1). The vector areas will determine the outline
of the final vector map. The module v.cutter produces a new map that
contains all the vector data from the data map that fall into the extent of the
vector mask map given as map cutter. Figure 6.5 illustrates the difference
between v.patch and v.cutter.

6.3.3 Map reclassification

Vector maps can be reclassed in a similar way as raster maps. The module
v.reclass reclassifies vectors according to user defined reclass rules. The
module is used in a similar way as r.reclass. As an example, we can reclass
the fields map into two categories: private and “Black Hills National Forest”.
The ASCII table containing the reclass rules can be written with any text editor.
It will contain:

1 thru 62 = 1 private
63 = 2 Black Hills Natl. Forest

This table will be applied to the map to generate a new reclassified vector map.
The module v.report can then be used to get the list of input categories:

v.report fields type=area
cat fields.recl | v.reclass fields type=area out=fields.recl

Working with Vector Data 145

.support fields.recl op=build
.info fields.recl

.vect fields.recl
.vect.labels fields.recl

Q0 g <

The new map contains only two categories. With flag —d you can dissolve
common boundaries of adjacent polygons with same category assigned during
the reclassification. Note that there are parallel lines in the Spearfish fields
map which represent roads.

634 Feature extraction from vector data

To extract vector objects from a vector map, you can run v.extract with
the desired category(ies) listed by the parameter 1ist. This will extract the
selected vectors into a new map. As an example, we can extract the fields
owned by C. Mitchell into a new vector map. We can get the category numbers
of the vector polygons from v.report:

v.report fields type=area
v.extract fields type=area out=fields.mitchell new=0 list=10-15
d.vect.area -r fields.mitchell

The parameter new is set to zero to keep original categories, optionally, a new
category number can be specified. For a larger list, the selection can be written
into a file, and its name is then specified as the parameter £ile. The new vec-
tor map contains only the selected areas. You can dissolve common boundaries
when adjacent polygons have the same category by using the command with
the flag -d.

64. VECTOR DATA TRANSFORMATIONS TO/FROM
RASTER AND SITES

First, we explain the transformation of raster and site data to the vector data
model, then we show how to change vector data to rasters. Depending on the
type of geographic phenomenon that the vector data represent, we distinguish
two types of transformation from vector data to raster:

s for geometric features (points, lines, areas) we use direct transformation
from vectors to raster lines/areas or sites;

s for continuous fields (isolines, contours) we need spatial interpolation to
transform from vector lines to rasters;

» feature extraction from raster objects to vectors requires vectorization.

Figure 6.6 shows an overview of available conversion techniques.

146 OPEN SOURCE GIS

Vector data Raster data
polygons ¥io. fast = areas
i v.to.rast | _ lines
TR o rast r.surf.contour
"""""""""""" \\: .Sc:].rrfa;t = lines " | continuous
e » fields
Sites data
sites

Figure 6.6. Methods for transforming and interpolating vector data to raster and site data

6.4.1 Automatic vectorization of raster data

Sometimes we need to convert existing raster data (lines, areas) to vector
data. This can either be done by manually digitizing in v.digit or by an
automated procedure, described below. GRASS provides modules for the fol-
lowing types of automated vectorizing:

= vector lines: r.line
® vector areas: r.poly
® vector isolines: r.contour
m convex hull: s.hull

The first three commands are explained in Section 5.3.1, along with some
examples.

To generate an outer convex boundary for a set of points, the convex hull, we
can use the s.hull module. A raster or a vector map has to be transformed to
the sites using r.to.sites, and v.to.sites respectively, before the mod-
ule can be applied. As an example, we extract all polygons labeled with soil
type “VaB” (Vale silt loam) from the Spearfish soils raster map and generate
the convex hull map surrounding the area where this soil type appears:

.report soils

.mapcalc %"soils.VaB=if (soils == 51, 51, null())"
.rast soils.VaB

.to.sites -a soils.VaB output=s0ils.VaB

.hull -s soils.VaB vect=soils.VaB.hull

.vect soils.VaB.hull col=blue

Qw8 QB R

The resulting vector area contains all areas where Vale silt loam occurs.

Working with Vector Data 147

6.4.2 Direct transformation of vector data to raster or sites

The direct transformation of vector maps into raster lines or areas requires
that all vectors are labeled. All unlabeled vectors will be omitted and will thus
not appear in the output raster map. Labeling of vector maps is explained in
Section 6.2.2.

The module v.to.rast generates a raster map from an input vector map.
Transformation of vector objects to raster cells depends on the current reso-
lution. The resolution settings can be defined with g.region using the res
(resolution) parameter. You may try several resolutions to see the effect.

If you want to get only the vector area boundaries in a raster map, you can
convert the vector area map to a vector line map with v.area2line (losing
the original labels), then label the lines again with v.11label and convert to
raster with v.to.rast. An example:

.area2line soils

.llabel -i soils.2

.region -p res=30

.to.rast soils.2 out=soils.borders

<Q < <

It is important to define the target raster resolution before converting the vector
map to raster. The resulting raster map soils.borders contains only the
outlines of the soils areas.

To generate a sites map from vector data v.to.sites can be used. It
transforms vector lines to sites. Without the flags —ai, only vector point data
are transformed; using these flags, points defining the vector line segments
are used. The density of the points along the line is controlled with dmax
parameter. If these points are farther apart than the dmax, additional points are
interpolated along the vector lines. As an example we interpolate sites along
the roads map in Spearfish:

v.to.sites —-ai roads out=roads dmax=500

This generates a sites map with points along the road at a maximum distance of
500 m (note that it is not the minimum distance!). If the present vector nodes
in the input map are further apart than 500 m, new points are interpolated.

6.4.3 Interpolating raster surfaces from contour lines

GRASS provides several different methods for interpolation of raster sur-
faces from vector data (Figure 6.7). Depending on the method, the surface
can be interpolated directly from vector data, or the vector data must first be
transformed to raster lines and interpolated with the related raster module, or
to sites and interpolated with sites interpolation tool. The following modules
can be used:

148 OPEN SOURCE GIS

Figure 6.7. Interpolation of a raster elevation map layer from vector data (contours) a) voronoi
polygons, b) IDW, ¢) v.surf.rst with default parameters, d) r.surf.contour. Note that
because of their limitations, the first two methods were applied to a smaller data set than the
examples c¢) and d)

Working with Vector Data 149

s s.voronoi can be used in special cases when only the values assigned
to contours should be in the resulting raster, leading to a discontinuous
surface (see Figure 6.7a). It requires transformation to sites and further
transformation of the voronoi polygons vector map to raster, as described
in the Section 7.3.1;

w g.surf.idw is based on inverse distance weighted interpolation (IDW)
and can be used after transforming the contours to sites (see Section 7.3.1
and Appendix B);

m v.surf.rst interpolates the raster directly from the vector data using the
RST method: regularized spline with tension method (see Section 7.3.2 and
Appendix B);

® r.surf.contour requires conversion of contours to raster lines and then
linearly interpolates between contour lines.

The interpolation method should be selected based on the application. As
with all transformations to raster, we have to define the GRID RESOLUTION
for the new raster map with g.region before applying the interpolation mod-
ule.

RST interpolation method. The RST (Regularized Spline with Tension)
method is explained in detail in Section 7.3. It has been adapted for di-
rect input of vector isoline maps in the module v.surf.rst. Internally, all
lines are converted to sites and interpolated using the same RST method as in
s.surf.rst. The module provides numerous parameters, which you can use
to tune the behavior of the interpolation function, calculate slope, aspect, and
curvatures, as well as compute deviation and quadtree maps. For details please
refer to the manual page; here we show a simple example (Figure 6.7c) We
will interpolate a DEM using the vector contour map generated the previous
section:

g.region res=30
v.surf.rst contourl00 elev=elev100.rst &
d.rast elev100.rst

If elevation values are stored as category labels and not as category numbers,
the flag —c has to be used. The module gives recommendations for optimizing
the calculation depending on the input data, for example, by giving warnings
about possible overshoots (interpolated values exceeding the range of given
values over 15%) when an increase in tension and/or smoothing is needed.
For further explanation of parameters and functionality of this module read the
Section 7.3.2. A method to analyze the quality of interpolated maps is shown
in Section 13.2.1.

150 OPEN SOURCE GIS

Note that instead of digitizing, when the points defining the contour line
were selected manually, most contours are nowadays generated automatically.
Scanning of contours or their computation from a dense TIN or a raster leads to
a very high density of points along the lines while there may be large areas be-
tween contours (especially in flat terrain) without any data. Such a representa-
tion of a surface with strongly heterogeneous spatial distribution of data points
presents substantial challenge for most interpolation methods, which tend to
create waves or steps along the isolines. Reducing the number of points on
the lines (for example, by increasing the dmin parameter in v.surf.rst),
adding points between the contours, and changing the interpolation parameters
(e.g. lowering tension for v. surf . rst orincreasing the number of points for
IDW) helps to minimize the problem.

When there are large areas with sparse contours, rectangular segments may
become visible, especially in the aspect map. While the error in the elevations
due to the segments is usually negligible, it is not acceptable for shaded maps
(see Section 8.1.2). The problem can be eliminated using two step interpola-
tion. First interpolate the surface using v.surf.rst. If segments are vis-
ible, generate additional points sparsely but homogeneously distributed over
the elevation surface using r.random. Transform the contours to sites us-
ing v.to.sites and merge with the sites file generated by r.random, e.g.
using UNIX command cat. Finally, interpolate this merged sites file using
s.surf.rst. The surface should be without segments.

Linear interpolation between contours. The module r.surf.contour
requires the vector map to be converted to a raster lines map. The vector-to-
raster conversion is done with v.to.rast. To interpolate the raster surface,
run r.surf.contour with the name of the raster lines file and a name for
the resulting raster surface. In our example (Figure 6.7d), we use the vector
contour map generated in the previous section:

.region res=30

.to.rast contourl00 out=contourl00
.surf.contour contourl00 out=elevl100
.rast elevl100

QR < Q

The module interpolates the elevation at a given cell from the uphill and down-
hill contour values by the true distance. To obtain good results it is important
that the contour lines extend to the edge of the current region and there are
no disjointed contour lines. Since a flood fill algorithm is used, running time
grows exponentially with the distance between contour lines.

Chapter 7

WORKING WITH SITE DATA

Observed values or properties can be spatially referenced to a single point
or, in GRASS terminology, a sife. Site data represent either a discrete feature
at a given scale, such as a city, an archaeological site or a hospital, or they
are discrete samples of continuous fields such as data from climatic stations,
measured elevation points, or bore-hole data. GRASS provides tools for man-
agement and analysis of sites map layers, as well as their transformation to
vector or raster data. If the site data represent a continuous field, transforma-
tion to raster representation of this field is performed by spatial interpolation.

7.1. CREATING SITE DATA

We have described the GRASS sites data format and various ways of im-
porting it from external sources in Section 4.3. In this section, we describe the
methods and tools for creating new GRASS sites map layers. One approach is
to modify an ASCII file exported from a database or other source using a text
editor or awk (see example Appendix A). The file then should be copied to the
site lists/ directory in your MAPSET. If this directory does not exist, go
to your MAPSET directory and create it using mkdir site lists/.

7.1.1 Digitizing site data

Point data can be manually digitized from a map and assigned an associ-
ated attribute using the v.digit module (see Section 6.1.2). Result will
be a vector map layer with point data. At the beginning of a digitizing ses-
sion, you should enter a new file name and correct the value of “map scale”
in the following menu from 1:1 to your map scale. Because the digitizing is
done from a map, a vector or a raster map can be displayed in the background

152 OPEN SOURCE GIS

(C — Customize, O — backdrop vector map or B — backdrop raster map). The
D key gives you access to the digitizing menu, t changes the vector type from
lines to site. By pressing <SPACE> you can start to digitize single vector sites.
The next step is assigning labels with 1; for example, in the case of an archae-
ological site you can add the name to each site. When labeling, each vector
site is assigned a category number with the text label as category label. For
digitizing, mark the vector site in the map appropriately. A labeled site mark
changes its color.

As mentioned before, the digitized sites are saved as point vector data and
can be converted into GRASS sites model using v.to.sites. Manual digi-
tizing of point data can be a time consuming process prone to errors; therefore,
itis used only as a “last resort” solution.

7.1.2 Generating site data within GRASS

Several GRASS modules can be used to create a new sites map layer. For ex-
ample, a raster can be transformed directly to sites using r.to.sites, which
creates a site for each grid cell center expressed as east |north|#value. If
the current resolution is lower than the resolution of the raster file, the near-
est neighbor cell value is used. Optionally, the values stored in the raster map
layer can be expressed as a floating point attribute or a third dimension using
the —a or -z flags, as illustrated by the following examples showing the com-
mand (stored as a desc entry in the site file header) and the resulting sites file
format (note that you can use the same name for your site and raster maps,
because GRASS stores them in a different directory):
name | roads
desc|r.to.sites input=roads output=roads label=rd.category
form| | | #

labels|Easting|Northing|#rd.category
6056854927985 | #3

name | slope

desc|r.to.sites -a input=slope output=slope label=slope
form||[%

labels|Easting|Northing|%slope
59023514921965(%13.61707306

name |elevation.dem

desc|r.to.sites -z input=elevation.dem output=elevation.dem ...
form| /]|

labels|Easting|Northing|elevation]|

59023514921965|1193|

Similarly, a 3D raster volume can be transformed to 3D sites by using
r3.to.sites, which is useful for viewing the 3D data with nviz (see Sec-
tion 8.2.4).

Working with site data 153

A raster map layer can be sampled randomly using r . random resulting in a
sites map layer which contains points that are the centers of randomly selected
grid cells. For example, you can create a random grid points site file from our
Spearfish DEM by running:

g.region rast=elevation.dem
r.random elevation.dem nsites=3000 sites_out=elev.rnd.3k

The module writes the coordinates of 3000 points along with the values from
the elevation.dem as a decimal attribute to the site file elev.rnd.3k.
You can specify the number of random sites to be generated either as a positive
integer, or as a percentage of the raster map layer’s cells (e.g., 10%). If you
already have a site file and you want to add an attribute based on the values
stored in a raster map, you can use s.sample:

s.sample archsites out=archsites.slope rast=slope

The new site file will now include the slope at each archeological site stored as
a floating point attribute:

namelarchsites.slope
desc|slopelrast] sampled at archsites[sites] by Nearest Cell
5934934914730} #1 %5.75962543

Vector data can be transformed to sites using v.to.sites. You can trans-
form only the point features (nodes) from your vector map layer, or all vertices
that define the vector lines. If the distance between any two vertices on a line
is greater than a distance given by dmax parameter, additional points are in-
terpolated on the line using a spline function to keep the maximum distance
between the vertices within the dmax range.

It is also possible to create new site data from an existing sites map layer
by perturbing (adding a variable spatial deviation) the east and north coordi-
nates using s.perturb. This deviation can be a uniform value or a delta
value with normal distribution. Randomly distributed sites can be generated
by s.random. Unlike the result of r.random, these sites will include only
the coordinates and no attributes.

Generating site lists using UNIX pipes. Several GRASS modules can be
used to produce output in a format suitable for input to s.in.ascii. For
example, you can pipe output produced by d.where into s.in.ascii to
create a site list file containing site locations selected by a mouse:

d.where | s.in.ascii sites=mysites

154 OPEN SOURCE GIS

In another example, you can calculate distances of given points, stored
as GRASS sites, to the nearest vector line. Here, the distances of ar-
chaeological sites to the closest road, given in a vector map, are calcu-
lated. The individual distances are stored as a new sites map (columns
east, north, sitesID, distance, vectorline-catnum):

s.out.ascii -d archsites | v.distance roads |s.in.ascii fs='|'\
sites=dist

In this case, the field separator is required as v.distance outputs the pipe
character.

7.2. VIEWING AND MANAGING SITE DATA

Basic information about a sites map layer can be obtained by running
s.info. The output prints out the number of sites within the given region,
number of dimensions, as well as the minimum and maximum values for co-
ordinates, categories and attributes:

s.info archsites

If the output is not what you have expected, check your format — you can read
your site data by going into the site lists directory in your MAPSET and
edit the file archsites using any of the UNIX text tools (see Appendix A)
or any text editor.

7.2.1 Displaying site data and creating subsets

You can view your site data in the GRASS graphical window using
d.sites, for example:

d.sites archsites color=red size=2 type=diamond

will draw your sites using a diamond symbol with 2 pixel size in red color. Use
d.site.labels to label the sites using the category, floating point or text
(string) attribute. You can also query your sites interactively, using the mouse
to get the coordinate values and attributes of site(s) nearest to the location “+”
selected using the mouse:

d.sites archsites

d.what.sites

[...]

"+" at 591582.609375(E) 4925092.15625 (N)

archsites in PERMANENT 591583(4925280 24 "Hanson Ranch"
Distance from "+": 187.84

Working with site data 155

v teisiteracl = O M|V GRASSS.3vwvs -Monior:d . oo . =0

s i

| no_tabel 53] [2al
[. B m B W ;
; " B
¥ IS Tl :
| Morthing e |
| H920429 %
HIT6AD

g3 O

Easting L
| S BRSO S Betiien L BT

= [myarchshessum

= o iba

Figure 7.1. Selecting a subset myarchsites.subl of site data myarchsites using
d.siter, with categories 5-15 and northing > 4920429

To select subsets of site data with given coordinates, attributes, or categories
use d.sites.qual. Its TclTk version d.siter allows you to display a
subset of site data interactively, based on selected ranges of coordinates and/or
attribute values. An example of using d.siter is in the Figure 7.1. Subsets
defined by selected ranges of attributes may be visualized using various marker
sizes, shapes, and colors. Subsets may also be saved to a new sites file. The
command line version can be illustrated by the following example. It extracts
a subset of sites from the map archsites with category numbers 5-15 that
are located north of the given y (northing) coordinate:

d.sites.qual archsites rules=C1.5-15,D2.ge.4920429 \
out=archsites.sub2

The subset is stored in a new site file called archsites.sub2a. You can
find more examples of the rules syntax in the d. sites.qual manual page.
You can also use nviz to view your site data draped over a surface or in
their 3D position (see Chapter 8).
To create a subset of sites located within a given subregion (defined for
example by d.zoom), you can use the module s.mask with any raster with
non-NULL cells:

d.zoom

[...]

s.mask archsites out=archsites.zoom raster=owner
Total: 25, Output: 8

156 OPEN SOURCE GIS

The module finds eight sites in the subregion and writes them into the new sites
file. You can use the same command to find which sites are located within the
30 m cells representing roads:

s.mask archsites out=archsites.roads raster=roads
Total: 25, Output: 2

7.2.2 Computing basic statistics

Simple statistical analysis of site data can be performed directly with several
GRASS modules. For more sophisticated spatial statistics and geostatistics
tools it is recommended to take the advantage of the bridge between GRASS
and R, as described in Chapter 13, as well as by Bivand, 2000, or a link with
gstat described in the same chapter.

Basic univariate statistics can be computed using s .univar. For example,
for a random elevation data elev.rnd.3k created in the Section 7.1.2 you
get:

s.univar elev.rnd.3k
[...]
number of points 3000
mean 1570.4
standard deviation 128.011
coefficient of variation 8.15147
skewness -0.33675
kurtosis -0.784016
mean of squares 2.48253e+06
mean of absolute values 1570.4
minimum 1186
first quartile 1464.5
median 1592
third qguartile 1674
maximum 1836

You canrun r.univar elevation.demto compare the result with the ba-
sic statistical measures of the original data. Please refer to Appendix B for a list
of basic statistical equations used to compute these measures. Further statisti-
cal analysis can be performed using additional GRASS sites commands, such
as s.normal which supports computation of 15 different normality tests for
a selected site attribute. The module s.gcount provides a test for complete
spatial randomness using a quadrat method, while a sample semivariogram can
be computed by s.sv. You can fit a semivariogram model to the sample semi-
variogram using the module m. svfit. However, these modules haven’t been
thoroughly tested, so they should be used with caution.

Note that besides using R and gstat, you can always transform your site
data to raster or vector representation and use the raster and vector modules to
greatly expand the possibilities for the point data analysis.

Working with site data 157

7.3. TRANSFORMATION FROM SITES TO RASTERS
AND SPATIAL INTERPOLATION

Depending on the type of data, the transformation of site data to the raster
data model can be performed using two approaches (Figure 7.2):

m for discrete phenomena, the transformation of site data to raster is done with
s.to.rast. It creates an output raster file with the selected site attribute
value in a cell where the site is located, while inserting NULLs elsewhere.
If more than one site falls into one raster cell, the module will continue
to import the sites and the last imported site value will determine the cell
value;

= ifthe site data represent sampling points of a continuous phenomenon, such
as elevation, temperature, or chemical concentration, raster representation
of this field should be computed by spatial interpolation.

For 3D sites, the discrete transformation to a 3D raster volume is performed
using s.to.rast3 and the spatial interpolation is supported by trivariate ver-
sions of the available interpolation modules, as described in the following sec-
tions.

73.1 Selecting an interpolation method

Spatial interpolation transforms site data to the raster representation using
a function which passes through (or close to) the given sites. Because there
exists an infinite number of functions which fulfill this requirement, additional
conditions have to be imposed, leading to a number of different interpolation
techniques. GRASS offers interpolation functions which are based on condi-
tions of locality (voronoi polygons, inverse distance weighted) and smooth-
ness (splines). The methods based on geostatistical concepts can be applied
by taking advantage of the link with the Open Source geostatistical tools (see
Chapter 13). It is important to keep in mind that different methods, and often
even the same method with different parameters, can produce quite different
surfaces (see, for example, Figures 7.3, 7.4, 7.6). A good knowledge of the
modeled phenomenon is needed to evaluate which one is closest to reality.
Statistical measures of accuracy do not always ensure that the properties of the
interpolated surface are adequate representation of the behavior of the modeled
phenomenon.

Before interpolating in GRASS, it is necessary to set the resolution of the
resulting map layer with g.region (see Section 4.1.2). Several modules can
then be used to interpolate a raster map from scattered site data.

158 OPEN SOURCE GIS

Y-y
¥ " *]
* * * w % *
i ‘l]
;¥ L)
m‘ ' ..
* ' [] .
#* - ;"
* ¥
* *
% [] .

Figure 7.2. Conversion of site data to raster for: a) discrete phenomenon — archaeological sites;
b) continuous phenomenon — elevation

Voronoi polygons. This method is suitable for transformation of qualitative
site data when the condition of continuity is not appropriate. The site attribute
is simply assigned to all cells within its natural neighborhood defined by a
voronoi polygon (Fortune, 1987). The module s.voronoi generates these
polygons as a vector map layer with each polygon carrying the site attribute.
You can then transform this vector map layer to a raster using v.to.rast,
resulting in a surface composed of discontinuous, horizontal patches (see Fig-
ure 7.3 a). The procedure, using the random samples of Spearfish elevation
data (see Section 7.1.2) starts with modification of the elev.rnd. 3k site file
in the site lists directory in your MAPSET:

sed "s/%/\#/' elev.rnd.3k > elev.rnd.3ki
s.voronoi elev.rnd.3ki vect=elev.rnd.3k
v.support -~r elev.rnd.3k

v.to.rast elev.rnd.3k out=elev.rnd.vor
r.colors elev.rnd.vor rast=elevation.dem

The module s.voronoi expects the values as category numbers, therefore
we have used the sed command to change the prefix % to #. The resulting

Working with site data

159

Figure 7.3. Interpolation methods available in GRASS and the resulting surfaces: a)
s.voronoi, b) s.surf.idw, note the small peaks and pits around the data points, c)
s.surf.rst. The surfaces are interpolated from the 3000 random samples of the Spearfish
30 m DEM

160 OPEN SOURCE GIS

raster depends on the spatial distribution of input data. For example, the raster
generated from contour points is quite different from the one generated from
randomly distributed samples of the same surface (compare Figure 7.3a and
Figure 6.7a). These figures clearly demonstrate that voronoi polygons are not
a good choice for continuous fields, but they may be appropriate for numerous
applications in ecosystem studies or geomarketing.

Inverse distance weighted average (IDW). This approach calculates the
value for each grid point as a weighted average of values at the n closest sites
(Burrough and McDonnell, 1998, see the equation in Appendix B.8). In the
GRASS module s.surf.idw weights are inversely proportional to a power
p = 2 of distance and the default n = 12. It is a simple approach, however,
the results are less accurate compared to other methods such as splines, krig-
ing or multiquadrics (Mitas and Mitasova, 1999). Often the method does not
reproduce the local shape implied by data and produces local extrema at the
data points (Figure 7.3b, also noticeable as small circular contours around the
given points). The module is useful for rough interpolation of smaller data sets,
especially at lower resolutions, when the density of points is higher than the
density of the resulting grid points. The Figure 7.3b was created by:

s.surf.idw elev.rnd.3k out=elev.rnd.idw

Regularized Spline with Tension (RST). The method computes the values
at grid points using a function which simulates a thin flexible plate passing
through or close to the data points (Figure 7.3c). It is the most general and
accurate method available in GRASS but it may require tuning of parameters
to achieve optimal accuracy. Optionally, it also computes topographic param-
eters and partial derivatives of the modeled surface (see Chapter 12). The
bivariate (2D) version is called s.surf.rst and the trivariate (3D) version is
s.vol.rst. There is also a quad-variate experimental version available (e.g.,
for 3 spatial dimensions and time) called s.volt.rst for those who are inter-
ested in development of multivariate interpolation capabilities. The method, its
properties and examples are described in more detail in the following sections.

73.2 Interpolating with RST: tuning the parameters

Bivariate Regularized Spline with Tension (RST, Mitasova and Mitas,
1993, Mitasova et al., 1995, Mitas and Mitasova, 1999) is implemented
in GRASS as s.surf.rst. To interpolate the Spearfish elevation ran-
dom sites elev.rnd.3k (generated in Section 7.1.2) to a raster map layer
elevrnd3k.def, we can simply run the module with its default settings (Fig-
ure 7.3¢):

g.region res=30 -p
s.surf.rst elev.rnd.3k elev=elevrnd3k.def

Working with site data 161

While the results may be satisfactory for many applications, it is worth explor-
ing the full functionality of this module because it provides a number of addi-
tional capabilities, ranging from tuning the character of the resulting surface to
computation of topographic parameters. Here, we discuss how to choose the
parameters to optimize the spatial interpolation and evaluate its accuracy. In
Chapter 12, we demonstrate the use of s.surf.rst for topographic (surface
geometry) analysis.

To take the full advantage of the s.surf.rst, understanding the princi-
ples behind the method is important. The mathematical description is given in
the Appendix B; here we provide only a verbal description with illustrations.
The RST function minimizes a specific measure of surface smoothness (also
called smoothness seminorm or roughness penalty) and simulates a flexible
sheet forced to pass through the data points while minimizing its energy (Mi-
tas and Mitasova, 1999, Wahba, 1990, Talmi and Gilat, 1977). Properties of
this function can be controlled by the tension and smoothing parameters. See
the difference in the impact of these two parameters illustrated by two anima-
tions at the Multidimensional Spatial Interpolation Web site'.

Tension parameter. Tension tunes the surface from a stiff plate to an elastic
membrane (Figure 7.4, Mitasova and Mitas, 1993). For very high tension, the
surface resembles a rubber sheet with cusps at the data points (Figure 7.4b,
tension=160, default smoothing=0.1). For low tension, the surface behaves
like a stiff (hard to bend) plate, creating a very smooth surface (Figure 7.4a,
tension=10, default smoothing=0.1). Due to its stiffness, it can overshoot in
the areas of sharp gradient change (especially if zero smoothing is used, as in
Figure 7.6a); in that case, the program gives a warning and increase in tension
or smoothing is suggested.

The role of the tension parameter can be also interpreted as a control of the
range over which the given point influences the resulting surface. For the high
tension, each point influences only its close neighborhood and the surface goes
rapidly to trend between the points. This may create cusps around the data
points (Figure 7.4b) or steps along the contours (Figure 6.7c). With very low
tension, each point has a long range of influence, so it is suitable for interpo-
lation of areas with relatively flat terrain with data points spaced far appart.
On the other hand, it may cause visible segments in large data sets (see Sec-
tion 7.3.4 for a solution). The default input parameters try to adjust the tension
to a suitable value based on the analysis of the data point density; however, to
fully optimize the tension a more complex procedure based on cross-validation
may be used (see Section 7.3.3).

To explore the impact of tension (Figure 7.4), you can interpolate two dif-
ferent surfaces from the Spearfish random elevation data as follows:

162 OPEN SOURCE GIS

s.surf.rst elev.rnd.3k elev=elevrnd3k.t1l0 ten=10
s.surf.rst elev.rnd.3k elev=elevrnd3k.t160 ten=160

You can compare these results with the surface computed with the default ten-
sion=40 and smoothing=0.1 in our first example in the Figure 7.3c.

Because the tension parameter is scale dependent, it can have different val-
ues in different directions, supporting modeling of anisotropic surfaces and
volumes (Figure 7.5, Hofierka et al., 2002a). Two additional parameters, angle
and scale, were added to s.surf.rst in GRASS 5.3 for computation of sur-
faces with uniform anisotropy, where the new parameters theta and scalex
represent the direction and ratio (scaling) of the anisotropic features.

Figure 7.4. Tuning the character of interpolated surface by tension parameter: a) tension=10,
smoothing=0.1 leads to a smooth surface with low level of detail useful for modeling major
trends; b) tension=160, smoothing=0.1 leads to a surface with cusps (little peaks and pits) in
data points, but it is smooth in between (as opposed to IDW). Note that the same smoothing
was used in both examples. Compare these results with the surface interpolated with default
parameters tension=40, smoothing=0.1 in Figure 7.3c

Working with site data 163

Figure 7.5. RST interpolation of a beach surface surveyed by Real Time Kinematic GPS:
a) given data points; b) default parameters in s.surf.rst; c) anisotropic tension with angle
theta=160 degrees and scaling scalex=0.25

Smoothing parameter. The functionality of smoothing can be illustrated us-
ing springs attached to the “pins” representing data points. The higher the
smoothing the “softer” the springs and the more is the surface allowed to devi-
ate from the data point in its effort to minimize its energy. GRASS implemen-
tation supports the spatially variable smoothing parameter — each site can have
different softness of its spring. The interpolation function will pass exactly
through the data points that have smoothing set to zero. Uniform smoothing is
given as a constant parameter smooth, while variable smoothing is given as a
floating point attribute in the site file. Smoothing is important when using low
tension to prevent overshoots, as well as for removing the noise which may be
present in data.

To explore the impact of smoothing, you can interpolate 3 surfaces from the
Spearfish random site data using the default tension ten=40 and the smooth-
ing set to a) smo=0, b) smo=10, and c) to spatially variable values with
smo=0.1, if z > 1250 and smo=10 when z <= 1250 (Figure 7.6, see Fig-
ure 7.3c for the result with the default smoothing=0.1):

s.surf.rst elev.rnd.3k elev=elevrnd3k.sm0 smo=0
s.surf.rst elev.rnd.3k elev=elevrnd3k.sml0 smo=10

You can use awk to add the variable smoothing to your site file within the
directory site lists in your MAPSET:

164 OPEN SOURCE GIS

Figure 7.6. Impact of constant and spatially variable smoothing: a) tension=40 and smooth-
ing=0.0: surface passes exactly through the data points, but overshoots may be present; b)
tension=40 and smoothing=10.0: surface is very smooth and does not pass exactly through each
data point; c) tension=40 and smoothing is 0.1 in the mountainous area and 10.0 in the low-
land. Compare these results with the surface interpolated with default parameters tension=40,
smoothing=0.1 in Figure 7.3c

s.out.ascii -d elev.rnd.3k |\

awk *$3>1250 {sm=0.1} $3<=1250 {sm=10}

{printf "%s|%s)#%s %%%s\n", $1, $2 ,$3, sm}’ > elev.rnd.3ksmvar
s.surf.rst elev.rnd.3ksmvar elev=elevrnd3k.smvar smat=2

Working with site data 165

The module s.out.ascii pipes the sites to the awk program which sets
the internal variable sm according to the third parameter $3 as piped from
s.out.ascii. In our case, this third parameter is the elevation. The next
code section within awk prints formatted (printf () function) GRASS inter-
nal sites format. The %s are needed to print the values stored in the variables
$1, $2 and $3 as well as sminto this formatted string. This procedure is done
for every line in the sites file and the output is redirected into a new sites map
elev.rnd.3ksmvar which has an additional column containing the variable
smoothing parameter. In the example with the variable smoothing, surface in
the mountains (elevation greater than 1250) is identical with the one obtained
from the default settings, on the other hand, the surface in the lowland is much
smoother (Figure 7.6¢).

7.3.3 [Estimating accuracy

Several measures can be used to estimate accuracy of spatial interpolation.
The module s.surf.rst computes deviations of the resulting surface from
the given site data that can be output to a site file devi for further analysis.
For example, you can compare the deviations of the surfaces generated by the
RST default settings (smoothing 0.1) and with a smoothing of 10 by adding the
output of the deviation file to interpolation and then computing the summary
statistics as follows:

g.region rast=elevation.dem -p

s.surf.rst elev.rnd.3k elev=elevrnd3k.def devi=elev.def.devi

s.surf.rst elev.rnd.3k elev=elevrnd3k.sml0 smo=10\
devi=elev.sml0.devi

s.univar elev.def.devi

{...]
standard deviation 3.13887
mean of absolute values 2.17833

[...]

s.univar elev.sml0.devi
[...]
standard deviation 21.7113
mean of absolute values 15.3396
[...]

r.info elevrnd3k.def

[...]
rmsdevi=3.,138342

[...]

r.info elevrnd3k.sml0
[...]
rmsdevi=21,707725
[...]

166 OPEN SOURCE GIS

When you compare the standard deviation and the mean of absolute values of
deviations, you can clearly see that the surface with the lower smoothing is
closer to the data points than the surface with the high smoothing. Your values
of deviations may be slightly different from those published here because your
input file, generated by a random procedure, will be slightly different too. Even
if the devi file is not defined, the standard (root mean square) deviation is
written into the history file of the resulting raster, along with the minimum
and maximum of the values at the given points and in the interpolated raster.
Note that the interpolated minimum and maximum values are usually higher
or lower than those at the given points, due to the smoothing, especially if the
interpolation is performed outside of the area covered by the input data set.
The contents of the history file can be retrieved by r.info.

The predictive error of the RST interpolation for the given set of parame-
ters can be estimated by a cross-validation procedure (Mitasova et al., 1995)
implemented in an experimental version of s.surf.rst.cv (available at the
NCSU Web site.”) The method is based on removing one data point at a time,
performing the interpolation for the location of the removed point using the re-
maining samples, and calculating the residual between the actual value of the
removed data point and the estimate for this point obtained from the remain-
ing samples. This procedure is repeated until every sample has been, in turn,
removed. The overall performance of the interpolator is then evaluated as the
root-mean of squared residuals. Low root-mean-squared error (RMSE) indi-
cates an interpolator that is likely to give more reliable estimates in the areas
between the data points. The cross-validation can also be used to find opti-
mal interpolation parameters by minimizing the RMSE (Mitasova et al., 1995,
Hofierka et al., 2002a).

7.3.4 Interpolating large data sets (1)

Digitized contours or LIDAR (Light detection and ranging) elevation data
sets can have over a million data points with the resulting DEMs with thou-
sands of rows and columns. To support processing of such large data sets,
s.surf.rst and s.vol.rst were implemented with a segmented process-
ing procedure. The segmented processing is based on the fact that splines have
local behavior, ie., impact of data points which are far from a given loca-
tion diminishes rapidly with increasing distance (Powell, 1992). The segmen-
tation uses a decomposition of the studied region into rectangular segments
with variable size dependent on the density of data points (Figure 7.7), using
quadtrees for 2D and octtrees for 3D interpolation (Mitasova et al., 1995). For
a given segment, the interpolation is carried out using the data points within
this segment and from its neighborhood, selected automatically depending on
their spatial distribution. Because tension inversely controls the range of in-
fluence of data points, this approach requires large neighborhoods to achieve

Working with site data 167

Fastin

(

B R S

Figure 7.7. Segmented processing of large data sets

smooth connection of segments for very low tension. The number of points
in the segment is controlled by segmax, the number of points used for inter-
polation (within the segment and its neighborhood) is controlled by npmin.
Default values for these parameters usually work, in case that the segments
are visible, npmin should be increased. Note that while s.surf.idw uses
12 given points for computation of a grid value, s.surf.rst uses at least
npmin points with the default npmin=200. If the points are dense and ho-
mogeneously distributed (as is often the case with LIDAR data), both segmax
and npmin can be set to lower values, leading to substantially faster computa-
tion. The IDW computes a new function for each grid point, while RST uses
the same function for all grid points within one segment.

Automatized collection of data points, typical for the current digitizing and
mapping technologies, leads to substantial oversampling. Therefore, the most
effective tool for speeding up the computation is the reduction of data points
to the minimum necessary for a given accuracy and resolution. The density of
points used for interpolation in s.surf.rst is controlled by the parameter
dmin representing the minimum distance allowed between the data points —
points that are closer to each other than this distance are considered identical
and not included into interpolation.

As the LIDAR data are becoming increasingly available, we use them to
explain the issues related to large data sets and oversampling. Our test data set
for a large coastal sand dune called Jockey’s Ridge in North Carolina, USA,
can be downloaded from the NOAA LIDAR Data Retrieval Tool (LDART)
Web site’, where you can also learn more about the technology. Use LDART to

168 OPEN SOURCE GIS

Figure 7.8. Surface created from raw LIDAR data by s.to.rast at 1 m resolution with lots
of gaps. Insert a shows the input point data with overlapping swath in detail. Insert b1 shows
detail of the surface created by s.to.rast at 3 m resolution with some loss of detail. Insert
b2 shows detail of a surface computed by s.surf.rst at 1 m resolution with high level of
detail

select the North Carolina 1999 Fall mission and an area given by the following
latitude-longitude coordinates:

north: 35.96428
south: 35.95287
west: -75.63844
east: -75.62579

LDART allows you to select a coordinate system, for example, you can choose
UTM zone 18, with the horizontal datum nad83 and vertical datum navd8&8.
Choose bin method none to get the point data. To import the data, first create
a UTM LOCATION (zone 18, north: 3980167, south: 3978908, west: 442433,
east: 443573, resolution 3 m), then use s.in.ascii with the £d=, option.
LIDAR point data create almost continuous coverage of the mapped surface;
therefore, you can use s.to.rast to get a quick, rough view of the surface

Working with site data 169

(Figure 7.8). You can do the transformation for 1 m and 3 m resolution as
follows (Figure 7.8):

.region sites=lidar9%99 res=1 -p
.to.rast lidar99 out=lidar99.sites.lm
.rast lidar99.sites.lm

.region res=3 -p

.to.rast 1idar99 out=lidar99.sites.3m
.rast lidar99.sites,3m

0 La Qv

With the 1 m resolution, there are lots of gaps in the surface. At the lower
resolution, some detail was lost, and there are still a few gaps (Figure 7.8). To
interpolate a high resolution DEM, we set the resolution to 1 m and interpolate
with RST (Figure 7.9):

g.region res=1 -p
s.surf.rst lidar99 elev=lidar99.def &

With the default parameters, the interpolation can run for several hours so you
should run it in background (<CTRL><Z>, bg). If you drape the given site data
over the interpolated surface in nviz, you can see that the measured swaths of
data overlap and the surface is significantly oversampled (see insert a in Fig-
ure 7.8). You can reduce the oversampling by increasing the parameter dmin
from its default value of 0.5 meters (half grid cell size) to 1 or even 2 meters
without losing too much detail. The points that are closer to each other than
dmin are then skipped, leading to faster computation using a smaller number
of sites. The most significant speed-up can be achieved by reducing segmax
and npmin values to 20 and 100 respectively, because the high density of LI-
DAR data does not require big overlaps in segments to achieve the continuity
in the resulting surface. If you view the result in nviz (see Figure 7.9), you
can see the excellent representation of the sharp dune crests and slip faces, even
without defining them as breaklines, thanks to the high density of data points.
The default values for tension and smoothing preserve the noise produced by
laser scanning; to reduce this noise, use higher value of smoothing.

In case of millions of data points exceeding the available RAM, swapping
can be avoided by splitting the data into several overlapping strips, each in-
terpolated separately and then patched together (overlap ensures smooth con-
nection). The segmented processing as well as the possibility of splitting the
computation into overlapping strips makes the module relatively easy to adapt
to parallel processing. The experimental parallel version of s.surf.rst de-
veloped by Christoph Troyer is available at the NCSU GRASS contributions
Website.*

Figure 7.9. LIDAR data interpolated at 1 m resolution using the default settings of s.surf.rst. The rectangle is the area used in the previous figure
illustrating the oversampling. Data are courtesy NOAA, NASA, and USGS (see the endnote of this chapter)

0LT

SIO ADYNOS NAdO

Working with site data 171

7.3.5 Surfaces with faults (1})

By definition, spline is a smooth function and it has always been regarded as
a tool for interpolation of smooth surfaces. However, RST can represent sharp
edges or rough surfaces very well, if these features are sufficiently described
by the data, as we have demonstrated in the previous section for LIDAR (see
for example Figure 7.9).

To create models of surfaces with complex faults pre-defined as vector lines,
we can combine s.surf.rst with GRASS masking tools. We illustrate the
approach using an elevation surface with a deep gully which was surveyed in
the field (the data are available at the GRASS Tutorials Web site®). First, the
points defining the fault need to be extracted from the measured elevation data,
based on their attributes.

We can format them as a GRASS ASCII vector line (see Chapter 6) using
UNIX text processing tools. Then, we will import this faultline from a file
gully.ascii, convert it to a raster, and use it as a mask to separate the gully
area from the rest of the terrain:

v.in.ascii gqully.ascii out=gqully
v.support ~r gully
v.to.rast gully out=gully.mask

Use the UNIX text tools to separate the points defining the gully (faultline and
gully bottom) and the hillslopes, import them as point files elev.gully and
elev.nogully, and interpolate with RST as follows:

s.in.ascii elev.nogully input=nogully.ascii
s.in.ascii elev.qgully input=gully.ascii

#interpolate without gully:
s.surf.rst elev.nogully elev=elev.nogully

#interpolate only gully:
s.strf.rst elev.gully elev=elev.gully mask=gully.mask

Use a mask for the gully to avoid unnecessary interpolation on the hillslopes
where we do not have any gully data. The surfaces are finally merged using
map algebra to create a single surface with faults (Figure 7.10):

r.null gully.mask setnull=0

r.mapcalc "elev.fault=if (qully.mask,elev.gully,elev.nogully)”
nviz elev.fault

7.3.6 Adding third variable: precipitation with elevation (1)

Multivariate interpolation is a valuable tool for incorporating the influence
of an additional variable. For example, to interpolate precipitation with the in-
fluence of topography, the trivariate version of RST s.vol.rst can be used.

172 OPEN SOURCE GIS

Figure 7.10. Interpolation of a surface with fault representing an edge of a gully. Given field
measured data are shown as black dots

The approach is similar to the one proposed by Hutchinson and Bishop, 1983,
and it is described in more detail by Mitasova et al., 1995, and Hofierka et al.,
2002a.

The approach requires 3D precipitation site data (x,y,z,p) and a raster
DEM. The result is a precipitation raster map computed as an intersection of
the precipitation volume model with the elevation surface.

As an example we use the computation of long term mean annual precipi-
tation in Slovakia using the data from over 400 meteorological stations and a
500 m resolution DEM, described in detail by Hofierka et al., 2002a (the data
are available for download on the GRASS Tutorials Web site, see Endnotes).
The input site data precip3d include 3D coordinates for each meteorologi-
cal station and mean annual precipitation as a floating point attribute, while the
dem500 DEM is provided as a 500m resolution raster (Figure 7.11a). The out-
put is a 2D raster map representing precipitation called precip.topo (Fig-
ure 7.11c). The 2D region should be set to the resolution of the input DEM.
The module also expects that a 3D region is defined. To create it within your
current MAPSET, you have to run the g3 . createwind script. To ensure that
the interpolation is performed only for the area of the Slovak republic, define
the mask using the provided raster file mask. The resulting 2D precipitation
raster map can then be computed by s.vol.rst:

g.region rast=dem500 -p
g3.createwind t=3000 b=0 dres=3000
g.copy rast=mask,MASK

Working with site data 173

Figure 7.11. Interpolation of precipitation with influence of topography: a) Input 500 m res-
olution DEM; b) precipitation distribution using bivariate interpolation by s.surf.rst; c)
precipitation with influence of topography interpolated by s.vol.rst. Precipitation is dis-
played as a surface (“hills” are high precipitation values). The insert shows elevation surface
intersected by 700 mm precipitation isosurface

s.vol.rst in=precip3d cellinp=dem500 cellout=precip.topo \
zmult=50 segmax=700

174 OPEN SOURCE GIS

The horizontal resolution is defined as 500 m with g.region and the verti-
cal resultion dres as 3000 m with g3 . createwind, creating a volume with
a single layer, starting at O m elevation and ending at 3000 m. The segmen-
tation can be skipped by using segmax=700, because the number of input
data points is only 435. The impact of topography on the resulting precipita-
tion map is controlled by the vertical scaling parameter zmult, as well as by
the resolution and smoothing of the DEM as demonstrated by Hofierka et al.,
2002a. The resulting map precip.topo is a 2D raster map representing the
precipitation. The 3D RST module internally computes a 3D (volume) precip-
itation function. When using the cellinp option, the precipitation values are
extracted from the precipitation volume at the elevations given by the dem500
raster map (see Figure 7.11). You can experiment with tension, smoothing,
and zmult parameters to get the best result. This approach captures a more
complex, spatially variable relation between precipitation and elevation than
the traditional methods that are based on statistical correlation.

7.3.7 Volume and volume-temporal interpolation (1)

GRASS provides some limited experimental tools for working with volume
data. We describe the functioning tools here to encourage further develop-
ment. Some of the prototype applications are demonstrated at the Spatial in-
terpolation Web site.® To illustrate the volume data processing tools we use
the Chesapeake Bay nitrogen concentration data that can be downloaded from
the related GRASS Tutorials Web site (see Endnotes), see also an example at
the Multidimensional Spatial interpolation Web site. First, you need to set up a
LOCATION based on the metadata and import the site file. Then define the 3D
region using g3 .createwind and g3 . setregion, and you can convert the
3D point data (x,y,z,w) to discrete voxel representation with s.to.rast3:
g3.createwind b=-33 t=1 dres=2
g3.setregion b=-33 t=1 res=10 dres=2

s.to.rast3 nitro3d out=nitro3d.vol
g3.list

The command g3 . 1ist allows you to list the volume raster files that are avail-
able. The continuous volume from 3D scattered point data can be created by
interpolation to 3D raster using the IDW method implemented as s.vol. idw,
or the RST method using s.vol.rst, with RST usually providing more
accurate results. The mathematical description of the method, including the
equations for computation of associated gradients and curvatures, is in the Ap-
pendix B. Trivariate RST has similar properties and parameters as the bivariate
version, so the principles described in the previous sections apply here as well
(see for example impact of tension in 2D and 3D in Mitas and Mitasova, 1999).

To illustrate the volume interpolation, you can create a volume model
of spatial distribution of the Chesapeake Bay nitrogen concentrations.

Working with site data 175

To limit the interpolation to the water body, import the shoreline data
chesapeakeshore.ascii wusing v.in.ascii and create a mask for
the Bay using v.to.rast. Then you can interpolate the masked volume
using s.vol.rst:

.in.ascii chesapeakeshore.ascii out=shore

.support -r shore

.to.rast shore out=shore.mask

.vol.rst nitro3d elev=nitro3d segmax=400 zmult=1000\
maskmap=shore.mask

u < <<

Note that the site data should be in the correct 3D format: x|y |z |#n $wl
and that the vertical resolution of the resulting grid is much higher than the
horizontal resolution. Parameter zmult is set so that the vertical distances be-
tween the data points are of the same magnitude as the horizontal distances to
ensure the stability of interpolation. See the Section 8.2.4 for various possibil-
ities to visualize the results.

Similarly to the bivariate version, trivariate RST can compute a number of
parameters related to the gradients and curvatures of the volume model. An
experimental version of RST interpolation for 4D data (volumes changing in
time) s.volt.rst is also available for update and further development.

7.3.8 Geostatistics and splines

As we have described in the previous sections, GRASS provides fully inte-
grated spline interpolation and a wide range of geostatistical tools, including
kriging through the link with Open Source geostatistical software (see Chap-
ter 13). Because the relation between splines and kriging is a frequently asked
question, we provide here a brief explanation.

Several authors (e.g., Wahba, 1990; Cressie, 1993) have demonstrated that
splines are formally equivalent to universal kriging with the choice of the co-
variance function determined by the smoothness seminorm (also called rough-
ness penalty). Therefore, many of the geostatistical concepts can be exploited
within the spline framework.

Kriging assumes that the spatial distribution of a geographic phenomenon
can be modeled by a realization of a random function and uses statistical tech-
niques to analyze the data (drift, covariance) and statistical criteria (unbiased-
ness and minimum variance) for predictions. However, subjective decisions
are necessary (Journel, 1996) such as judgement about stationarity, and choice
of a function for theoretical variogram (variogram model). Kriging is there-
fore successful for phenomena with a strong random component and/or for the
problems where estimation of statistical characteristics (uncertainty) is the key.

Splines rely on a physical model with flexibility provided by change of elas-
tic properties of the interpolation function. Often, physical phenomena result
from processes which minimize energy, with a typical example of terrain with

176 OPEN SOURCE GIS

its balance between gravitation force, soil cohesion, and impact of climate. For
these cases, splines proved to be rather successful. Moreover, splines provide
enough flexibility for local geometry analysis, which is often used as input to
various process-based models.

However, most of the surfaces or volumes are neither stochastic nor elastic
media, but they are results of a host of natural (e.g., fluxes, diffusion) and/or
socioeconomic processes. Therefore, each of the mentioned methods has a
limited realm of applicability and, depending on the knowledge and experience
of the user, proper choice of the method and its parameters can significantly
affect the final results as illustrated by numerous examples throughout this
book.

NOTES

1 Multidimensional Spatial Interpolation
http://skagit.meas.ncsu.edu/~helena/gmslab/viz/

sinter.html

2 J. Hofierka, 2003, Crossvalidation for s.surf.rst: s.surf.rst.cv.tar.gz,
http://skagit.meas.ncsu.edu/~helena/
grasswork/grasscontrib/

3 LIDAR data,
http://www.csc.noaa.gov/crs/tcm/about ldart.html
Airborne Topographic Mapper LIDAR data were collected in partner-
ship with the National Oceanic and Atmospheric Administration (NOAA)
Coastal Services Center, the NASA Wallops Flight Facility, the U.S. Geo-
logical Survey (USGS) Center for Coastal and Regional Marine Geology,
and the NOAA Aircraft Operations Center

4 Ch. Troyer, 2003, Parallel s.surf.rst: rstmods2fixed.tar.gz,
http://skagit.meas.ncsu.edu/~helena/
grasswork/grasscontrib/

5 GRASS Tutorials Web site,
http://mpa.itc.it/grasstutor/

6 Spatial interpolation:

Chesapeake Bay Nitrogen,
http://skagit.meas.ncsu.edu/~helena/gmslab/
viz/ches.html

Concentrations of chemicals,
http://skagit.meas.ncsu.edu/~helena/gmslab/
viz/voll.html

Soil properties,
http://skagit.meas.ncsu.edu/~helena/gmslab/
gsoils/ccsoil2.html

Chapter 8

GRAPHICAL OUTPUT AND VISUALIZATION

Visual analysis and communication based on graphical output is a core com-
ponent of GIS. Graphical representation of georeferenced data and creation of
cartographic models provides important means for understanding and com-
municating complex spatial relationships. GRASS includes a wide range of
graphical tools from simple two-dimensional display to sophisticated visual-
ization and animation.

8.1. TWO-DIMENSIONAL DISPLAY AND ANIMATION

The most common approach to viewing and visually exploring geospatial
data is an interactive display of two-dimensional images using color and differ-
ent area, line and point symbols. This approach is mostly based on traditional
cartography, with current computer graphics tools offering greater flexibility
in color, symbols, dynamics and interactivity that was not possible with the
traditional maps.

8.1.1 Displaying map layers using the GRASS monitor

In the previous chapters, we have already described the basic tools for view-
ing map layers, such as d.rast, d.vect, and d.sites. In this section, we
just add few notes and focus on additional tools.

To simultaneously view more than a single raster map layer (for exam-
ple to compare patterns), it is possible to open up to seven GRASS moni-
tors named x0 through x6 using the command d.mon. Use the parameter
select to choose in which monitor the map layer will be displayed, for ex-
ample (Spearfish LOCATION):

178 OPEN SOURCE GIS

A RN e
| Spear fish shoded elevation. dan

%

Figure 8.1. Map display with d. frame: three frames with shaded DEM, soils and geology
map (Spearfish data set). The titles are written with d. text

.mon x0

.rast soils
.mon x1

.rast geology
.mon select=x0
.vect roads

0 0 000 0

will display soils map in monitor x0, the geology map in monitor x1, and over-
lay the roads map in monitor x0. If you are planning to use multiple monitors
regularly, it is worth trying the module d. dm which provides a graphical user
interface for managing multiple monitors and browse through multiple map
layers interactively.

Each monitor can be split into several frames using the d. frame command.
Using the flag -c, you can subdivide the GRASS monitor into rectangular
areas (frames) by mouse. Subsequent display commands will be applied only
to the latest defined or selected frame. In case that you have several frames,
select another one with d. frame -s and click with left mouse button into
the desired frame, accept it with right mouse button. To remove all frames, run
d. frame -e. As an example, to split the current monitor into two frames,
you can define the following:

d.frame -e

d.frame -c at="0,100,0,50"
d.frame -c at="0,100,50,100"
d.frame -s

Buttons:

Left: Identify a frame
Middle: Keep original frame
Right: Accept frame

The frame coordinates are defined in percent of the monitor size (bottom, top,
left, right). Using this approach you can define frame regions independent

Graphical output and visualization 179

from the true monitor pixel size. Before displaying maps in a frame, select it
with the mouse as described above. An example with three frames in a GRASS
monitor is shown in Figure 8.1.

As with any other window, you can adjust the GRASS monitor size using
the mouse. To change its default size, use the UNIX environment variables
GRASS HEIGHT and GRASS WIDTH either in /etc/profile or locally in
SHOME/.grassrcb. If you are using tcltkgrass you can set the size in the
CONFIG ~» OPTIONS ~» DISPLAY DIMENSIONS menu. These changes
will become valid for your next start of a GRASS monitor. In order to save
this new configuration for future sessions, you have to answer YES to SAVE
CONFIG when leaving tcltkgrass.

You can add legend, scale, and text to your displayed map using d. legend,
d.barscale, and d.text respectively. If you want to include this map in
a presentation or a report, you can use a graphical program such as gimp to
snapshot the window. Later, in Section 8.1.3, we show how to generate high
resolution output as an image file with the PNG driver. You can display the
legend in a separate monitor, frame, or you can just stretch your current moni-
tor to make space for the legend and place it with a mouse using the -m option.
For d. legend, you can use continuous colors for the continuous field data
with the flag -s and discrete colors for raster map layers with categories (see
examples in Chapter 12). For floating point raster maps representing contin-
uous fields, it is appropriate to use the legend command with the -s option,
creating a legend with smoothly changing colors, because in such maps the
colors for each cell value are interpolated based on the values and colors given
in the color table.

There is no legend tool yet for vector and site data — you need to use ex-
ternal graphical software to add it to the snapshot image. You can display
labels for your raster, vector, or sites map layer by using d.rast.labels,
d.vect.labels, and d.site.labels.

For raster data, working with color provides a powerful tool for extracting
important spatial information and communicating it effectively. As we have
explained in Section 5.1.1, the raster color table can be defined by r. colors.
Besides selection from a set of predefined color tables you can define the col-
ors by their names using the option color=rules, or you can copy a color
table from another raster map using the option raster=mymap (see examples
in Section 5.1.1). For a refined definition of colors you can use the red, green,
blue (RGB) color description (see Section 9.7.1). To find suitable RGB values
for a desired color, use any graphics tool provided by your system. For exam-
ple, in gimp, find a palette under “File” ~» “Dialogs” ~» “Palette”. Select a
palette suitable for your map and then click on the individual colors to get the
RGB values which you can then use in r. colors. Besides the applications
throughout this book, you can find examples of rules for creating the color ta-

180 OPEN SOURCE GIS

Figure 8.2. Shaded elevation maps: shade map with sun azimuth=270° from north (left) and
shade map with sun azimuth=90° (right), sun altitude=30° above horizon (Spearfish data set)

bles in the Chapter 12, in the Section 5.4.4 and, of course, in the manual page
for r.colors.

8.1.2 Creating a 2D shaded elevation map

To enhance the perception of topography represented by a DEM, a shaded
elevation map can be generated quite easily. A special color transformation is
used to prepare a translucent view of the DEM (or any other raster map) and
the shade map. It is based on the IHS color transformation which is explained
in greater detail in Section 9.7.1. First, we generate a shade map based on the
sun position using the script shade. rel. sh. The name of the resulting shade
map is created automatically by adding . shade name extension to the name
of the elevation file. This map is then used to display the elevation.dem
map layer with shaded topography by d.his:

shade.rel.sh altitude=30 azimuth=270 elevation=elevation.dem
d.rast elevation.dem.shade
d.his h=elevation.dem i=elevation.dem.shade

You may experiment with different values for altitude and azimuth when
creating the shade map to highlight various topographic features. Figure 8.2
shows the effects for different sun azimuth angles. You can also apply shading
to other types of surfaces when studying their structure.

If you want to save the shaded map into afile, use r .his instead of d. his.
It creates three map layers representing the red, green and blue channels (be-
cause the original map is 24bit, it writes three 8bit maps). In our next example,
wecallthem el.b, el.g, el.r. Youcan then use the module r.composite
to combine the three color maps within GRASS into a single shaded elevation
map dem.shaded:

Graphical output and visualization 181

r.his h=elevation.dem i=elevation.dem.shade b=el.b g=el.g r=el.r
r.composite b=el.b g=el.g r=el.r out=dem.shaded
d.rast dem.shaded

The module r. composite provides optional parameters to control the color
levels to be used for each color component (default color levels per channel:
32). This default number of levels results into a total of 32768 possible col-
ors (equivalent to 15 bit per pixel). Due to limitations in the GRASS display
color model both r.composite and d.rast will significantly slow down if
more colors are used. However, for human eye, this number of grey shades is
quite sufficient. You can also export the three map layers and compose them
into 24 bit shaded elevation image using external graphics tools. Alternatively
you can export the map using r.out.ppm3 which writes a 24 bit PPM file.
Note that the composite shaded elevation map is only usable for visualization
purposes as the “elevation” cell values are modified due to the shading.

8.1.3 Monitor output to PNG and HTML files (1)

Besides the GRASS monitor, it is possible to output the map dis-
play to other types of graphics drivers such as PNG or HTMLMAP (read
more about the drivers in the GRASS 5.3 User manual', or by running
g.manual drivers).

PNG file driver. While the regular GRASS monitor displays the raster map
layer at the resolution given by your display system, the PNG driver was imple-
mented to create a user defined, high resolution output in PNG image format.
It uses the PNG library>. True color output is supported. The PNG format
(Portable Network Graphics) is a lossless, highly compressing image format
designed as a replacement for GIF and TIFF which may contain patented algo-
rithms (note that the JPEG algorithm compression is lossy and is often inade-
quate).

The use of the driver is similar to the use of the GRASS monitor with the
output stored in a PNG file when the PNG driver is stopped. For example, you
can create a PNG image with elevation and soil map layers as illustrated by
the following sequence of commands. First, start up the driver (here syntax for
bash shell):
export GRASS_TRUECOLOR="TRUE"

d.mon start=PNG
d.mon select=PNG

Then, display a raster map and a vector map from the Spearfish data set:

d.rast elevation.dem
d.vect soils color=blue

The PNG file called map.png will be automatically written into your current
directory when you stop the driver:

182 OPEN SOURCE GIS

d.mon stop=PNG

The resolution of the resulting image, its background color, true color support,
and the name of the output file are controlled by GRASS variables and UNIX
environment variables (see the manual page for the PNG driver). For example,
to output your raster map as an image called myimage . png with the size of
3000 x 4000 pixels, you need to set your environmental variables as follows:

export GRASS_WIDTH=3000
export GRASS_HEIGHT=4000
export GRASS_PNGFILE=myimage.png

Otherwise your output will use the default settings; that means 8 bit colors, the
640 x 480 image size, and the file name map.png.

HTMLMAP driver. The HTMLMAP driver supports the generation of
HTML image maps for area vector data. In these maps, different portions
of an image are linked to URL targets, such as web sites or web documents.

The driver can be used only with the following GRASS display commands:
d.text to pass HREF information for resulting image maps and d.area to
draw polygons from a vector map. The use of this driver is similar to the use of
the GRASS monitor, but it stores all output to a HTMLMAP file, as illustrated
by the following example. First, start up the driver:

d.mon start=HTMLMAP
d.mon select=HTMLMAP

Then, you can display two vector maps along with strings to define the target
URLs:

echo "http://www.dummyurl.dum/gis/" | d.text
d.area map=trn.sites
echo "http://www.anotherdummy.dum/lab/map.html" | d.text

d.area map=rstrct.areas

Pipe the text defining the target URLs using the UNIX echo command; al-
ternatively, you can just type d.text and provide the parameters defining
the size and color of the text, as well as the text itself ending it with EOF
(<CTRL><D>). To write the HTMLMAP file to your current directory, you
just stop the driver:

d.mon stop=HTMLMAP

The size of the image, output file name, and the HTML type (client, apache,
raw) are defined by GRASS environment variables, as they are for the standard
GRASS monitor or PNG driver (see HTMLMAP driver manual entry). By
default, the map will be written to a file called htmlmap as a client type of
image.

Graphical output and visualization 183

The image map can be combined with an underlying raster image
(backmap.png in our example) created by the PNG driver and inserted into
a HTML document with reference to the HTML map. The basic structure is:

<HTML>

<BODY>

<MAP NAME="map">

<AREA SHAPE="POLY"
HREF="http://www.dummyurl.dum/gis/"

[...]

</MAP>

</BODY>

</HTML>

The web user will see the backmap.png in the browser, links are related to
the defined area map. Obviously both should be related to each other.

8.1.4 Animations in 2D space

If you have a series of data (temporal, spatial, parameter scans) you can an-
imate them using xganim. The command loads a specified series of GRASS
raster map layers and then animates the series. Up to four different map series
can be animated simultaneously — a task often needed when analyzing outputs
from simulations of landscape processes. For example, you can animate the
evolution of water flow and discharge, stored in raster files hh00100 through
hh01000, and gw00100 through gw01000 in the Spearfish data set, as fol-
lows:

xganim viewl="hh0*" view2="qw0*"

You can either list all the map layers by name or use wildcards, however, you
need to be careful about the numbering system that you use to ensure proper
order of map layers, and keep the possibility to insert additional layers. The
program provides a simple interface with controls for speed, looping, direction
of play, running and stopping the animation, and stepping through the frames.
If the animation is “jumpy”, it is usually because your pattern does not change
smoothly — you can add additional frames by interpolating between the map
layers. Often, a simple average between two raster maps is sufficient (use
r.mapcalc). Animation is also useful for browsing through a larger set of
map layers and as a preview tool when preparing data for animation in 3D
using nviz. To save your animation slides as an MPEG file, use r . out .mpeg
(see the manual how to use wildcards).

184 OPEN SOURCE GIS
8.2. VISUALIZATION IN 3D SPACE WITH NVIZ

The advanced, interactive visualization tool nviz can be used to view the
data in 3D space and to perform visual analysis of multiple surfaces, vector and
site map layers. The module is fully integrated with the GRASS data structure
and runs directly from the GRASS prompt. It also supports scripting for pro-
ducing dynamic visualizations via animation. To learn how to use nviz read
Nviz tutorial’ that can be accessed by clicking on the “help” button of its inter-
face. To get you started, we provide a brief overview of nviz capabilities with
few examples. You can find numerous images created by nviz throughout this
book. The module provides the following capabilities:

& visualization of 2D raster map layers as multiple surfaces in 3D space, with
the capability to use different data sets for surface topography, surface color
and transparency;

® interactive positioning, zooming, and z-scaling;

interactive lighting with adjustable light position, color, intensity and sur-
face reflectivity;

® display of multiple vector map layers draped over selected surfaces or flat
at a selected height;

® display of multiple site data layers draped over selected surfaces or in view-
ing 3D in their 3D location;

® animation capabilities with two options:

— key-frame animation for creating fly-by’s,

— scripting for automatically generating complex animations from series
of map layers;

® interactive query of raster data displayed as a surface and color;

® interactive slicing through multiple surfaces using cutting planes.

The nviz module is enhanced quite frequently, so some differences between
the latest version and our description are possible. The most important updates
will be posted on the GRASS Tutorials Web site.*

82.1 Viewing multiple map layers

You can start the program without defining any map layers by

nviz -q

Graphical output and visualization 185

and use the interface to load your data. Alternatively, you can define the map
layers that you want to visualize on the command line; for example, to view
the DEM with streams, roads, and some site data from our Spearfish data set,
run:

nviz elevation.dem vect=streams, roads sites=archsites,bugsites

The program opens a graphics window with a coarse model of the elevation
surface and a control panel window. If you click on the “DRAW?” button, the
elevation model with the vector and site data draped over it will be shown at
higher resolution. Depending on the size of your raster map, the surface may
not be rendered at its full resolution and the view may not be optimal. In the
following paragraphs, we explain how to adjust it to create a desired 3D view
of studied area.

Controlling the view. The position of the viewing point, viewing direction,
perspective (zoom-in, zoom-out) and tilt of the surface can be adjusted us-
ing the “Controls” menu (Figure 8.3). Use the left mouse button to move the
puck around the viewing direction square to change the position of viewer and
the direction of view — the coarse model of your DEM will move simultane-
ously making it easier to find the desired viewing position. The “perspective”
slider allows you to zoom-in and zoom-out while the “height” slider controls
the viewing height. The “zexag” slider is used to interactively modify the
z-exaggeration (it effectively multiplies the elevation data); note that it also
changes the height of the view so you may need to re-adjust it. If you cannot
achieve the desired view with the sliders or if you want to define an exact value
for any of the viewing variables, you can type them into the related field and
type <ENTER> to continue. To focus on an area off the center of your map,
use the “look here” button to select a new center of view with a mouse click
(pin your surface in your focus area). All movement of the surface will be cen-
tered around this point. To get an ortho view, click on the “top” button and use
“RESET” button to get back to the default behavior. The “twist” slider allows
you to tilt the displayed surface to simulate the view from a turning airplane.

The surface with all other map layers will be rendered after each change. If
you are using multiple steps to adjust the view of your surface, you can switch
off this automatic rendering using the buttons in the upper part of the control
menu.

Modifying properties of surfaces. ~The viewed surfaces are managed using
the options provided by the “Panel” ~» “Surfaces” menu (Figure 8.4). In the
upper part of this menu you can adjust the drawing style as well as the level of
detail for the rendered surface. By default, the surface is rendered as colored
polygons with Gouraud (smoothed) shading, using a coarser resolution while
the surface is interactively manipulated. To change the surface display to a

186

OPEN SOURCE GIS

b A5 LS

;sgusm._. A R St D A T

v Comrols, .

| EWe Panel

Futu:

Featnre: B Surface L o Sies

il

|
1| view: # eye . center
11 ikt

Current:

o)

| L Wit
_!J z
w U8 K
“e LR Sphele
* use diamond

N alevalon sem@PERMANENT

Drawe Current |

site size [150 02 + Dispiay on surface(s)

Schptng Help

o Clear o Doaw

Cigsr j Cancel i

ook |

E i- rere |4
l |

E | et i N
| [ravaca | jrres —

- Display Fial

Dispiay on surtace(s)

Fites Poned
archiies New | Detete |

W slevalion dem@PERMANENT

_cie [§

Figure 8.3. Spearfish geology map draped over a DEM with overlayed streams and roads
as vector data, and archaeological and insect collection sites as point symbols (pyramids and

spheres respectively)

mesh (wire) or colored surface with a mesh, select the desired option from the
menu under “Surface style”. For fast interactive manipulation, you can select
“wire” from the “Grid style” menu. To render the surface at the current re-
gion resolution (as given by g.region), set the “Polygon Resolution” to “1”.
Note that if the current resolution is higher than the resolution of the raster file
used for topography, the raster file is automatically resampled leading to the
discontinuous surface shown by Figure 5.3 (see Chapter 5). To speed up the
rendering while exploring the viewing parameters you can lower the rendering
resolution (increase the cell size) by choosing a higher value of polygon res-
olution. If you are using any style that involves wire, you can adjust its grid

spacing with “Grid Resolution”.

To drape a new color map over the surface select a new raster map using the
“color” option from the “Surface Attribute” menu, for example soils.ph in

Graphical output and visualization 187

Surface Style: — | Grid Style: — | Shading: — |
| Grid Resolution | Polygon Resolution
ENE s

| % Current Surface Only . All Surfaces

Surface Atiribute — l i

Mask Zeros by: | Elevevation i Color

Dravr Current

Figure 8.4. Displaying topography at multiple resolutions controlled in the upper part of the
Surface menu, using multiple, masked-out surfaces

our Spearfish example. After loading the raster map, use “DRAW” to render
your elevation surface with the new color map (Figure 8.3). To overlay an
additional raster map, you can use transparency. However, for its meaningful
application, the raster map for transparency should be fairly simple. A possible
use may be to suppress (lighten) the areas outside a studied watershed.

To render only a subset of the surface, you can define a raster map to be
applied as a mask using the “mask” option from the “Surface Attribute” menu.
Masking can also be used to create a 3D view of topography with spatially
variable resolution using nested grids approach (Figure 8.4). For example,
assume that you have a 100 m resolution DEM for entire region and a 20 m
resolution DEM for a smaller subarea. To create a multiresolution surface,
set the resolution to 20 m by g.region and start nviz -q. Switch off all
automated redraw buttons in the top panel and load the two DEMs using the
“Panel” ~ “Surface” ~ “New” button. Then, with the current surface set to
the 100 m resolution DEM, define its mask using the 20 m DEM through the
“mask” option from the “Surface Attribute” menu. Set “Polygon Resolution”
to 5 (5 x 20 = 100) and render the 100 m resolution DEM using the “Draw
current” button. You will get the surface with a “hole” in the area where the
high resolution DEM is located. Then, select the 20 m DEM as current, set
“Polygon Resolution” to 1 and render the 20 m resolution DEM with the “Draw
current” button and save the image if it looks good. Depending on resolution,
there may be a masked strip between the two surfaces, you can use a slightly
smaller raster than the inserted DEM as a mask to ensure sufficient overlap.

188 OPEN SOURCE CIS

Displaying vector data. If you would like to choose a different color for
your vector map or add an additional vector map layer, open the vector panel
by choosing “Panel” ~» “Vectors” (Figure 8.3). You can load the new vector
map using the “new” button. After loading, the switch “Display on surface(s)”
will be automatically activated for all surfaces (when working with multiple
surfaces switch off those on which you do not want to drape your new vector
data). You can adjust the line width and color by using the appropriate buttons.
For example, select black for roads and then click on the name of the current
vector file, select streams from the menu of available layers and change its
color to blue. You can use “Draw current” in the vector panel to drape only the
selected vector file. To render the surface with all vectors and sites draped over
it, use the “Draw” button on the top of the movement panel. If the lines are not
fully rendered, move them slightly above the surface using the “Vect.Z” slider.

Displaying sites. To change the symbol used for the site data, go to
“Panel” ~ “Sites” and open the site panel (Figure 8.3). It is similar to the vec-
tor panel — you can use it to add or delete a sites map layer, select the surface on
which the current site data should be draped, and select the symbol, including
its color and size. If you have 3D site data, you can also display them in the 3D
position rather than draped over the surface. This is particularly useful when
evaluating interpolation and smoothing of surfaces as you can see how much
the surface deviates from the given data and where the highest deviations are.

Controlling light. Interactive light manipulation is useful for detecting noise
or small errors in surfaces as well as for enhancing the 3D perception of sur-
face topography and creating special effects. The panel “Panel” ~» “Lights” is
used to change the lighting parameters such as the light color, brightness, am-
bient (dispersed) light and a position of light source (height and direction) by
using the appropriate sliders and a square with puck. Interactive adjustment of
lighting is made easier by a sphere which appears in the center of the graphics
window and shows the current lighting effects as the changes are made (Fig-
ure 8.5). The sphere disappears when the surface is rendered, for example with
the “Draw” button.

Adding legend and labels. To add a legend, title, or other text to the images
displayed by nviz, open the “Panel” ~ “Label” panel that allows you to type
in short text and place it in the graphical window with the mouse. The legend
has options similar to the command d.legend and you can again place it
with the mouse. The legend is then automatically redrawn with the image, to
remove the legend, draw the surface with the button “On” switched off.

Graphical output and visualization 189

| Follow ViewPoint
N Shaw Mooel

P

Brightness (06

Figure 8.5. Interactive control of light aided by a sphere

Saving images, state and view settings. To save the created image, go to
“File” ~ “Image dump” and select one of the formats that you want to use
(SGI/RGB-Format, TIFF, PPM). You can transform the saved image to JPEG,
Postscript or other formats using a graphics program such as gimp. To render
and save image at high resolution (for example, at 5000 x 5000 pixels), use the
“full resolution PPM” option. The image will be split, rendered piece by piece
and then patched together.

Using “File” ~» “Save state” you can save the settings of your current 3D vi-
sualization. You can restore the settings by “File” ~» “Load state”. Using this
capability, you can save and quit your work and then start it again without los-
ingjust the right light and view that you have found. It is highly recommended
to save the state regularly so that you can go back and restore your settings at
later time. You can also save your 3D settings in a GRASS 3d.view file using
the “Save 3d settings” option from the “File” menu or load the settings from a
previously created file to get specific viewing parameters.

822 Querying and analyzing data in nviz

To use nviz for both qualitative and quantitative analysis you can perform
3D queries. Choose ‘“Panel” ~» “What’s Here?” and activate the “What’s
here?” switch. You can select which attributes you want to be included in
the query using the button “Attributes”. In Figure 8.6 we query the active
upper elevation surface with slope map draped over it. By pointing the mouse
at a location of interest, get its coordinates including the elevation, the slope
value, and a distance from previous queried location. You can also use nviz
to perform small digitizing tasks in 3D by using “What’s here?” and piping
the result into a file. The file can then be converted into a site file or a raster

190 OPEN SOURCE GIS

file using nvizimport script. The principles used in the algorithm for 3D
spatial query are described by Brown et al., 1995. If you have nviz compiled
with Postgres support, you can directly query connected tables in PostgreSQL
DBMS for vector and point data attributes.

Working with multiple surfaces. Multiple surfaces are by default displayed
based on their 3D coordinates; however, their relative position can be changed
using the position menu, which opens after clicking on the “Panel” ~ “Sur-
faces” ~» “Position” button. You can change the relative vertical position of a
current surface using the “z” slider or you can move the surface around using
the cross in a horizontal position square. Using this interface, you can arrange
your surfaces within your graphical window in a way useful for visual analysis;
for example, next to each other, as shown in Figure 8.7.

When comparing multiple surfaces, cutting planes can be very useful.
Choose “Cutting plane” from “Panel” menu, select a cutting plane (you can
have up to 8) and set its appropriate orientation using the “Rotate” slider. You
can also slide the rotate slider to interactively cut through your surfaces, or you
can slide the “cross” to move the cutting plane through the surfaces in fixed
direction. The color of the cutting plane can be set to the color of the top (T) or
the bottom (B) surface, blend (BL) of those two colors, grey (GR) or invisible
(N) by switching on the appropriate button.

ol RoYE-=]
File Panel Scipting Heip §
[ﬂliﬂ: o Clear o Draw
| Featurs: W Suface M vectors W Ses ||

| Clear cancel

:
.
§

(W what's Hers?] Aminues | Resst |

i ¥
1 eastng. 20921738750
'| nohing: 7306316750
i elevation: 3773094
=ITUpu' cowhim EDG canntenial_tm (377 638)
i 377 636397
IColor. cowbm 100 sip@cenntenial_hm (4.62309)
A33 G253 BO

']dmma alang surface 705789 =t

| e Nons J

Figure 8.6. Interactive 3D query of elevation surface with slope map draped as color

Graphical output and visualization 191

G|

z[00 x:[s9047 v: -850

Reset J Close i

Figure 8.7. Viewing multiple surfaces next to each other or in their relative position with a
cutting plane (elevation surface before and after construction)

When working with multiple surfaces and cutting planes, keep in mind
that in geoscience applications, the vertical spatial variability requires resolu-
tions much higher than are the resolutions typically used in a horizontal plane.
Therefore, a global vertical exaggeration (“zexag”) factor is applied for better
visual perception of terrain. However, to visualize vertical relationships with
sufficient detail, relative exaggeration of depths has to be used. For example,
for multiple surfaces representing soil horizons, the depths need to be exagger-
ated relative to terrain surface (Brown et al., 1995).

8.2.3 Creating animations in 3D space (1})

Animation is a powerful tool for exploring large data sets and for analyzing
time series observations or modeling results. Fly-by’s over digital elevation
models or multiple surfaces can be created by using two types of key frame
animations. Scripting with file sequence tool provides capabilities to build
more complex animations with multiple map layers including combination of
surfaces, vector data and sites.

192 OPEN SOURCE GIS

Al :_!J P | B[TotFrames: [:00 16 i

frrvieryevorin®
' I

Key Frames

Add | Clear al !

! Show: M Path _j Vect _i Sites

1 { ion
nterp: . Linear] 4 Spline —»] .Eﬂ?_..___._._.:__

| Run and Save j Close ;

Figure 8.8. Fly-by animation menu in nviz

Creatinga fly-by. Animations simulating flying over a surface can be created
using animation panels which allow you to define key frames, representing
key positions defining your path and then render and save the surface views
along this path. Basic control of the fly-by is provided by the menu “Panel” ~»
“Animation” (see Figure 8.8). First, enter the number of images to be rendered
as “Tot. Frames”. The default is 25, a larger number is suggested to get an
interesting flight, for example, type in 100 followed by <ENTER>. Now select
your initial viewing position using the viewing direction puck and perspective,
height or twist sliders in the upper “Controls” panel. Click on “Add” to save
this position. Then select the next position on the key frame (time) axis by
dragging the thick vertical blue line to the right and define the second key
(viewing) position by adjusting the direction, perspective, height or twist. Save
your second key frame by clicking on “Add”. You can continue moving your
viewing position and adding key frames until you reach the end of the time line.
Additional frames will be automatically interpolated between the key frames
as indicated by the black bars on the time axis.

To avoid a jumpy flight, it is useful to start with a small number of key
positions, for example, by locating four key frames after each 25% segment on
the time axis. After defining the key positions and a number of key frames, run
the coarse resolution movie by clicking on the play button (black right arrow)
to get some feeling for how the controls work and see how fast and smoothly
you are flying. If the flight is too fast, add more frames. You can also control
the number of frames between the key positions by dragging the blue triangle
on the “Key Frames” axis. To make the fly path smoother, activate the “Spline”
button and control the sharpness of the curves on your path using the “Tension”
slider. You can add vector and sites map layers to your surface by switching
on the “Show vect” and “Show site” buttons.

Graphical output and visualization 193

After previewing the animation by running the coarse resolution fly-by, you
can render the full resolution images for your movie by selecting the “Run and
Save” and providing a filename (e.g. £i1m). Depending on the resolution,
image size, and speed of your computer, the procedure may take some time.
The result will be a series of image files, which are automatically numbered
(e.g., film00000.ppm - film00099.ppm). The images are then used to create a
movie file using external tools as described in the next paragraph.

If you just want to try out animation, the simple animation tools described
above are enough; however, for a serious animation work it is worth learning
and using the “Key frame animation” panel which provides control over the
frame rate and key frame time as well as refined control of the camera (viewing
position and direction). The use of “Key frame animation” is described in
detail in the Nviz tutorial.

Converting series of images to movies. The rendered images are saved in
the ppm, tiff or SGI/RGB format. To create an animation, you can merge them
into an animation file using the scripts provided with the GRASS code or with
external tools such as mpeg encode. >

To create an animated GIF using the rendered images film*.rgb at half
their size run:

rgb2gifanim -s 0.5 film.gif "film*.rgb"

The MPEG movie can be created in a similar way using the script make . mpeg.
These scripts use some image processing tools that may not be readily avail-
able, but you can create an animation by converting ppm images to gif with
ppm2gif.shand then merge them intoa single animation file by gifmerge.
You will find the scripts on the GRASS Tutorials Web site (see the Endnotes
for reference).

If you would like to have more control over the creation of the MPEG movie,
you can use the MPEG encoding tools directly and define the movie in the
parameter file mpegparam. txt, for example:

OUTPUT my_movie.mpg

INPUT_DIR .

INPUT

Put the number of significant digits in []
number has to be 5 including the wildcard
#4444 (max. 99999 images):

film000*.rgb [00-99]

END_INPUT

BASE_FILE_FORMAT PNM
GOP_SIZE 99
INPUT_CONVERT sgitopnm *
BSEARCH_ALG CROSS2

PSEARCH_ALG LOGARITHMIC

194 OPEN SOURCE GIS

PIXEL HALF
PATTERN IBBPBBI
IQSCALE 8
PQSCALE 10
BQSCALE 25
RANGE 10

SLICES_PER_FRAME 1
REFERENCE_FRAME ORIGINAL

The parameters can be set based on the documentation for mpeg_encode.
Of interest are the lines “OUTPUT” (the name of the resulting movie) and the
line between “INPUT” and “END_INPUT” (how single frames are located and
named). Encoding is performed by running

mpeg_encode mpegparam.txt

The result may be viewed with MPEG players like mplayer or gtv. The
resulting image size can be controlled using the nviz window size or MPEG
parameters in “mpegparam.txt”. The latter reduces image quality by smooth-
ing while the former is more expensive with regard to CPU and time.

Creating animations using scripting. Complex animations involving mul-
tiple surfaces, vector and site data, cutting planes, changing views and light
parameters can be created using the scripting capabilities of nviz. Anima-
tions using dynamic map layers can be used, for example, to view and analyze
(Mitas et al., 1997):

® results of dynamic simulations such as water, sediment, pollutant transport,
fire spread, migration of animals, traffic, and urban growth;

® time series of observed data from monitoring and remote sensing, such
as movement of pollutants, change in rainfall or temperature, past urban
growth or vegetation change;

® behavior of a method or algorithm, for example, by animating the results
of parameter scans (impact of tension parameter on an interpolated surface,
or impact of land cover factor on erosion and deposition pattern, etc.).

You can create scripts for creating animations by using the basic scripting.
While the scripting is turned on, the performed visualization tasks are saved in
a script file, so that they can be repeated as desired.

Dynamic surfaces can be created using the file sequence tool available under
“Scripting” ~ “Script Tools”. The use of these tools is rather complex, how-
ever, it is well described using the step-by-step example in the Nviz tutorial.
Many examples of animations created by scripting can be found on the Spatial
modeling and visualization web site.’

Graphical output and visualization 195

8.2.4 Visualizing volumes (1})

Volume data can be visualized in nviz using 3D sites and multiple surfaces.
Isosurfaces and crossections are being added at the time of this writing, see
Figure 8.9. Please refer to the GRASS web site and nviz tutorial for the
latest update. There are numerous examples of prototype volume and volume-
temporal visualizations developed for GRASS using the tools based on SGI
GL library at Spatial modeling and visualization web site (see Endnotes of this
chapter). GRASS also supports export of volume data in external formats used
in other visualization programs, such as vis5d (Hibbard et al., 1994).

Coupling with an external OpenGL viewer VisSD. After exporting with
r3.out.v5d GRASS volumes can be displayed in vis5d’ visualization soft-
ware. This tool offers various methods to render rotatable semi-transparent
volumes, isosurfaces, movable cutting planes and isolines. The code is based
on OpenGL which will, such as nviz, use hardware acceleration for volume
display if a video card capable of hardware OpenGL is used. The software also
supports the 3D queries of volumetric data. Figure 8.10 shows an isosurface
view of a interpolated volume representing soils pH values. The same volume
seen in Figure 8.10 can also be displayed semi-transparent. Refer to the doc-
umentation for Vis5D for more details on how to visualize volume data using
this tool.

A
= Shading: = [
w 1 e e et =nos
e
Qurent: isol @lestid New | Deletej
isosurface J
Oraw Current |
Close '
SR——

Figure 8.9. Volume (3D grid) visualization integrated in nviz : test volumes and a new panel
(development and image by Tomas Paudits)

196 OPEN SOURCE GIS

Figure 8.10. 3D pH values displayed in Vis5D visualization tool: isosurfaces and isolines view
(Neteler, 2001b)

83. CREATING HARDCOPY MAPS

The tools for creating hardcopy maps in GRASS are relatively limited be-
cause of its focus on modeling and spatial analysis rather than computer cartog-
raphy. The hardcopy maps can be created by a text-oriented Postscript graphics
tool or in combination with other Open Source graphics programs.

8.3.1 Map generation with ps.map

Hardcopy maps can be created by printing Postscript graphics generated by
ps.map. The Postscript graphics may be produced interactively or scripted.
All raster, vector, and site data are supported, as well as (numbered) grids, user
defined icons and a bar scale.

It is useful to run ps.map interactively when using it for the first time.
After questions for providing the names of the map layers and additional map
features, the program asks about saving the instructions to a file. This saved

Graphical output and visualization 197

text file can be used later to apply modifications and to use ps.map as a script.
Unfortunately, the module still lacks a convenient graphical user interface.

Before starting to produce a map, a printer device defining the paper size
has to be selected. As an example we select an ISO-A4 device (before that we
list the available devices):

ps.select -1
ps.select a4

Then you can start

ps.map

The module will guide you through text menus and allow to customize the
map. You may try it with the Spearfish data set and select a raster, a vector
and a sites map. Define an appropriate map scale. The module will then ask
if you want to save the instructions, we recommend doing that. You can edit
this text file later, in case that you would like to make changes and use it in the
command line mode of ps.map. A sample text file psmap .def for a soils
map in Spearfish may look like this:

raster soils
outline
color black
width 1
end
colortable y
where 1 6.5
cols 4
width 4
font Helvetica
end
setcolor 6,8,9 white
setcolor 10 green
vector roads
width 0.1
style 0111
color grey
masked n
end
vlegend
where 4 0
font Courier
fontsize 8
end
text 30% 100% SPEARFISH SOILS MAP
color red
width 1
hcolor black

198 OPEN SOURCE GIS

hwidth 1
background white
border red

size 500
ref lower left
end

line 606969.73 3423092.91 616969.73 3423092.91
color yellow
width 2
end

point 40% 60%
color purple
size 0.5
masked n
end

scale 1:125000

grid 2500
color grey
numbers 2 grey
end

end

The module is run on command line with these map definitions to produce
a Postscript map file:

ps.map input=psmap.def output=soils.ps

The module generates the Postscript map which may require some time de-
pending on the input map size, the map scale and the selected paper size. Please
refer to the manual page to learn more about this module.

After the map is generated, you may preview it with a Postscript interpreter
such as ghostscript (a convenient graphical user interface for ghostscript
is gv). If the map is as desired, you can send it to the printer:

lpr -s -Pprinter mapname.ps

The optional flag —s avoids generating another temporal copy of the file in the
printer queue. Enter the correct printer name for printer (note that there
must be no space between —P and the printer name).

83.2 Map design with Xfig and Skencil

Maps based on GRASS data can be also designed with xfig, a general
purpose Open Source drawing program with raster and vector support. It is
freely available at the Xfig web site.® The program can be run interactively and
provides full graphical user interface. It reads several raster formats such as
TIFF or PNG and supports scale for drawing lines.

Graphical output and visualization 199

To import a raster map, export it from GRASS into a xfig accepted for-
mat such as TIFF or PNG. In xfig the “Picture” icon is used to import and
place a raster image within the workspace. For high-resolution raster maps,
the PNG driver is recommended (see Section 8.1.3). GRASS vector data can
be exported to FIG format with v.out.xfig. The resulting file is directly
accepted. GRASS sites data may be converted to GRASS vector sites with
s.to.vect, then exported with v.out.xfig. An alternate method is to
generate a map with ps . map and to convert it to FIG format with pstoedit.
Read x f i g documentation to learn more about the use of this tool.

An alternative drawing program to Xfig is Skencil.” It is Free Software and
supports a range of common vector formats including formats known from
the MS-Windows world. The look and feel is different from Xfig. A useful
option is support for Scalable Vector Graphics (SVG), and the ESRI SHAPE
format which requires the “GeoObjects” add-on. This add-on package is also
available from the Skencil web site. GRASS vector maps can be imported
in two ways: Either through FIG format using v.out .xfig (for details see
above) or through SHAPE format using v.out . shape (for details on how
to export SHAPE data see Section 4.2.3). Vector data will be immediately
displayed after loading. Raster data are loaded through the toolbar; on the
very right, you will find the “Load raster/EPS” icon. Legends, scales and map
frames can be drawn by mouse, using the tools provided by Skencil.

NOTES

I GRASS 5.3 online user manual,
http://grass.itc.it/gdp/html grass5/

2 PNG library,http://www.libpng.org/pub/png/

Nviz tutorial, http://grass.itc.it/gdp/online.html

4 GRASS Tutorials Web site,
http://mpa.itc.it/grasstutor/

5 MPEG encode software,
ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/
mpeg/encode/

6 Spatial modeling and visualization,
http://skagit.meas.ncsu.edu/~helena/gmslab/

7 Vis5D software,
http://www.ssec.wisc.edu/~billh/vis5d.html

8 Xfig drawing software, http://www.xfig.org

w

9 Skencil drawing software, http://skencil.org/

Chapter 9

SATELLITE IMAGE PROCESSING

Remote sensing, as a rapidly advancing technology for gathering environ-
mental data using a wide range of satellite platforms, plays a major role in
spatio-temporal earth surface monitoring. Throughout this chapter we intro-
duce the basic remote sensing methods and explain their use in GRASS. The
tools for image processing and remote sensing applications will be illustrated
using a SPOT-1 HRV (Haute Résolution Visible) and PAN (Panchromatic) im-
age data set as well as a LANDSAT-TM?7 scene available as an extension for
the Spearfish data set.

91. REMOTE SENSING BASICS

Before describing numerous methods implemented in GRASS in detail, we
will explain basic concepts of satellite remote sensing. As this relatively short
section cannot replace related textbooks, references will be given where appro-
priate.

9.1.1 Spectrum and remote sensing

In principle, there are two different remote sensing approaches: the optical
(passive) and the microwave (active) systems. Optical remote sensing is based
on the measurements of radiation reflected from surfaces. It usually covers the
visible (VIS) and infrared (IR) range of the spectrum. The reflected radiation
in near (NIR) and middle infrared (MIR) spectrum behaves similarly to visi-
ble light, while thermal radiation (TIR) is surface emitted radiation. Longer
wavelengths are in far infrared (FIR) range and in the important microwave
range. See Figure 9.1 for a portion of the spectrum. The optical region spans
at wavelengths from 0.3-15 ym where energy can be collected through lenses.

202 OPEN SOURCE GIS

A subdivision of this optical region is the reflective region, 0.4-3.0 um (Fig-
ure 9.1). The adjacent subdivision of the optical spectral region is the thermal
spectral range which is between 3-15 um, where energy is primarily emitted
from surfaces rather than reflected. Far infrared ranges from 15gm-Imm, mi-
crowaves from Imm-1m.

As opposed to optical systems, radar systems “actively” emit microwaves
and measure the backscattered energy. The major advantage of radar is the rel-
ative independence from weather and solar illumination effects. In case of an
overcast sky, the earth surface is hidden by clouds for optical satellites. How-
ever, radar satellites can continue to deliver usable images since microwaves
pass through the cloud cover (this is of special interest in the tropics). Radar
analysis is not covered in this book because it is fairly complex. For details
please refer to the three microwave volumes by Ulaby, Moore and Fung, 1981,
1982 & 1985, the book by Oliver and Quegan, 1998, or other literature. Addi-
tional tutorials are available on the World Wide Web." Besides tools for optical
data, GRASS also provides basic capabilities to process radar and thermal data.

In this chapter we focus on images acquired by optical systems because they
are widely used and their interpretation as well as data processing is easier than
for radar data.

Reflected radiation and atmospheric effects. Optical remote sensing sys-
tems are measuring sun energy reflected from earth’s surface. While the sun is
emitting a full range spectrum with a special energy distribution, only part of
the energy reaches the earth’s surface. The reason are various absorption and
scattering processes within the atmosphere. Figure 9.1 outlines the solar radia-
tion on top of atmosphere and at earth’s surface. Before reflected solar energy
reaches a sensor, it has passed the atmosphere twice at different angles. Cor-
rection of such atmospheric effects often requires image preprocessing. It is
important to know that for some ranges of the spectrum, radiation cannot pass
the atmosphere at all. Within these absorbed wavelengths optical remote sens-
ing platforms are unable to receive reflected radiation from earth. Therefore,
the spectral filters of satellite sensors are defined accordingly. Schowengerdt,
1997, describes these issues at a greater detail.

Remote sensing of the environment considers the sun energy’s reflection in
the visible and infrared range of the spectrum. Depending on the material of
the observed object, the amount of reflected radiation varies. The reflectance
curves of three basic materials are shown in Figure 9.2. While water absorbs
most radiation in the visible spectrum and all in near-infrared, the radiation
reflection of unvegetated sandy soil increases from the visible spectrum to the
infrared range. The curve for green vegetation is highly dependent on the
contents of chlorophyll. With a small peak for green wavelengths, the overall
amount of reflection in the visible spectrum is much lower than for the infrared,

Satellite image processing 203

T T I T I I

2000 % e exo-atmospheric —
o ——— at earth's surface

s & =

-1

-2

m um]

1000

Radiation [W

500 H

0
0.4 1.6 1.8 2.0 2.2 24 2.6
c Wave length
s €y, Near | oth [um] Middle _
@ O o Infrared | Infrared o

Figure 9.1. Distribution of solar radiation (reflective portion of the spectrum) on upper bound-
ary of atmosphere and at earth’s surface with gaseous absorption (solar zenith angle 45°, curves
as defined in 6S source code, Vermote et al., 1997)

especially in the near-infrared. The curve depressions at higher wavelength
depend on the water contents of the plant. In case of a plant disease or dor-
mant stage the reflection in infrared is dramatically decreased. The different
reflectance curves allow us to distinguish the observed objects by multispec-
tral remote sensing. For more theoretical details please refer to Richards and
Xiuping, 1999.

9.1.2 Satellite sensors

The payload of the satellite platforms are usually multispectral systems with
a narrow spectral range. Some systems are extended by one panchromatic
channel which covers a large wavelength range, usually at a higher resolution
than the multispectral channels. Figure 9.2 shows the spectral coverage of the
LANDSAT-TMS channels. While the satellite is overpassing the earth’s sur-
face, the reflectance radiation is measured line-wise. All satellite sensors are
collecting data at the same time, delivering a set of images where every im-
age contains the reflection as it appeared in the related spectral range. Such
a data set of geographically related images is called image scene. These mul-
tispectral satellite data are analyzed statistically as described in this chapter.

204 OPEN SOURCE GIS

60 T T T T T T
green vegetation B 7
40 - . sandy soil |
= 7—<"‘“_,/"’-*__
& _
S -
o B .
K5}
©
o
20 /\ =
water -
0 1] 1 1] ! 1 1

Wave length [um]

Figure 9.2. ldealized reflection curves of green vegetation, sandy soil and water. For illustra-
tion the LANDSAT-TMS channel filter functions except the thermal channel 6 are shown in
background (curves as defined in 6S source code, Vermote et al., 1997)

Details on technical aspects of satellite sensors and their characteristics can be
found in Kramer, 1996, Schowengerdt, 1997, and various other remote sensing
textbooks.

Besides the different sensor types, satellite systems are also distinguished
by their orbit: there are polar orbiting and geostationary satellite systems. The
geostationary orbit is far from the earth (usually at 36,000 km above the earth’s
surface) which allows the satellite a “static” position of the sensor in relation
to the observed area. This orbit is used for weather and telecommunication
satellites as they need to always “watch” the same area. Unlike that, near-polar
orbiting satellites are rotating around the globe near the poles, covering the
entire surface within a fixed range of days due to their own and the earth’s
rotation. The orbits are near-polar oriented to enable the satellites to cross
the earth’s surface everywhere at the same time. This leads to a constant solar
illumination which is important for multitemporal analysis. Within this chapter
we focus on methods for polar orbiting systems.

Resolution. An important aspect of satellite data is the image resolution. In
particular, we have to distinguish between:

Satellite image processing 205
m gpatial (geometric) resolution;

® spectral resolution;

m radiometric resolution.

Spatial or geometric resolution is the spatial extent of each pixel as known
from the raster data. For environmental satellite data, this resolution typically
ranges from 1 m to 30 m. The sensor-specific geometrical resolution limits the
usability of satellite images to certain map scales: Satellites such as the U.S.
LANDSAT-TM?7, the French SPOT HRYV, and the Indian IRS-1D, with a pixel
size in their multispectral channels ranging from around 20 m to 30 m, may be
used for mapping at a scale of 1:75,000 to 1:250,000. Recently, high spatial
resolution satellites with 1 m pixel resolution became operational, however,
they provide only a few image channels which limits the number of classes for
land use classifications.

Spatial resolution is closely related to geocoding. The satellite image is
often distorted and registered in a non-georeferenced coordinate system. Based
on ground control points (GCPs), the satellite image can be registered to a
reference map. This process is called geocoding and is covered later in this
chapter. If the satellite image is already geocoded, it can be imported directly
into a georeferenced LOCATION.

The spectral resolution refers to the bandwidth of each channel. The band-
width is the range of the spectrum measured by one channel. Figure 9.2 shows
the bandwidths of LANDSAT-TMS channels with respect to the spectrum and
object spectra. Both the higher number of channels and the bandwidth of each
channel improve the potential to distinguish objects in an image. For example,
when studying crop conditions, phenology-driven signal variations are found
in a narrow spectral range between the red and the near-infrared spectrum.
Only when this range is covered by two or more narrow bandwidth channels
can the effects be studied. Later on we will show how to merge channels with
high spatial resolution and with those with high radiometrical resolution to
improve classifications.

The radiometric resolution describes the signal dynamics within one image.
While the LANDSAT-TMS channels are effectively measured at 7 bit, other
satellites have a radiometric resolution up to 12 bit (e.g. ASTER/TERRA’s TIR
channels) or even more. For technical details on the various satellite sensors,
see the remote sensing textbooks, Kramer, 1996, or Web sites of the space
agencies.

In general, a pixel in remote sensing has three parameters: space, wave-
length and time (Schowengerdt, 1997:16). Based on these parameters, it is
possible to derive thematic maps from satellite data using various methods for
image classification.

206 OPEN SOURCE GIS

GRASS provides numerous modules devoted to image processing. Image
data are processed using the raster data model; therefore, all raster modules
can be applied. To distinguish the specialized image processing tools from the
others, they are prefixed with “i.” (example: i.class).

9.2. SATELLITE DATA IMPORT AND EXPORT

Satellite data are provided in a variety of data formats and sometimes the
user can choose according to her/his needs. Common formats are CEOS (un-
fortunately existing in various subformats), BIL, BSQ, GeoTIFF and others.
In general two main format types have to be distinguished:

m formats which contain one channel per file (SUN-raster format, TIFF and
PNG format);

s formats which contain one or more channels per file (BIL or BSQ format,
CEOS (with various subformats), ERDAS/LAN, NCSA/HDF or HDF-EOS
format).

Before working with satellite data in GRASS, you have to verify whether
your satellite data are already geocoded because the import method depends
on it. This information should be delivered with the metadata belonging to
the data set. If there are no metadata present, there might be the chance to
retrieve metadata from the image itself using the command gdalinfo (which
is part of the GDAL library). When specifying the name of the image file
as a parameter, gdalinfo prints metadata such as projection and boundary
coordinates if the image format supports metadata storage.

After a general description of how to build the xy LOCATION, we will start
to use the imagery sample data set provided for the Spearfish region. It is avail-
able at the GRASS Web site.” Beside a SPOT-1 HRV/PAN scene, aerial pho-
tos such as NHAP (National High Altitude Photography) multispectral aerial
photos and a black-and-white stereo pair with camera information are also in-
cluded.

921 Import of raw and geocoded satellite data

Before importing the satellite data, a LOCATION has to be defined. This
can be done manually through the GRASS interface or generated automatically
with r.in.gdal.

Manual definition of a raw data xy LOCATION. Non-georeferenced,
(raw) satellite data have to be imported into an xy LOCATION. This proce-
dure is described in Section 3.2. The satellite data set can be imported us-

Satellite image processing 207

ing the appropriate module, such as r.in.gdal (supports various formats),
r.in.tiff (TIFF), r.in.bin (binary data), i.in.erdas (ERDAS/LAN
format) etc. For example, to import an ERDAS/LAN file run:

i.in.erdas input=landsat5.lan output=tm

This imports the 1landsat5. lan data set (a LAN file usually contains several
channels) into the GRASS LOCATION. The output parameter is a prefix, to
which channel numbers are added during import.

Automated creation of a LOCATION. A convenient way to generate a
new LOCATION from GIS data or an image data set is to use the module
r.in.gdal. It is based on the GDAL library and accepts many important
GIS and satellite data formats. It optionally allows the user to generate a new
LOCATION based on the map metadata from the imported data set. The com-
pleteness of metadata depends on the image format, i.e. only some data sets
will provide projection information. In terms of raw satellite data, only the xy
boundary settings are usually available, so the resulting new LOCATION is
generated as xy type. In any case, this method minimizes the efforts to define
a LOCATION.

To generate a new LOCATION and to import a raster data set into it,
r.in.gdal has to be used within another GRASS LOCATION (since the
module needs a GRASS environment; as an alternative, see Section 11.3 for
a script to generate a LOCATION directly from a GIS raster file outside of
GRASS). A new LOCATION is only generated when the location parame-
ter is additionally specified. In this case the data stream is written to this new
LOCATION into MAPSET PERMANENT. The current LOCATION, where
the module was started, is not modified. We also recommend specifying the
flag —e, which extends a LOCATION if required.

To provide an example, we create a new LOCATION for a LANDSAT-TM7
scene (Spearfish area, 12 July 2002, in UTM/WGS84 projection, GeoTIFF
format, available from GLCF Maryland®). Since the map datum and ellipsoid
do not match the sample Spearfish LOCATION, we cannot import the satellite
scene directly. But we can use the Spearfish UTM/NAD27 LOCATION to run
r.in.gdal:

gdalinfo p033r029_7t20000712_213_nnl0.tif
r.in.gdal -e input=p033r029_7t20000712_2z13 _nnl0.tif \
output=tm7_2000071.1 location=landsat

Now we have to leave GRASS and restart it with the new LOCATION “land-
sat” to continue the data import for the other channels using r.in.gdal. To
use this LANDSAT-TM?7 scene in the sample Spearfish location, change back
to it and run r.proj to reproject the channels from the new “landsat” LOCA-
TION into the current LOCATION.

208 OPEN SOURCE GIS

The GeoTIFF format stores the scene projection information, so it will be
used by r.in.gdal to define the new LOCATION. In other cases, when the
satellite data are not geocoded, ground control points (GCPs) are required to
reference the image to a reference map. Sometimes, GCPs are provided by
the data vendor and stored in the image metadata. If detected during import,
they will be written into a so-called POINTS text file. This GCPs POINTS file
can be used later for image rectification. We will explain this in greater detail
in Section 9.4.1. Usually GCPs are provided in latitude-longitude coordinates
which may not be the desired coordinate system. The optional target pa-
rameter of r.in.gdal allows us to transform the GCPs on the fly to another
map coordinate system. The required definitions will be read from the desired
georeferenced LOCATION, its name must be given by parameter target. An
example for a SAR SLC data set in CEOS format:

r.in.gdal input=/cdrom/scenel/dat_01.001 output=sar\
location=sar_raw target=gauss_boaga

This will import the file dat 01.001 from the mounted CD-ROM into a new
LOCATION sar raw with an image prefix sar (which in this case will result
in the GRASS image names sar.real and sar.imaginary). The original
latitude-longitude GCPs describing the four corners of the image data set are
re-projected on the fly to Gauss-Boaga projection as defined in the LOCA-
TION gauss_boaga and written to a POINTS file in the new LOCATION
sar raw.

Because the HDF format is supported by GDAL, geocoded data sets such
as ASTER/TERRA and MODIS/TERRA can be imported with r.in.gdal.

Installing the Imagery sample data set. For the Spearfish region, an im-
age sample data set is available on the GRASS Web site (“Imagery” pack-
age). The installation is done in the same way as for the Spearfish data set.
The procedure is described in Section 3.1.3; you just have to substitute the
package names. After extraction, you will find a directory imagery in your
GRASS DATABASE. Start GRASS with the LOCATION imagery and spec-
ify your name as MAPSET. The following images are available in xy coordi-
nates: gs13.1, gsl4.1 (stereo aerial images from 22. August 1971, camera
information is in file imagery/userl/gscam), nhap.1l, nhap.2, nhap.3
and nhap . enh (multispectral NHAP, National High Altitude Photography*, a
set of aerial infrared image in three bands and a color composite), and a SPOT-1
HRV/PAN scene with channels spot.ms.l (green, HRV1), spot.ms.2
(red, HRV?2), spot .ms . 3 (NIR, HRV3), spot . p (panchromatic, image scene
WRS reference: k=564/j=260, acquisition time: 17:58:50 UTC, date: 27. May
1989). The spectral ranges of SPOT-1 HRV are: 0.50-0.59 um (green, HRV1),
0.61-0.68 ym (red, HRV?2), 0.79-0.89 um (near infrared, HRV3), all at 20 m
spatial resolution. The spectral range of the panchromatic channel is 0.51-
0.73 pm at 10 m spatial resolution.

Satellite image processing 209

To view the images, open a GRASS monitor and run slide.show. sh.
Some images are not geocoded, so always use g.region with parameter
rast and the image name to display an image within this LOCATION. Note
that this LOCATION is defined with negative “y” coordinates due to historical
reasons.

9.22 Export of multi-channel data sets

The export of one or multiple channels from GRASS is currently only pos-
sible into ERDAS/LAN format using the module i.out.erdas. Alterna-
tively you can export single channels into various raster formats, please refer
to Chapter 5 for details.

9.3. UNDERSTANDING A SATELLITE DATA SET

The descriptions in this section are based on the SPOT-1 images provided
in the “Imagery” data set. Start GRASS with imagery LOCATION and your
name as MAPSET. The original image data are stored in MAPSET PERMA-
NENT.

93.1 Managing channels and colors

A multispectral data set consists of various channels which represent por-
tions of the spectrum. In the case of LANDSAT-TMS and TM7, the visible
spectrum with base colors blue, green and red is mostly covered as well as
part of the infrared and thermal spectrum (see above Section 9.1 for spectrum
details). Other satellites such as SPOT and ASTER do not provide the blue
channel. To visually explore the imagery, we often need to analyze and modify
its colors.

Bits, channels and colors. In general, each channel stores the local bright-
ness level pixel-wise at the observed range of wavelength. Each channel thus
describes the spectral response pixel-wise within a small portion of the entire
spectrum. When storing this information, the satellite sensors are performing
a discretization of the continuous signal received from earth’s surface into the
brightness levels. The number of brightness levels (which is the radiometric
resolution) depends on the sensor system. While older sensors like LANDSAT-
TMS internally deliver only 7 bit data (27=128 grey levels per channel), mod-
ern systems capture data at 12 bit or higher (2'2=4096 grey levels per channel).
For data distribution the 8 bit, 16 bit, and 32 bit formats are used. Note that
level numbering starts with O (no signal, usually colored black). Accordingly,
an 8 bit image contains 256 levels numbered from O (black) to 255 (white) with
different grey levels in between.

210 OPEN SOURCE GIS

The image histogram. The first step in analysis of image data is to look at
the channel histograms. Each histogram shows the frequencies of grey levels
in an image representing the given channel. For each grey level, the number
of pixels in the image is counted and drawn into a diagram. As noted above,
the number of grey levels (or brightness levels) depends on the satellite sensor.
The x-axis of the diagram represents the grey levels, while the y-axis shows
the number of pixels found at that grey level.

To calculate and display the histogram of a channel, open a monitor and run
d.histogram with the parameter channel set to the name of the channel
you are interested in. The histogram will be displayed within the monitor using
the color coding from the image. If the histogram is displayed in dark colors,
consider modifying the image color table (see next paragraph). In the following
example, we compare the histogram of the SPOT-1 HRV1 channel and that of
an aerial photograph of Spearfish:

.region rast=spot.ms.l
.mon x0

.histogram spot.ms.l1l
.region rast=gsl3.1
.mon x1

.histogram gsl13.1

P oAQ 0 oW

The histograms are very different: While the distribution of the SPOT-1 HRV1
cell values is highly skewed, the histogram of the aerial photograph slowly
decreases over the grey levels.

Color tables. Management of raster map color tables was already discussed
in Section 5.1.1. Here, we revisit them with respect to images. Colors are
not hard-coded in images but assigned to certain pixel values using so-called
look-up tables (LUT). The GRASS module for creating LUTs is r.colors.
Besides the pre-defined color tables like rainbow or gyr (from green to yel-
low to red), you can also define your own color assignments (set parameter
col=rules). After data import, you can change the color table to useful val-
ues using r.colors with the option color=grey.eq. Using this option,
a contrast stretch will be applied to the image’s color table based on the his-
togram found for the particular channel. Satellite images are often very dark
after import, the contrast enhancement is therefore useful for later data analy-
sis. For example, to improve the contrast of the image channel spot.p run:

.region rast=spot.p -p

.rast spot.p

.colors spot.p color=grey.eq
.rast spot.p

O 8 QW

In this example, we have modified an image in a different mapset which is
not allowed for most commands. Here, the operation is possible because

Satellite image processing 211

2554 2554 2554

§ s s 4

©) @

> > >

5 RED 5 GREEN 5 BLUE

8 1 8 1 31

0 T } 1 DN 0 T T ' DN 0 f T 1 DN
0 255 0 255 0 255

Figure 9.3. Color functions for density slicing of grey scale images (DN: Digital Number)

r.colors is able to store a local color table assigned to the original map
in the current mapset.

Density slicing. Visual interpretation of grey-scale images can be enhanced
by pseudocolor methods that assign various colors to the grey values. One of
such methods is density slicing, which assigns a range of contiguous grey lev-
els to a range of colors. The full range of grey levels of a channel is cut into
three parts and is assigned piece-wise to the base colors blue, green, and red.
To perform such density slicing in GRASS, the minimum and maximum pixel
values have to be identified (e.g. using r.info which shows the range of a
map). A color table then needs to be written and used for r.colors. The
color values are interpolated between the given values and sliced individually
between minimum and maximum. For example, one-third of the color range
is assigned to red, one-third to green, and one-third to blue, where the over-
lapping color ranges lead to mixed colors (see Figure 9.3 for details). As an
example, we apply a density slice to the panchromatic SPOT-1 image. The
range of spot.p is 15 - 254; therefore, we slice at the cell value thresholds:
80 (which is (254-15)/3) and 159 (which is (254-15)« 2/3), beginning at 15 and
ending at 254:

.region rast=spot.p

.rast spot.p

.info spot.p

r.colors spot.p col=rules << EOF
15 255 0 0

80 255 255 0

159 0 255 255

254 0 0 255

EOF

d.rast spot.p

N 0Q

You may experiment with different ranges for the three colors to optimize the
result that is to achieve a good contrast. Also, d.histogram is helpful for

212 OPEN SOURCE GIS

evaluating how well the density slice matches an (often) skewed histogram.
As two clouds are present in the image, which heavily influence its grey level
distribution, you may try to define the maximum at a much lower value and
reduce the other thresholds respectively. The individual color values can also
be modified for implementation of different slicing functions.

Simple color composites. To obtain a color image from grey-colored chan-
nels, several channels have to be combined by assigning each channel to a
different base color. For example, to generate a near-natural colored image,
the blue, green, and red channels (each only grey-colored) have to be assigned
to blue, green, and red color of the GRASS color composition module. Simple
examples can be done with the non-georeferenced SPOT-1 HRV data. First,
we apply grey scale color tables to the channels; then, we can generate a near-
natural color composite with:

.region rast=spot.ms.1

.colors spot.ms.3 col=grey

.colors spot.ms.2 col=grey

.colors spot.ms.l col=grey

.rgb b=spot.ms.2 g=spot.ms.3 r=spot.ms.l

D R K K WQ

Note that the order of assignment is unusual for a near-natural color compos-
ite. This is due to the fact that the SPOT-1 satellite does not provide a blue
channel. The “trick” shown above is a possible workaround; another option
is to generate a synthetic blue channel from the existing channels. Due to the
assigned standard grey color tables of the input channels, the resulting image
appears very greenish. This may be optimized with modifications to individual
grey tables. When working with LANDSAT-TM7 data, the first three chan-
nels will be assigned to blue, green, and red, as expected from the color model
definition.

This composite, as drawn by d.. rgb into the GRASS monitor, can be stored
in a new raster map using r.composite or i.composite (the latter re-
quires an image group, as will be explained later on).

A false color composite for SPOT-1 can be done in a similar way, but prefer-
ably from a histogram-equalized grey scale color tables calculated in advance:

.region rast=spot.ms.1l

.colors spct.ms.3 col=grey.eq

.colors spot.ms.2 col=grey.eq

.colors spot.ms.l col=grey.eq

.rgb b=spot.ms.l g=spot.ms.2 r=spot.ms.3

QK" K R Q

This will display a false color image in the GRASS monitor, as we have effec-
tively assigned the green, red, and near-infrared SPOT-1 HRV channels to blue,
green, and red display colors. Green vegetation appears red while unvegetated

Satellite image processing 213

DN3 4
2551

25

N
R 1

Figure 9.4. Pixel in a three-dimensional feature space with digital number DN, (adapted from
Schowengerdt, 1997:119)

areas are bluish. A geocoded SPOT-1 false color image is already included in
the Spearfish LOCATION (spot . image).

We provide a more detailed explanation of color models and image compos-
ites in Section 9.7.

9.3.2 The feature space and image groups

The processing of data from a multispectral satellite sensor is based on the
concept of feature space defined by the sensor channels. Together with the def-
inition of an image group as a combination of multiple channels, this concept
is a foundation for image classifications.

The feature space. The channels of a multispectral satellite sensor are con-
sidered to span a multi-dimensional coordinate system called feature space.
For example, the three channels covering visible light (blue, green, red) span
a three-dimensional coordinate system. Within the coordinate system (or fea-
ture space), every pixel reaches a certain position depending on the brightness
levels in each channel. This position can be considered a vector in the multi-
dimensional coordinate system. The brightness levels of the pixels in the dif-
ferent channels are called digital numbers (DN). Figure 9.4 shows the position
of a pixel in a three-dimensional feature space, which may represent the blue
(DN}), green (DN»), and red (DN3) spectrum range.

The concept of feature space plays an importantrole in image classifications
that are used to derive land use maps from satellite data. Classification meth-
ods are based on the idea that pixels containing the same land use are close
to each other within the multi-dimensional feature space. The number of di-
mensions depends on the number of input channels. For example, a number of
multispectral pixels which cover a forest will show similar spectral signatures

214 OPEN SOURCE GIS

T™M4
™12 3 4 N TM4 :
T ; ¥ A green vegetation
s0f |} 50f
® = . sandy soil
c i c 4
=]] i<l
14}) 4]
e | N k:
TR water
1 1 | water L2
) B i L i L L L .. 1 1 -
Wave length Reflection [%) 50 ™ 3
™3 A7

Figure 9.5. Left: Spectrum showing typical spectral response of common objects with
LANDSAT-TMS channels 3 (red) and 4 (NIR); right: Two-dimensional feature space of chan-
nels tm3 and tm4 with pixel brightness levels. Three pixels for each observed object (water,
sandy soil and green vegetation) are shown with their brightness levels in 3 and 4. The feature
space scatterplot (right) represents reflection per channel as appear in channels tm3 and tm4
(adapted from Neteler, 2000:158)

and therefore should be assigned to land use class “forest”. In the process of
reclassification, many methods (e.g. cluster algorithm) “group” adjacent pix-
els in the multi-dimensional feature space and assign them to the same class.
Figure 9.5 shows the relationship between the spectrum and a two-dimensional
feature space spanned by the red and the near-infrared channel of LANDSAT-
TMS. More details on image reclassification will be explained below.

For illustration, we display the feature space of two channels of the SPOT-1
satellite scene in the GRASS monitor (red and near-infrared channels):

g.region rast=spot.ms.2
dcorrelate.sh spot.ms.2 spot.ms.3

The pixel clouds from the red and near-infrared channels span the two-
dimensional feature space, which will be partitioned in a reclassification to
extract land use classes. However, in the above scatterplot, it is difficult to
visually distinguish clustered areas. If you zoom into a small subregion of
a SPOT-1 HRYV channel and re-run the dcorrelate.sh script, the scatter-
plot will be different, with easier to distinguish pixel clusters. For higher level
graphical data analysis external software like “R” (compare Section 13.2) or
“XGobi”® are recommended.

Image groups in GRASS. Since we are dealing with multi-spectral data
sets, we need a method to “bundle” the channels which belong together. This
helps when operating on multiple channels with identical geolocation. GRASS

Satellite image processing 215

offers a tool to “group” images by selecting the channels: i.group. Several
multi-spectral image processing modules expect an image group, a few of them
even need a subgroup (which may contain the same channels or a subset). Even
when working only with a single image, this channel has to be assigned to a
group. We are now ready to explore more complex remote sensing issues.

94. GEOMETRIC AND RADIOMETRIC
PREPROCESSING

In this section, we explain how to preprocess satellite data for further analy-
sis. After geocoding the data set, we continue with radiometric preprocessing
to statistically explore the data and to extract further information. To illustrate
the applications, we again use the SPOT scene as well as the free LANDSAT-
TMT7 scene.

94.1 Geometric preprocessing

If the imagery data are analyzed in conjunction with other GIS data, geo-
metric preprocessing is crucial. While it may be acceptable to use the image
coordinate system for image-only analysis, for a combined image/map analy-
sis and distribution of the results to other GIS users, a high quality geocoding
is essential.

Geocoding is related to the terms “ground control points” (GCPs, also called
“tie points”) and “projection”. Ground control points are sites of known po-
sition within an image. They are used to perform an image rectification to a
reference. These GCPs can either be the four corner points of an image or,
preferably, distributed over the image. If available, GPS (Global Positioning
System) data can be used as reference points.

General methods of geocoding. Depending on the data provider and the
product level, the data set may already contain GCPs or it may be already
geocoded. In the latter case, no further geocoding is needed, only potential
transformation to the target coordinate system. The following situations can
occur when obtaining a satellite data set:

1 the image data set has been already geocoded and projected by the data
supplier;

2 the image data set is not geocoded, but contains the four corner GCPs;

3 the image data set is not geocoded, and does not contain any GCPs.

Case 1: the image data set is already geocoded. In this case, you have
to verify whether the data are in the target coordinate system. If so, the data

216 OPEN SOURCE GIS

set can be directly imported into the target LOCATION and used for further
analysis. Ifitis in a different coordinate system, the data set must be imported
into its own LOCATION and projected to the target LOCATION with r.proj
(see Section 3.3.2). It is important to check the geometrical accuracy with
reference maps.

Case 2: the image data set is not geocoded, but GCPs are present.
When importing the data with r.in.gdal, existing GCPs are extracted into
a GRASS POINTS file (used later by i.rectify). If the GCPs represent the
four corner points, a Helmert (similarity) transformation can be performed to
transform the data into a georeferenced LOCATION (first order polynomial
transformation). However, as this linear transformation only stretches and ro-
tates the image, it is not very accurate for satellite images which may also
contain distortions within the image. Improvements can be achieved by adding
more GCPs and using a higher order polynomial rectification method. As men-
tioned in the import section of this chapter, the extracted GCPs coordinates,
which are usually provided as latitude-longitude coordinates, can optionally
be projected on the fly to a target coordinate system. This will be explained in
greater detail later.

Case 3: the image data set is not geocoded, no GCPs are present. First,
GCPs within the image and on a reference map have to be identified. GPS
data can be used instead of the points on the map. The geocoding process in
GRASS then requires three steps. Create a source LOCATION which contains
the satellite data set. Then create a target LOCATION (usually projected) into
which the raw data set will be rectified. This target LOCATION contains ref-
erence map(s) for GCPs identification. Finally, after a sufficient number of
spatially accurate GCPs is identified, the rectification of the input image or
image group from the source to the target LOCATION is performed.

Ground control point identification. GRASS provides tools for on-screen
identification of ground control points on digital maps and for assigning points
from GPS measurements. Four types of image rectification are generally pos-
sible: image to image (staying in xy-coordinates), image to raster map (georef-
erencing to raster map), image to vector map (georeferencing to vector map),
and image to keyboard specified coordinates (referencing against known points
such as GPS data). As mentioned above, when working with multi- or hyper-
spectral data, all channels of interest should be assembled into an image group
with i.group. As an example, we geocode the SPOT-1 HRV data as pro-
vided in the LOCATION imagery. First, we select the SPOT-1 HRV data in
a group (the PAN image is shifted within the LOCATION imagery and has
to be rectified in an extra procedure):

i.group

Satellite image processing 217

The following screen appears; enter the image group name spotmss:

LOCATION: imagery i.group MAPSET: markus
This program edits imagery groups. You may add data layers to,
or remove data layers from an imagery group. You may also
create new groups

Please enter the group to be created/modified
GROUP: spotmss (list will show available groups)

Leave the screen with <ESC><ENTER> and accept it with y. Now you reach
a new screen where you can select the images:

LOCATION: imagery GROUP: spotmss MAPSET: markus

Please mark a 'x’ by the files to be added in group [spotmss])
MAPSET: PERMANENT

gsl3,
gsl4.
nhap.

__ spot.p

nhap.
nhap.
nhap.enh
spot .comp
spot.ms.1l
spot.ms.2
spot.ms.3

.1

W N = e

IR

— X X X

You can select a channel by writing an x; delete a selection by overwriting
the x character with blank. Leave the selection screen with <ESC><ENTER>
and confirm the selection. In the main menu, you can optionally specify a
subgroup, which is required for some GRASS image processing tools. For our
example, we can leave i.group with <ENTER>. Note that you can also use
the module on the command line.

Before starting the GCPs identification, the target LOCATION (in our case
the spearfish) has to be specified with i.target:

i.target group=spotmss location=spearfish mapset=userl

For the graphical identification of ground control points, GRASS provides
a few modules: i.points to reference to a raster map, i.vpoints to refer-
ence to a vector map, and i.points3 (under development), which combines
previous modules and i.ortho.photo. Also, ortho-image generation from
satellite images will be possible when using i.points3 with i.rectify3
by incorporating the elevation and a geometrical sensor model.

For our SPOT-1 example, we use the module i.points to interactively de-
fine GCPs in the GRASS monitor. The GRASS monitor must be open and the

218 OPEN SOURCE GIS

Figure 9.6. Geocoding of a satellite image to raster/vector reference maps with i.points3

i.points started. It queries for the image group; here, specify the recently
created group spotmss. An image from the image group can now be selected
for display in the upper left half of the GRASS monitor. Select achannel from
the list to plot it. This may also be an additional color composite included
in the image group. Using the “PLOT RASTER” menu and clicking into the
right half of the monitor, a reference map from the target LOCATION can be
displayed (for our example, choose the raster map roads). Ground control
points can now be assigned. It is important to use the “ZOOM” function in
both maps to achieve high accuracy. A GCP is set by clicking with mouse at a
point, first in the source image, then at the related tie point in the target map.
The selection needs to be confirmed and an accepted point pair is drawn in
green color.

For the first GCPs pair, you may start and zoom into a road intersection, both
in the satellite image and the roads map (select “ZOOM?”, then “BOX”, draw a
box with the mouse). The zoomed image/map portions are shown in the lower
half of the GRASS monitor (compare Figure 9.6). Remember from vector
digitizing that useful points are located in the middle of road intersections, field
corners, etc. Alternatively, the input method can be changed to “KEYBOARD”
in the menu to directly specify coordinates for a point in the source map in

Satellite image processing 219

the terminal window. Using several maps to get the GCPs is recommended;
in our example the fields map or others can also be used. It is easy to
change the displayed channel or reference map during the GCP collection.
Figure 9.6 shows a typical screen for geocoding a satellite image in GRASS
with i.points3.

The “ANALYZE” menu allows us to check the geometrical accuracy of the
GCPs. A misplaced point can be disabled (and also enabled again) by double
clicking a row in the points table. A disabled point pair is shown in the im-
age and in the list in red. At the bottom of the table, the “RMS error” (root
mean square error) is shown; you should try to reach accuracy of half pixel
size. For the SPOT-1 example this means the maximum 10 m RMS error when
geocoding a multispectral channel with 20 m pixel size. The GCPs are used
for all images in the image group; in our example, for the three multispectral
channels. When working with i.vpoints and referencing against the roads
vector map, it might be easier to achieve high accuracy.

The number of required GCPs depends on the rectification method. For a
linear transformation 4 points are sufficient, preferably selected in the corners
of the image. Non-linear polynomial transformations from 2nd to p’th order
require more points. The minimum number of points can be calculated as
follows:

MCATIRTAE) o

where n is the number of required GCPs and p is the order of polynomial used
for rectification with i.rectify. According to this formula, a third order
polynomial transformation (p = 3) requires at least n=10 GCPs. It is recom-
mended to always define more GCPs than the bare minimum. For example, for
a third order polynomial transformation, at least 15 GCPs should be identified.
Note that for image rectification second or third order polynomials are usually
used. It is also important to use GCPs which are homogeneously distributed
throughout the image.

The GCPs are stored in an ASCII file POINTS within the current LOCA-
TION under a subdirectory group/<groupname>. Such a file is written au-
tomatically when r.in.gdal finds GCPs during the data import in the input
data set. In this case, you can check the GCPs accuracy within i.points
(“ANALYZE” menu entry) which will load an existing POINTS file.

Rectification of the image data set. Based on GCPs stored in the POINTS
file, the module i.rectify performs the image rectification into the target
LOCATION. Unlike projection and transformation between coordinate sys-
tems using r.proj, which is based on mathematically defined projection

220 OPEN SOURCE GIS

models, i.rectify uses linear or higher order polynomials to warp a source
image to a target LOCATION.

After startup of i.rectify, the image group has to be specified. For our
example we select again the group spotmss. The module then asks for the
order of polynomials to be used for the transformation (“order of transforma-
tion”). The following transformation methods are usually used:

1 Helmert (similarity) = linear: stretching and rotation (needs 4 GCPs);

2 bilinear (affine): allows for stretching and rotation at different scales, able
to correct image intrinsic earth curvature (needs 6 GCPs or more);

3 cubic: allows also for earth curvature correction, may tend to overcorrec-
tion (needs 10 GCPs or more).

After the order selection, proceed to the next screen with <ESC><ENTER>.
Specify new file names for the images that will be stored in the target LOCA-
TION. You may choose the same names or different ones, use 1ist to check
which names are already in use. After leaving this screen, the module asks for
two options:

Please select one of the following options

1. Use the current region in the target location

2. Determine the smallest region which covers the image
>

Both options are used to define the extent of the images in the target LOCA-
TION. The first will clip the image to the current settings and also use the
GRID RESOLUTION currently defined in the target LOCATION. Before run-
ning i.rectify, setting the resolution in the target LOCATION to the image
resolution is recommended. For verification or adjustment, you may temporar-
ily restart GRASS with the Spearfish LOCATION and come back to the Im-
agery LOCATION to continue (for this interrupt i.rectify and restart it
later). There is, however, an alternative to that: The second option in the above
menu allows the user to modify all parameters in a new screen which is similar
to the LOCATION definition screen. The default settings are the maximum re-
gion extent and resolution from the target boundary coordinates and the image
size. You may adjust the values as desired.

After selecting option 1 or leaving this screen when using option 2 (here
you are finally asked whether to set the target LOCATION to the new values),
i.rectify starts to rectify the image(s) in background. This may take a
while, depending on the data size and computer speed. The module sends an
email when it is finished. After completion of the calculations, the geocoded
satellite data are integrated into GIS and may be analyzed along with other GIS
data in the target LOCATION. The panchromatic channel spot.p needs to be

Satellite image processing 221

Figure 9.7. Pattern-overlay to verify the geocoding accuracy of a satellite image to a raster
reference map

rectified into Spearfish LOCATION using the same procedure as we have just
described.

Checking the accuracy. To evaluate the quality of the geocoding process,
potential spatial shifts between the rectified channels and the reference map(s)
should be verified. The rectified channels can be either displayed in differ-
ent GRASS monitors or, better, overlayed in small patterns. A pattern ori-
ented overlay method of different data sets can easily be done with MASKs
and r.mapcalc. We use a rotated square pattern which alternately shows a
channel and the reference map within the squares. To generate this pattern, bi-
narized thresholded sine curves are used to generate the MASKs. We display
the roads map and the geocoded SPOT-1 PAN channel as follows:

g.region -p rast=spot.p

#remove MASK if present:

g.remove MASK

v.to.rast roads out=roadslOm

#generate binary square pattern mask:

r.mapcalc "MASK=if((sin(5*row()) + sin(5*col())) > 0.0,\
null (), 1)"

d.rast spot.p

g.remove MASK

#generate inverted binary square pattern mask:

r.mapcalc "MASK=if ((sin(5*row()) + sin(5*col{())) > 0.0,\
l,null ()"

d.rast -o roadslOm

g.remove MASK

222 OPEN SOURCE GIS

The pattern size depends on the current resolution; you may adjust the multi-
plier to your needs (we used multiplier 5 above). Figure 9.7 shows a portion of
an overlay with the roads raster map, resampled from the vector map to 10 m
resolution. This approach applies when referencing with topographic raster
maps. If the reference map is a vector map, it may be simply overlayed over
the rectified image(s) with d.vect to verify the geocoding accuracy. If the ac-
curacy is not sufficient, you have to go back to the xy LOCATION and select
more or different ground control points. You should make sure that sufficient
GCPs are selected and the GCPs are well distributed in the satellite scene.

942 Radiometric preprocessing

Besides changes to the color lookup tables (LUTs) that are used to enhance
the visual perception of an image, satellite data often have to be radiometrically
preprocessed so that each pixel represents the apparent radiance measured at
the satellite sensor. Up to three major effects have to be corrected, depending
on the project goal, the image type, and the observed targets:

m the pixel values are usually a linear transformation of the original data per-
formed by the data provider to fit into the range of 8 bit (0 - 255). By
applying “gain” and “bias” (also called “offset”) values which are deliv-
ered in the image header files or available from the data provider, the DN
values (DN: digital numbers) can be recalculated to apparent radiance at
sensor values;

m optical data, depending on their spectral range, are influenced by atmo-
spheric effects. To reconstruct the reflectance values at earth’s surface (im-
age includes only the values measured at the satellite), each satellite chan-
nel has to be atmospherically corrected;

a when the observed target area contains hilly or mountainous regions, the
slopes cause variations in the brightness reflectance (terrain effects), which
can lead to wrong reclassification results. To overcome this problem, a ter-
rain correction (illumination correction) based on the local slopes derived
from an elevation model has to be applied.

Image calibration from DN to apparent radiances at sensor. The gain/bias
correction is applied channel-wise to the image data set. The values for the
gains and biases are available from the channel headers (leader file) or the data
providers.

For LANDSAT-TM7, there are two gain states (low and high gain, see
GSFC/NASA, 2001). The rationale behind switching gain states is to maxi-
mize the instrument’s 8 bit radiometric resolution without saturating the detec-
tors. For thermal data, both low and high gain data are available by default.

Satellite image processing 223

For other bands (1 to 5, and 7) the satellite will acquire image data in one of
two possible gain settings. High gain measures a lesser radiance range with
increased sensitivity over areas of low reflectance. Low gain setting measures
a greater radiance with decreased sensor sensitivity for very bright regions to
avoid detector saturation.

The leader file of a satellite data set can be analyzed with gdalinfo (de-
livered with GDAL library) for GDAL supported data formats. The program
prints important metadata information, including the gain and bias values, if
they are present in the data set. Because the original SPOT-1 data are not avail-
able, we show an example for a LANDSAT-TM7 data set in CEOS format (first
channel):

gdalinfo /cdrom/scenel/dat_01.001
Driver: SAR_CEOS/CEOS SAR Image
Size is 6920, 5960

Coordinate System is '/

Metadata:

{...]
CEOS_OFFSET_AQ= -6.2000000000e+00
CEOS_GAIN_Al= 7.7568627451e-01

CEOS_GAIN_SETTING=H
Corner Coordinates:

Upper Left (0. 0.0)

OI
Lower Left (0.0, 5960.0)
Upper Right (6920.0, 0.0)
Lower Right (6920.0, 5960.0)
Center (3460.0, 2980.0)

Band 1 Block=6920x1 Type=Byte, ColorInterp=Undefined
Min=0.000/0, Max=255.000/0

From this output, we obtain gain and bias (offset) as well as the gain level

(high or low gain). The units for gain/bias are usually % The gen-

eral equation for calculation of the apparent pixel radiance at sensor is
(Schowengerdt, 1997:313):

Lj = gain;* DN; + bias; 9.2)
with:
L;: apparent pixel radiance of channel j [;n-zg—pm]

bias: offset of linear equation for channel j
gain;: gain of linear equation for channel j

To apply a gain/bias correction, the module r.mapcalc can be used. For our
example, it will be the following command (we assume, that we have imported
the first channel as tm.1):

r.mapcalc "tm.lrad=0.77568627451 * tm.1 - 6.2"

224 OPEN SOURCE GIS

Note that the values depend on the data provider and the image acquisition date
as gain/bias values regularly change for various reasons.

With further calculations, it is also possible to convert apparent pixel ra-
diance at sensor to planetary reflectance or albedo (see Mather, 1999:93 and
Schowengerdt, 1997:317). These planetary reflectances can be computed to
achieve a reduction in between-scene variability through a normalization for
solar irradiance. Please refer to the remote sensing literature for details.

Correction of atmospheric effects. Satellite signal distortions are caused
by several effects. Diffuse irradiance from sky may increase the radiance of
an observed object. Path radiance (atmospheric intrinsic radiance) leads to
haze effects. Local effects such as environmental radiance from neighborhood
objects change the object’s radiance, as well as a locally reduced upward trans-
mittance. Finally, there is the adjacency effect, when a brighter adjacent object
influences the surrounding object’s radiation. All these problems are widely
discussed in the remote sensing literature, see for example Schowengerdt, 1997
(Chapter 2). Atmospheric effects are visible in color composites as a whitish-
bluish haze.

The correction of such atmospheric effects is a complex issue. Using an at-
mosphere model like 6S (Second Simulation of the Satellite Signal in the Solar
Spectrum(’, Vermote et al., 1997), the radiance at earth’s surface can be recon-
structed from the apparent radiance at sensor if the local weather conditions at
image acquisition time are known. For a method to use the 6S model within
GRASS see Neteler, 1999.

As detailed information about the local weather conditions and gaseous con-
tents are often unknown, the atmospheric effects can be retrieved statistically
from the image channels themselves. Known dark objects (e.g. water bodies or
coniferous forest) can be used to do this. In an unconnected image, these objects
do not appear dark due to atmospheric effects. The amount of path radiance is
approximately identified by calculating pixel-wise the difference between the
actual radiance for a dark object and zero (full absorption, given for water in
infrared). This difference value can be removed from all pixels of the channel.
Details are described in Moran et al., 1992 and Chavez Jr., 1996. The modules
d.what.rast or r.what can be used to calculate the path radiance for dark
objects, the subtraction can be done with r.mapcalc. A simpler method, not
considered in detail here, is based on the Tasseled Cap transformation. It does
not require the manual identification of dark objects and corrects the data set
through a “haze” image (Tasseled Cap component TC4) and linear regression.
It is implemented in i.tm.dehaze for LANDSAT-TMS.

Correction of terrain effects. When observing hilly or mountainous areas,
a terrain correction should be applied to the image to correct local brightness

Satellite image processing 225

surface

normal
% vector A

Solar azimuyg, -

iz Incident angle north

s: slope angle

a: aspect angle

B: solar zenith angle
o solar azimuth angle

Figure 9.8. Incident angle geometry related to direct solar irradiation onto a tilted surface

changes. These changes result from locally changing incident angles between
sun radiation and the slope/aspect of the observed object. A generic approach
to normalization of the illumination effects is the “cosine correction” devel-
oped by Teillet et al., 1982, and improved, for example, by Sandmeier, 1995.
First, the incident angle i is calculated for sloped terrain (tilted surface):

cos(i) = cos(P) *cos(s) + sin(P) *sin(s) * cos(o. — a) 9.3)

with:

i: incident angle between surface normal vector and solar radiation vector [°]
B: solar zenith angle from vertical [°] = incident angle for horizontal surface
s: surface slope angle to horizontal plane [°]

o solar azimuth angle from north [°]

a: aspect angle of surface from north [°]

The incident angle geometry is shown in Figure 9.8. The sun position data can
be retrieved from the metadata of the data set or calculated for a given date and
position with r.sunmask.

The normalized direct irradiation Ey, - for a Lambertian reflector (which
equally reflects in all directions) is calculated as follows:

cos(f)

cos(i) 4

E)-dirnonn = }Vdir *

226 OPEN SOURCE GIS

with:
. w
E; o normalized direct irradiation [WJ
. w
Ey,,: observed directirradiation at ground [W |

Note that this approach may tend to over-correct the brightness levels for steep
slopes. It is also based on the assumption that all observed objects behave like
Lambertian reflectors. As this is not true for many land use/land cover types,
a modified formula, the Minnaert correction model (besides other models) has
been developed. It introduces an empirical Minnaert constant based on the
image. We do not go into further details here as this approach is described in
the remote sensing literature.

Formula 9.3 and 9.4 can be implemented in GRASS with r.mapcalc. You
need a slope and aspect map for the image area. Remember that aspects are
counted counterclockwise from east in r.slope.aspect which requires a
reverted orientation and a rotation by 90°. Values for the zenith and azimuth
angle of the sun are delivered by r. sunmask. Input map is a radiometrically
(gain/bias, eventually atmosphere) corrected channel which will be corrected
for the terrain effect.

For a simple example, we use the previously geocoded Spearfish
SPOT-1 PAN channel (you may also try the SPOT-1 false color compos-
ite spot.image, which is delivered in the Spearfish data set). First, we
need to calculate the sun position to determine the shadow direction and
angle. The image acquisition time was 17:58:50 UTC, date: 5/27/89 (see
r.info spot.p). With r.sunmask, we can calculate the sun position. For
that, we enter the local time and the time zone:

r.sunmask -s y=1989 mon=5 d=27 h=10 min=58 s5=50 timez=-7\
elev=elevation.dem out=dummy
Using map center coordinates
Calculating sun position... {(using solpos (V. 11 April 2001)
from NREL)
1989.05.27, daynum 147, time: 10:58:50
long: -103.704231, lat: 44.421085, timezone: -7.000000
Solar position: sun azimuth 150.233337,
sun angle above horz. {(refraction corrected) 64.488976
Sunrise time (without refraction): 04:22
Sunset time (without refraction): 19:22
No map calculation requested. Finished.

We now have to re-interpolate the elevation model to 10 m to match the resolu-
tion of SPOT-1 PAN image to be terrain effect corrected. Then we calculate the
incidence angle map according to Formula 9.3. To speed up the calculations
we only work in a subregion:

Satellite image processing 227

Original SPOT—1 PAN Terrain corrected SPOT—1 PAN

Figure 9.9. Example for cosine correction of terrain effects. Left: uncorrected SPOT-1 PAN
image subregion; right: illumination corrected SPOT-1 PAN image subregion (solar azimuth an-
gle: 150° sun angle above horizon: 64°). Note the area appearing rather dark in the uncorrected
image east of the roads. This area is strong inclined with aspect in north-east direction

#DEM interpolation to 10m, generate also slope, aspect map:

g.region rast=elevation.dem -p n=4924680 s5=4922910\
w=590160 e=592590

.to.sites -a elevation.dem out=elev30

.info spot.p

.region res=10 -pa

.surf.rst elev30 el=elevl0 as=asl0 sl=s110

nw QR R

#generate new aspect map oriented from north, orientation

#clockwise. We are using an internal variable 'as’:

r.mapcalc "asl0_north=eval (as=360. - asl0 + 90.,if (as > 360.,\
as - 360., as))"

#generate incidence map from sun position:

r.mapcalc "cos_i=co0s(90.-64.4)*cos(s110) + sin(90.-64.4) *\
sin(sl110) * cos(150. - aslO0_north)"

r.colors cos_i col=grey

d.rast cos_1i

d.vect roads col=red

#generate contour lines from elevl1O0:
r.contour -q elevl0 step=20 out=contourly
d.vect contourlO col=green

d.vect.labels -m contourlQ col=green att=cat

We apply this incidence angle map cos i along with the sun angle above
the horizon as calculated by r . sunmask to the SPOT-1 PAN image. This
minimizes the terrain effects according to Formula 9.4:

228 OPEN SOURCE GIS

r.mapcalc "factor=float (cos(90.-64.4)/cos_i)"

#filter out outlier:

r.mapcalc "factor_filt=if (factor>-5.0 && factor<5.0, factor,1)"
#apply the cosine correction:

r.mapcalc "spot.pcorr=spot.p * factor_filt"

r.colors spot.pcorr col=aspect

d.frame -e
d.frame -c at="0,100,50,100"
d.frame -c at="0,100,0,50"

d.rast spot.p
echo "Original SPOT-1 PAN" | d.text col=white

#select right frame by clicking:

d.frame -s

d.rast spot.pcorr

echo "Terrain corrected SPOT-1 PAN" | d.text col=white

The corrected image spot.pcorr has reduced topographic effects as shown
in Figure 9.9 for a subregion south of Spearfish. Note that cast shadows re-
sulting from relief (mountainous regions) are not taken into account. This
approach is only a local correction. It may be extended with cast shadow maps
generated by r.sunmask. Another simple method to reduce terrain effects is
channel rationing which is discussed below.

94.3 Application: Deriving a surface temperature map
from thermal channel

Several satellites such as ASTER/TERRA, LANDSAT-TMS5 and
LANDSAT-TM7 provide thermal channels. The data delivered by a ther-
mal channel (channel 6 for LANDSAT systems) can be calibrated to a surface
temperature map. These surface temperatures must not be confused with
air temperatures. Note that the methods are different for LANDSAT-TMS5
and LANDSAT-TM?7, as their gain/bias values are different. For an absolute
calibration of satellite-derived temperatures, atmospheric correction has to be
taken into account.

Surface temperature map from LANDSAT-TMS channel 6. The fol-
lowing calculations derive the effective at-satellite temperatures (LANDSAT-
TMS) of the viewed earth-atmosphere system under an assumption of unity
emissivity and using pre-launch calibration constants. In a first step, the
gain/bias values are applied to the thermal channel to receive spectral radi-
ances. Then the resulting pixel values are converted to absolute temperature in
Kelvin. Optionally it can be recalculated to a degree Celsius temperature map:

Satellite image processing 229

convert TM5/b6 digital numbers (DN) to spectral radiances

(apparent radiance at sensor): radiance = gain * DN + offset
g.region rast=tm.6 -p

r.mapcalc "tm.6rad=1.238+(15.600-1.238)* tm.6 /255."

convert spectral radiances to absolute temperatures:

T =K2/In(KL/L_1 + 1})

r.mapcalc "tm.temp_kelvin=1260.56/(log (607.76/tm.6rad + 1.))"

convert to degree Celsius:
r.mapcalc "tm.temp_celsius=tm.temp_kelvin - 273.15"

¥ apply new color table, display:
r.colors tm.temp_celsius col=rules << EOF
0 blue

15 green

30 yellow

45 red

EOF

d.rast tm.temp_celsius

d.legend tm.temp_celsius

The map tm.temp celsius shows the distributed emitted thermal radiation
in degree Celsius. The surface brightness temperature is the actual surface
temperature only when the emissivity of the object in a particular waveband
equals to 1.0. For most surfaces, where the emissivity is near, but not equal to
1.0, a calibration according to the Stefan-Boltzmann equation is needed when
interpreting the results. You may generate a land use/land cover map through
image reclassification as shown later in Section 9.8 where you apply the in-
dividual emissivity factors according to land use. With r.mapcalc you can
calibrate the landuse corrected temperature map from these maps. A modified
formula for deriving LANDSAT-TMS5 surface temperatures was proposed by
Singh, 1988 and other authors.

Surface temperature map from LANDSAT-TM7 channel 6. As in the pre-
vious case, the LANDSAT-TM7 image data have to be converted from digital
numbers to spectral radiances by applying the gain/bias values. Depending on
the data format, these values may be retrieved from the image metadata with
gdalinfo In our example we use the LANDSAT-TM?7 scene as prepared in
Section 3.3.3 for the Spearfish sample LOCATION. However, the data are pro-
vided in GeoTIFF format. This requires to look up the gain and bias parameters
from the accompanying metadata file which is separared from the image data.

We use the low gain thermal channel tm7 2000071 .6 as imported earlier
(see Section 9.2.1). The conversion procedure is:’

230 OPEN SOURCE GIS

#rename for convenience
g.rename rast=tm7_2000071.6,tm.6

grep BAND61 p033r029_7x20000712.met

BAND61_FILE_NAME = "p033r029_7k20000712_2z13_nn6l.tif"
LMAX_BAND61 = 17,040

LMIN_BAND61 = 0.000

QCALMAX_BANDG61 255.,0

#

#

#

It

QCALMIN_BAND61 = 1.0
CORRECTION_METHOD_GAIN_BAND61 = "CPF"
STRIPING_BAND61 = "“NONE"

convert TM7/b6l digital numbers (DN) to spectral radiances

(apparent radiance at sensor)

radiance = gain * DN + offset

= ((LMAX-TMIX)/ (QCALMAX-QCALMIN)) * (DN-QCALMIN) +LMIN

g.region rast=tm.6 -p
r.mapcalc "tm.6rad=((17.04 - 0.)/(255. ~ 1.))*(tm.6 - 1.) + O."

#convert spectral radiances to absolute temperatures:

T = K2/1n(K1/L_1 + 1))

Kl: 666.09 W/ln(m"2 * sr * um)

K2: 1282.71 Kelvin

r.mapcalc "tm.temp_kelvin=1282.71 /log(666.09 / tm.6rad + 1.)"

#calculate degree Celsius:
r.mapcalc "tm.temp_celsius=tm.temp_kelvin - 273.15"

tapply new color table, display:

r.colors tm.temp_celsius col=rules << EOF
0 blue

15 green

30 yellow

45 red

EOF

#display the map, overlay to ETM/PAN (B80) 15m channel:
g.region rast=etmpan -p

d.his i=etmpan h=tm.temp_celsius

d.legend tm.temp_celsius

The resulting temperature map (in degree Celsius) represents the uncorrected
surface temperatures at image acquisition time (around 9:30h), see notes above
for emissivity correction. For deriving these maps from other satellites such as
ASTER/TERRA, please refer to the related documents.®

Satellite image processing 231

9.5. RADIOMETRIC TRANSFORMATIONS AND
IMAGE ENHANCEMENTS

Various methods have been developed for the analysis of multi-channel
satellite data using their multispectral nature for radiometric transformations
and image enhancement. These techniques play a fundamental role in image
interpretation. Most methods may either be applied to uncalibrated data sets or
to preprocessed image data sets.

9.5.1 Image ratios

Image ratios are the basis of a simple algebraic method used for feature ex-
traction, reduction of terrain illumination effects, image enhancement, compu-
tation of vegetation indices and more (this topic is widely discussed in various
papers, for example, refer to Mather, 1999:117-124). To understand a partic-
ular channel ratio formula, the object reflectance curves have to be considered
(sample curves for green vegetation, soil and water are shown in Figure 9.2).
In general, the ratio result for pixels with very different values for the input
channels is larger (brighter) than for pixels with similar values. The image
ratio equations can be computed with r.mapcalc. It is important to include
a multiplier of 1.0 at the beginning of the map algebra expression because we
are dividing integer values. Otherwise, the result will become zero and not the
expected floating point numbers. As an example, we calculate a ratio between
LANDSAT-TMS5/7 channel 7 and 4:

r.mapcalc "ratio7.4=1.0 * tm.7 / tm.4"

For more than 15 years, a variety of vegetation indices have been developed.
To illustrate such a calculation, we can compute a NDVI map (normalized
difference vegetation index) from LANDSAT-TMS5/7:

r.mapcalc "ndvi=1.0 * (tm.4 - tm.3) / (tm.4 + tm.3)"

For the calculation of NDVI, the differences between the red and the infrared
channel are taken into account pixel-wise to derive information about the veg-
etation cover. When a pixel value in the near-infrared dominates over the red
wavelength (as for green, healthy vegetation), the NDVI is positive. NDVI
for unvegetated soil will be slightly above zero; for water, below zero. To
quickly classify these three (or more) landcovers, you may filter them with
r.mapcalc (if-condition).

9.5.2 Principal Component Transformation (1)

Multispectral image channels often contain correlations due to similarities
of the spectral response of the observed objects or slightly overlapping filter

232 OPEN SOURCE GIS

functions of the spectral sensors. This leads to redundancies within the data
set. The “Principal Component Transformation” (PCT) method has been de-
veloped to transform such a data set to a new data set without correlations
between the channels. This will concentrate the image information in fewer
image channels (reduction of image dimensionality), which is of particularin-
terest for hyperspectral data. The PCT transforms the original multispectral
data set to a new spectral coordinate system, the Principal Component axes,
which are orthogonal to each other. Figure 9.10 shows the position of origi-
nal multispectral pixels and the PCT coordinate system. In general, the first
principal component (PC) image contains the maximum possible variance of
the original images. The second principal component image contains the maxi-
mum possible variance not stored in the first PC image, as the second PC axis is
orthogonal to the first PC axis (Schowengerdt, 1997:191). Accordingly, higher
PC images explain remaining variances. The number of PC images is identi-
cal to the number of input channels. Since the amount of variance decreases
from the first to the last PC, uncorrelated noise (and sometimes some remain-
ing high frequencies) is found in the last PC image. As a results, the method
is sometimes used for image compression, as it allows the image information
to be concentrated in fewer channels. PCT is also sometimes used to generate
additional channels to obtain more variables for a later reclassification process.

The scatterplot in Figure 9.11 shows the original spectral axes and, after
transformation, the new rotated PC axes for a sample LANDSAT-TMS pixel
cloud (channel 3 and 4).

channel Y

Figure 9.10. Left: Multispectral pixel values shown as standardized data vectors x| to x5 with
related first and second orthogonal principal component vectors PCT7 and PCT; in coordinates
view. Right: Same data vectors in circle coordinates view

Satellite image processing 233

T™M4 A

2557

1277

0 —T T -
0 127 n 255 TM3

Figure 9.11. Principal Component Transformation applied to channels tm3 and tm4 of a

LANDSAT-TMS data set. Both the original spectral axes (channels tm3, tm4) and the PC axes
(PCT transformed channels tm3’, tm4’) are shown

In GRASS, the Principal Component Transformation is implemented in
i.pca. The module requires the input channel names (at least two images)
and a prefix for the transformed PC image files, which will be enumerated in-
crementally. Optionally the data can be rescaled to a range different from the
default range of 0 - 255.

Another method not covered here is the Fourier transformation, which is
provided by i.fft and 1i.ifft (forward and backward transformation). It
transforms image data from spatial to frequency domain. Among the important
applications of the Fourier Transformation are the identification and elimina-
tion of (periodic) noise or stripes in a satellite image.

9.6. GEOMETRIC FEATURE ANALYSIS

The geometric (spatial) feature analysis applies local neighborhood opera-
tions to raster data. Several methods are available for image smoothing: con-
trast improvement, low- and high pass filtering, edge detection and more. Geo-
metric filters are user defined raster matrix templates (“moving window”) mov-
ing row- and column-wise over the image used to calculate the new raster map.
All raster cells which are covered by this moving window are considered for
the calculations.

234 OPEN SOURCE GIS

9.6.1 Matrix filter: Spatial convolution filtering

Matrix filters can be used to locally modify the spatial frequency character-
istics for an image. These modifications are based on calculations considering
the neighboring raster pixels in a 2D spatial convolution process (for theoreti-
cal details, refer to Richards and Xiuping, 1999:114-116). These spatial con-
volution filters operate in spatial domain and are an alternative to frequency
domain filters (such as Fourier Transformation). Spatial convolution filtering
is well suited for:

a high and low pass filtering (sharpening, blurring), averaging;
® edge detection by direction and gradient filters;
s morphological filters;

= preprocessing for image segmentation.

In the next part, we will describe high and low pass filtering and edge detec-
tion. In GRASS, two methods are available to define matrix filters. Either the
module r.mapcalc or the module r.mfilter can be used.

The use of r.mapcalc is less convenient, as every matrix element has to
be addressed with relative coordinates to the central cell. The format to address
neighbor cells to the center is map [r, c], where r is the row offset and c is the
column offset. For example, map [0, 2] refers to the same row as the center
cell and two columns to the right of the center cell, map[-2,-1] refers to
the cell two rows up and one column to the left of the center cell. This syntax
permits the development of neighborhood-type filters for one single map or
across multiple maps. As a simple example, we define a 3x3 low pass filter.
The filter equation for the each center cell x,:

%ngﬂ (9.5)
i1

1s coded as:

r.mapcalc "lowpass=(map[l,-1]+map(l,0]l+map(l,1]+map[0,-11+\
map{0,0])+map[0, 11+map(~1,-11+map[-1,0)+map[~1,1})/9."

You may try this example with the spot .ms.1 image. Further examples for
r.mapcalc matrix operations are described in Shapiro and Westervelt, 1992.

A convenient way to perform spatial convolution filtering is to use
r.mfilter with a matrix template defined in an ASCII file. We extend our
first example to a 7x7 median filter which filters existing sharp contrasts in a
raster map. This is effectively a low pass filter. The filter definition has to be
stored in an ASCII file, for example, 1owpass:

Satellite image processing 235

TITLE 7x7 Low pass

MATRIX 7
1111111
1111111
1111111
1111111
1111111
1111111
1111111
DIVISOR 49
TYPE P

The mean value is preserved if the sum of the filter values equals the line-
number % column-number. Every cell within the “moving window” is multi-
plied by 1. The results are summed up and finally divided by DIVISOR 49
(product of 7 * 7 « 1). To see how this works, the filter may be applied to the
SPOT-1 HRV1 channel:

r.mfilter spot.ms.l out=msl.lowpass filt=lowpass
r.colors msl.lowpass col=grey.eq
d.rast msl.lowpass

The color table may be set to grey or grey.eq with r.colors as in the
example above.

Two types of filters are possible: sequential and parallel filters. Sequential
filters (TYPE S) use the modified neighboring raster cell values for calculation
of the central cell, while the parallel filters (TYPE P) use the neighboring cell
values of the original map. Directional filters should be set up as parallel filters.
Further information related to these types can be found in the manual page for
r.mfilter.

Another example is a high pass filter for sharpening an image. It can be
defined as follows (we store it in an ASCII file highpass):

TITLE 5x5 High pass
MATRIX 5

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 24 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1
DIVISOR 25

TYPE P

In this example the central cell of the window is weighted by 24, while the
other cells have weight -1. The entire matrix is finally divided by 25 and its
values are stored in a new map. Again, we apply it to the map spot .ms. 1:
r.mfilter spot.ms.l out=msl.highpass filt=highpass

r.colors msl.highpass col=grey.eq
d.rast msl.highpass

236 OPEN SOURCE GIS

The resulting map shows enhanced high frequencies (at the same spatial reso-
lution). Note that a filter definition file may also contain multiple filters which
will be applied to the image subsequently.

The only limitation of r.mfilter in comparison to r.mapcalc is that
only integer numbers are accepted in a filter matrix. If you want to use floating
point numbers or trigonometric functions, r.mapcalc must be used instead.
The latter is also well suited for a thresholded binarization used to extract se-
lected features (if-condition).

9.6.2 Edge detection

Edge detection is an important issue in remote sensing. An edge is defined
as a significant change of the pixel values (DN) from one pixel to another. Re-
lated filters are also called gradient filters (Schowengerdt, 1997:246-247) such
as Sobel, Robert, or other filters. The filter rules to define a Sobel edge detector
for r.mfilter are shown in the next example. This filter sobel.filt is
two-fold, as it can operate in north-south and east-west direction:

TITLE 3x3 Sobel (edge detection)
MATRIX 3

-1 01

-2 0 2

-1 01

DIVISOR 1

TYPE P

MATRIX 3
121
000

-1 -2 -1
DIVISOR 1
TYPE P

To apply it to the spot .ms. 1 image, we run:

r.mfilter in=spot.ms.l out=msl.sobel filt=sobel.filt
r.colors msl.sobel col=grey.eq
d.rast msl.sobel

You can use r.mapcalc for a binarization (if-condition):

d.histogram msl.socbel
r.mapcalc "msl.edge=if {msl.sobel > 0,1,null{())"
d.rast msl.edge

To achieve useful results, additional filtering is required before trying to extract
edges. To skeletonize (thin) edges, you can use r.thin:

r.thin msl.edge out=msl.edge.thin
d.rast msl.edge.thin

Satellite image processing 237

An application for improved edge detection with vectorization based on seg-
mentation is explained for aerial photographs in Section 10.4.

9.7. IMAGE FUSION

Often, satellite data sets with high radiometric resolution (multispectral
channels) lack a high geometric resolution and vice versa. However, for an ac-
curate image interpretation, both radiometric and geometric resolution should
be high. Image fusion is a method to geometrically enhance images with high
radiometric resolution by merging the multispectral channels with a panchro-
matic image. Different image fusion methods have been developed; two basic
methods will be described in the following sections.

9.7.1 Introduction to RGB and IHS color model

To understand image fusion methods operating in color space, it is impor-
tant to have basic knowledge about the RGB (red, green, blue) and IHS (also
referred to as HIS or HSI: intensity, hue, saturation) color spaces. Similarly to
geometrical data the color spaces span their own coordinate systems. Due to
their definitions, it is possible to convert images lossless from one color model
to the other. The RGB model is an additive color model, where new colors are
derived by adding the three base colors at different levels. For example: yel-

Intensity
Blue Cyan
(0,0,255) /" 1 (0,255,255)
: ; £
[=]
Magenta 1 | White & 'S
(255,0,255) : (255,255,255) &
: :
3
o
; :
! -
Black,';'_ ________ _ _ _)Green
(0,0,0) (0,255,0)
e
e
Red E Yellow)
(255,0,0) (255,255,0) Sathatkin

Figure 9.12. Left: RGB (red, green, blue) cubic color space; right: IHS (intensity, hue, satura-
tion) hexcone color space (adapted from Mather, 1999:99)

238 OPEN SOURCE GIS

low =red + green. The IHS model is different; here, the intensity (sometimes
also called “value”) is a measure of color brightness, the hue corresponds with
the dominant wavelength (which is related to color names), and the saturation
describes degree of color purity.

Figure 9.12 shows both the RGB and the IHS color model. A pixel in the
RGB color space has a specific position within the cube spanned by the coordi-
nate axes, while the IHS color space forms a hexcone. The main advantage of
RGB is that it is easy to understand; however, intensity changes are dependent
on color settings. Thus, in the RGB model, a change in intensity always leads
to a change in colors. The IHS color model preserves colors in case of intensity
changes which is a major advantage of this model. Based on this feature, the
IHS model can be used to for image fusion, which we explain below. GRASS
provides two color conversion modules, the i.rgb.his to convert an image
from RGB to IHS and i.his.rgb to convert back from IHS to RGB.

9.7.2 RGB color composites

Before starting with image fusion in terms of improving the geometrical
resolution, we explain the standard color composites. Here three (each grey
colored) channels are assigned to the colors red, green and blue; the result is
a pixel-wise combined new image with a color table based on the input values
as described in Section 9.3.

M1 TM3
™2 ™4 TM5 ™7

—_

00 2000

(o]
o

1500

=2}
(=]

1000

|

.
o

-1500

Relative spectral sensitivity [%]

(1]
o
Extraterr. solar radiation 'Wni’1

1 E
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 20 22 24 26
Wave length [um]

Figure 9.13. Exo-atmospheric solar radiation (in W/m® on top of atmosphere, see right axis)
and relative spectral sensitivity of LANDSAT-TMS channel filter functions, thermal channel 6
is not shown (curves as defined in 6S source code, Vermote et al., 1997)

Satellite image processing 239

When generating color composites from multispectral data, we need to de-
termine which channels contain most information. For example, when consid-
ering LANDSAT-TMS data, the following problem arises. Figure 9.13 shows
the solar spectrum and the filter functions of LANDSAT-TMS. The color filter
functions of channels 1, 2, and 3 partly overlap which leads to slightly corre-
lated channels. Generally, 20 color composites can be produced from the six
reflective LANDSAT-TMS channels (not using the emissive thermal channel).
Due to the slight correlations, the information contents is reduced when the first
channels are combined. A simple method to find out the combinations with the
highest information content is the Optimum Index Factor method (Chavez et
al., 1984), which is based on a correlation analysis. It is implemented in the
i.oif script. It calculates a rank of all reflective LANDSAT-TMS5/7 band
combinations and outputs a sorted combination table.

Color composites can be generated with r.composite or i.composite.
The latter requires all channels selected in an image group with at least three
channels created using i.group. Within the menu of i.composite, the
selected channels will be assigned to the colors red, green and blue by spec-
ifying the letters r, g and b. For example, to generate a near-natural color
image, the satellite channels covering the red, green, and blue spectrum have
to be assigned to r, g and b respectively. The number of color levels then has
to be defined (the number of colors = specified levels’): e.g., 10 color levels
will lead to 1000 colors in the composite image. Due to speed limitations in
the current GRASS display color model for large color tables, we recommend
not generating 24 bit image composites inside GRASS (use r.out .ppm3 to
export into a 24 bit PPM image). Finally, the output name for the composite
has to be specified. After some computation time, the color composite raster
image can be visualized in the GRASS monitor. Alternatively, the module
r.composite, which also operates on command line, can be used.

9.7.3 Image fusion with IHS transformation

For image fusion, two geometrically co-registered data sets are required.
The acquisition time of these data sets should be very close to avoid possible
modification of the result by land use changes. For IHS-fusion, the three RGB
channels must first be transformed to the IHS color model. The general idea of
IHS-fusion is to replace the intensity channel with a high resolution panchro-
matic channel for the back-transformation from the IHS to RGB color model.
As a results, the color information in lower resolution is merged with the high
spatial resolution of the panchromatic channel. In terms of GIS, a resolution
change is required before back-transforming the images to achieve the higher
spatial resolution in the output. A disadvantage of this fusion method is that
this technique changes the spectral characteristics of the data.

240 OPEN SOURCE GIS

TM1 (30m) —={B S g S B |— TM1’ (15m)
Transformation =] Transformation
TM2 (30m) —=={G RGB/IHS 2 H IHS/RGB G| —m TM2 (15m)
30m/15m £ 15m
TM3 (30m) —= R | 0 l-» | R — TM3' (15m)
DN
ETMpan (15m)

Figure 9.14. Geometric resolution improvement of LANDSAT-TM7 data (IHS image fusion
method). After conversion from RGB to IHS color model, the resolution is changed from 30 m
to 15 m. The high resolution panchromatic channel replaces the original intensity channel before
converting back to RGB color model

As an example, we enhance the geometrical resolution of geocoded
LANDSAT-TMT7 color channels (each at 30 m resolution) with the panchro-
matic ETMPAN channel (at 15 m resolution) of the same satellite acquired at
the same time. Note that you can also use the SPOT-1 HRV/PAN images we
used earlier in this chapter. Before starting the procedure as outlined in Fig-
ure 9.14, the input channels should be contrast enhanced with r.colors. The
input channels are then converted to the IHS color model with i.rgb.his
at 30 m resolution. Now the resolution is set to the higher resolution with
g.region as defined by the panchromatic channel. In case of LANDS AT-
TM7, it is changed from 30 m to 15 m; for SPOT data, from 20 m to 10 m. To
improve the geometric resolution, the original intensity image which resulted
from the RGB to IHS transformation is replaced by the panchromatic chan-
nel for back-transformation to the RGB color model. Finally, three new RGB
channels at 15 m resolution containing the multispectral information from the
input channels are generated. The GRASS procedure is as follows:

#if not done yet, apply a contrast stretch (histogram equalized)
g.region res=30

r.colors tm.l color=grey.eq

r.colors tm.2 color=grey.eq

r.colors tm.3 color=grey.eq

#RGB view of RGB channels:
d.rgb r=tm.3 g=tm.2 b=tm.1l

#RGB/IHS conversion:

g.region res=15

i.rgb.his red_input=tm.3 green_input=tm.2 blue_input=tm.1\
hue_output=hue intensity_output=int saturation_output=sat

#IHS/RGB back conversion with ETMPAN replacing
#the old intensity image:

Satellite image processing 241

Figure 9.15. Left: Standard RGB composite of SPOT-1 HRV channels (20 m resolution); right:
Image fusion of SPOT-1 HRV channels (20 m) with SPOT-1 PAN (10m) with Brovey transfor-
mation leading to resolution enhanced image (grey scale reproduction of color original)

i.his.rgb hue_input=hue intensity_input=etmpan\
saturation_input=sat red_output=tm.3_15\
green_output=tm.2_15 blue_output=tm.1_15

#eventually new contrast enhancement:
r.colors tm.1_15 color=grey.eq
r.colors tm.2_15 color=grey.eq
r.colors tm.3_15 color=grey.eq

#result is are the three color channels with improved
#geometrical resolution:
d.rgb r=tm.3_15 g=tm.2_15 b=tm.1_15

More complex merging procedures can also be performed. For geologi-
cal applications, the use of ratio calculations (generated from r.mapcalc)
is recommended, as they can be input into the fusion replacing the common
multispectral input channels.

9.7.4 Image fusion with Brovey transformation

An alternate method for image fusion is the Brovey transformation (de-
scribed e.g. in Pohl and van Genderen, 1998, and among other methods in
Zhou et al., 1998). The Brovey transformation method can be easily imple-
mented in GRASS. The formula was originally developed for LANDSAT-TM5
and SPOT, but it also works well with LANDSAT-TM?7. You need the panchro-
matic channel to be spatially co-registered to the multispectral channels. Image
fusion based on Brovey transformation for LANDSAT-TM7 data merges the
channels 2, 4, and 5 (all at 30 m resolution) with the panchromatic ETMPAN
channel (at 15 m resolution):

242 OPEN SOURCE GIS

g.region res=15

r.mapcalc "brov.red=l. * tm.5 / (tm.2 + tm.4 + tm.5) * etmpan"
r.mapcalc "brov.green=1l. * tm.4 /(tm.2 + tm.4 + tm.5) * etmpan"
r.mapcale "brov.blue=1l. * tm.2 / (tm.2 + tm.4 + tm.5) * etmpan"
r.colors brov.red col=grey

r.colors brov.green col=grey

r.colors brov.blue col=grey

d.rgb r=brov.red g=brov.green b=brov.blue

Besides the improved resolution, the result provides a near-natural color ta-
ble. You may consider modifying the color tables of the resulting channels to
optimize the color quality to achieve a near-natural color image.

For SPOT-1 data, the approach described above is slightly modified:

g.region res=10

r.mapcalc "brov.red= 1. * spot.ms.3 / (spot.ms.l + spot.ms.2\
+ spot.ms.3) * spot.p"

r.mapcalc "brov.green=1l. * spot.ms.2 / (spot.ms.l + spot.ms.2\
+ spot.ms.3) * spot.p"

r.mapcalc "brov.blue= 1. * spot.ms.l / (spot.ms.l + spot.ms.2\
+ spot.ms.3) * spot.p"

r.colors brov.red col=grey

r.colors brov.green col=grey

r.colors brov.blue col=grey

#note the reversed r/g channels:
d.rgb g=brov.red r=brov.green b=brov.blue

Figure 9.15 shows an example for image fusion with SPOT-1 HRV/PAN
data.

9.8. THEMATIC RECLASSIFICATION OF SATELLITE
DATA

One of the main goals of satellite remote sensing is to derive thematic map
layers describing the current land use/land cover of the earth’s surface. In a
GIS context, these map layers are often used to update maps generated by con-
ventional techniques. Common multispectral reclassification algorithms treat
the multi-channel images as variables for a reclassification process. The re-
sulting classes describe the dominating land use or land cover in a certain area,
where the land use is considered locally homogeneous. Numerous reclassifi-
cation methods have been developed; GRASS provides capabilities for a set of
standard approaches. Due to its Open Source nature, additional methods may
be directly implemented in C programming language.

Satellite image processing 243

When reclassifying multispectral satellite data, the image data set is ana-
lyzed pixel-wise, with the values of all channels being taken into account for
each pixel. The number of pixels covering the same geographic region de-
pends on the number of channels. This group of pixel values describing the
same small area is called the spectral vector. It describes its specific position
in the feature space (compare Figure 9.5 earlier in this chapter) which contains
all spectral vectors. Within the feature space, the reclassification algorithm
tries to separate similar spectral vectors which vary depending on the observed
object types as soil, vegetation, water bodies etc. Similar spectral vectors will
be assigned to the same class. All classes are finally stored in a thematic map
where each class describes the dominating land use type.

A problem for the reclassification process are local variations which re-
sult from changes within and between the observed objects, slope and aspect
changes of the terrain, and variations of the atmospheric conditions (haze, dust,
clouds etc.). Depending on the observed area, data have to be radiometrically
preprocessed as described in the previous section to minimize influences from
slope/aspect and atmospheric effects.

Multi— Multi-
spectral spectral
images images
Clustering_> r.digit
v.digit
]
%o g 3 7 s
statistics £ =
§ Training areas RS,
o a
Classification § (m 5
=
== ¢ 0@ Cluster &
=) slatlshcs @

CAssignment >

ﬁ Ground truth

Landuse \-..__,J Landuse
classes yegrification Verification classes

)

Figure 9.16. Unsupervised (left) and supervised (right) classification procedures for multispec-
tral data

244 OPEN SOURCE GIS

In general, two strategies are common for the reclassification of remote
sensing data: wunsupervised and supervised classification methods, which are
outlined in Figure 9.16. For both methods, the reclassification process requires
two major steps. The data have to be analyzed for similarities in their spec-
tral responses and the pixels have to be assigned to classes. The unsupervised
method is fully automated based on image statistics, but it delivers only ab-
stract class numbers. The main task then is to find a reasonable number of
clusters/classes and assign ground truth information to these classes. The su-
pervised reclassification requires user interaction, as training areas covering
known land use have to be digitized. Image statistics are automatically derived
from these training areas and used for the final reclassification.

Common reclassification methods (MLC - Maximum Likelihood classifier
as described in Sections 9.8.1 and 9.8.2) are pixel-based. GRASS addition-
ally provides a different method (SMAP - Sequential Maximum A Posteriori
classifier, see Section 9.8.3) which also takes into account that neighborhood
pixels may be similar. The fact that a neighborhood of similar pixels will lead
to spatial autocorrelation is used to improve the result. Altogether, four differ-
ent approaches for satellite analysis within two main groups of reclassification
methods are available:

s Radiometric reclassification:

— Unsupervised reclassification (i.cluster, i.maxlik using the
Maximum Likelihood reclassification (MLC) method),

— supervised reclassification and, combined,

— partial supervised reclassification (i.class, i.gensig, i.max-
1ik),

m Combined radiometric/geometric supervised reclassification (i.gen-
sigset, i.smap using the Sequential Maximum A Posteriori reclassifi-
cation (SMAP) method)

A common problem in remote sensing of the environment are mixed pixels
which cover various objects (field borders, urban areas, etc.). In this case, the
mentioned methods will assign the pixel dominating object to a class, usually
at a low confidence level. If appropriate, masking out settlements where lots
of mixed pixels appear may be considered. Subpixel analysis methods such as
“Spectral Mixture Analysis” are a way to overcome this problem (fora GRASS
implementation see Neteler, 1999).

Other reclassifiers such as Artificial Neural Networks (ANN), k-Nearest
Neighbor Classification (kNN), Support Vector Machines (SVM), and other
methods are implemented in the R statistical language. They can be linked
to GRASS using the GRASS/R interface; for an introduction to R, see Sec-
tion 13.2.

Satellite image processing 245

9.8.1 Unsupervised radiometric reclassification

Unsupervised reclassification is the automated assignment of raster pixels to
different spectral classes. The assignment is based only on the image statistics.
The unsupervised classification is a two-step approach. First, a clustering al-
gorithm groups pixel values with similar statistical properties according to user
definitions of minimum cluster size, separability, number of clusters, etc. This
approach is similar to the creation of a map legend, where the number of signa-
tures existing in a map is identified and visualized. The pixel clusters are image
categories that can be related to land cover types on the ground. The iterative
clustering algorithm first computes the cluster mean values and covariance ma-
trices (module i.cluster), adjusting these values while reading the image
data set. The idea is to identify pixel clouds from the feature space which have
similar reflectance values in the various channels. Each pixel cloud, grouped
into clusters which represent land use classes, characterizes the spectral signa-
ture of a certain object which will be assigned to a class later on.

This cluster information is used to perform the spatial assignment of the
individual pixels to the derived clusters (module i.max1ik). The MLC deter-
mines which spectral class each cell in the image belongs to with the highest
probability. Internally, a Chi-square test is run with changing thresholds until
a predefined convergence is reached (stability of the pixel assignment during
the iteration steps). The result is a new map containing the classes. The MLC
also stores the confidence level for each pixel belonging to a certain class in
a second map. This map is called “reject threshold map layer” or “rejection
map” and contains one calculated confidence level for each reclassified cell in
the reclass map. High values in the rejection map represent a high rejection
probability for the assigned class. One of the possible uses for this map layer
is as a MASK, to identify cells in the reclassified image that have the low-
est probability of being assigned to the correct class. It is important to know
that MLC assumes that the spectral signatures for each class are normally dis-
tributed (i.e., Gaussian in nature) which is often unrealistic. For a detailed
discussion, see various remote sensing books such as Mather, 1999.

First step: Clustering of image data. The unsupervised reclassification
starts with collecting the image channels of interest (i.e. for optical data usu-
ally all reflective channels without thermal channel) into an image group us-
ing i1.group. It is also important to generate a subgroup (menu item 5 in
i.group) containing the same channels because the classification modules
will ask for the subgroup name.

The clustering process is performed with i.cluster. A set of parameters
has to be specified to control the clustering. It is important to set the initial
number of classes used for the first iteration (“number of initial classes”); for
other parameters, you may use default values for the first try. They have the

246 OPEN SOURCE GIS

following meaning (class and cluster are used as synonyms, explanations are
based on the U.S. Army CERL, 1993 tutorial):

® Minimum class size: minimum number of pixels to define a cluster;

m Class separation: minimum separation below which clusters will be
merged in the iteration process. It depends on the image data being reclas-
sified and the number of final clusters that are statistically acceptable. Its
determination requires experimentation, usual values range between 0.5 to
1.5. Note that as the minimum class separation is increased, the maximum
number of iterations should also be increased to achieve this separation with
a high percentage of convergence (see percent convergence);

m Percent convergence: point at which cluster means become stable during
the iteration process. When clusters are being created, their means con-
stantly change as pixels are assigned to them and the means are recalculated
to include the new pixel. After all clusters have been created, i.cluster
begins iterations that change cluster means by maximizing the distances
between them. As these mean shift, a progressively higher convergence is
approached. Because means will never become totally static, a percent con-
vergence and a maximum number of iterations are supplied to stop the iter-
ative process. The percent convergence should be reached before the maxi-
mum number of iterations. Ifthe maximum number of iterations is reached,
it is probable that the desired percent convergence was not reached. The
number of iterations is reported in the cluster statistics in the report file;

& Maximum number of iterations: determines the maximum number of iter-
ations which is greater than the number of iterations predicted to achieve
the optimum percent convergence of the Chi-square test. If the number of
iterations reaches the maximum designated by the user; the user may want
to rerun i.cluster with a higher number of iterations;

m Sampling intervals: simplifies the calculations by grouping the pixels into
blocks. If the system resources are about to be depleted due to a too small
block size, i.cluster will send an email containing a warning. These
numbers are optional with default values based on the size of the data set
such that the total pixels to be processed is approximately 10,000 (consider
round up). With appropriate hardware, the unrecommended sampling may
become unnecessary.

After starting i.cluster, first enter the group and subgroup names. Then,
provide a filename for the “Result signature file” (which will store the cluster
information for i . max1ik. Only if present (not in the first run), a filename
for a “Seed signature” may be specified. This allows you to use cluster infor-
mation from a previous run or to use spectral signatures from another partial

Satellite image processing 247

supervised reclassifications using i.class. Then enter a filename for the
“Report file” which will be written to the current directory. It contains statisti-
cal information about the clustering process. If desired, the module can “Run
inbackground”.

The following screen allows us to modify the parameters as described above.
For a LANDSAT-TMS5/7 scene, the “Number of initial classes” should be ini-
tially set to 20. This is a test case — the number has to be changed depending on
the results, especially when the convergence is not reached. The other default
parameters may be accepted for now. To continue, enter <ESC><ENTER>.
Now the cluster analysis is running, generating the cluster statistics and the
report file. After checking the quality of the clustering process in the report
file, an eventual modification of the parameters and one or more new runs of
i.cluster are required.

Second step: Unsupervised reclassification of image data. Finally, the
unsupervised classification based on the MLC algorithm can be started with
i.maxlik. The module will assign all pixels in the satellite image to the
spectral signatures (classes) derived by the previous clustering process. Af-
ter starting i1 .max1ik, the image group has to be selected. Then the “Result
signature map” which is the result of the clustering process performed with
i.cluster is queried. Second, a name for the “Classified map layer” (the
new reclassified image) which will be created by i.max1ik has to be spec-
ified. Finally, a name for the “Reject threshold map” is needed to store the
pixel assignment confidence levels. As described above this map represents
the spatially localized errors which occurred when assigning each pixel to a
class. After specifying all parameters, GRASS will compute the unsupervised
reclassification. These maps can be displayed now with d.rast. The reject
threshold map contains one calculated confidence level for each classified cell
in the classified image. In case the quality of the reclassification process is
not acceptable, the number of classes or other parameters need to be changed
subsequently, and the clustering and MLC analysis must be repeated with the
new values.

The classes in the reclassification map are then manually assigned to the
appropriate land use types in the verification. The assignment of categories
can be done with r . support (“Edit categories”) or r.reclass. To change
the map colors to more intuitive ones (water colored blue, etc.), the module
r.colors can be used. A command line based example for reclassifying the
SPOT-1 HRV/PAN data into 5 land use classes is as follows:

i.group group=spotmss sub=spotmss\
in=spot.ms.1l, spot.ms.2, spot.ms. 3, spot.p

248 OPEN SOURCE GIS

#clustering:
i.cluster group=spotmss sub=spotmss classes=5 sigfile=cluster

#MLC:

i.maxlik group=spotmss sub=spotmss sig=cluster\
class=mlc.unsup rej=mlc.unsup.rej

d.rast.leg mlc.unsup

d.rast mlc.unsup.rej

#select all areas with confidence level >= 90%
#of correct assignment:

r.report mlc.unsup.rej un=h

r.mapcalc "mlc.unsup.qual=if (mlc.unsup.rej >= 12, 1, null()})"
r.report mlc.unsup.qual un=h

d.erase

d.histogram mlc.unsup.rej

The filtered rejection map mlc.unsup.qual can be used as MASK to select
the pixels with a high confidence level of assignment.

9.8.2 Supervised radiometric reclassification

In a supervised reclassification, the classification process is supported by
an interactive selection of known areas (for the general workflow see Fig-
ure 9.16). Using visual inspection in the field or auxiliary training maps, areas
with known land cover are selected and stored in a training map, which is used
to identify the spectral signatures for the reclassification process. These known
areas are also called “ground truth areas”. It is important that the training ar-
eas are homogeneous samples. Since training areas cover several pixels, small
local variations are included for the definition of the classes. For verification,
the module i.class supports analyis of channel-wise histograms. A Gaus-
sian distribution of the spectral responses is assumed and standard deviations
are displayed in the histograms. These standard deviations can be modified to
change the cluster statistics. The spectral signatures (grouped later into classes)
are computed from the regional mean values of the training areas and their co-
variance matrices.

The training areas can either be digitized within the module i.class (cov-
ered in the first part of the following description) or prepared from auxiliary
maps such as already available land use maps (second part of the following
description).

Interactive selection of training areas. The manual vectorization of train-
ing areas is accomplished with i.class. First the satellite channels have
to be joined into an image group and subgroup using i.group. Creating a
natural or false color composite (see Section 9.7.2) which will be helpful for
identification of training areas is recommended.

Satellite image processing 249

B (GRASS BAORTET FIOROTF0 : i m i e e e

Command Menu: Zoom Deflne reafon Redisniavy moo Analvie reaion Quit

Figure 9.17. Sample screen of interactive training area identification with i.class (SPOT-1
PAN image, Spearfish region)

After starting i.class., select an image group and subgroup. Then pro-
vide a name for the “Result signature file”. It will contain the spectral sig-
natures for the later reclassification process. Next is the “Seed signature file”
which allows us to read in signatures from a previous run (e.g. in case you
interrupted this procedure). Skip it for the first run. Then specify a “Cell map
to be displayed” which may be a previously generated natural or false color
composite. This map, if not included in the image group, will not be consid-
ered for the image statistics. The monitor display becomes divided into three
parts. In the upper right corner, you see the image. In the lower right corner,
zoomed map portions will be displayed when using the “ZOOM” function. In
the left section of the monitor, histograms for the selected training areas for
all channels will be displayed. The training areas can be digitized by using
the “DEFINE REGION” and the “DRAW REGION” buttons. When digitizing
using the mouse, a vector line is drawn around the first training area. Keep in
mind that the training area should cover a unique land use. To close the drawn
polygon use “COMPLETE REGION” and leave the “DRAW REGION” menu
with “DONE”. An example screen is shown in Figure 9.17. To verify the clus-
ter statistics, click on “ANALYZE REGION”. Now the i.class module will
search for spectral signatures based on the current training area within the im-
age. The resulting histograms are shown in the left column of the monitor. The

250 OPEN SOURCE GIS

next step is to determine the class assignment to the image — the spatial dis-
tribution of the current spectral signatures can be overlayed as filled polygons
with “DISPLAY MATCHES” (you can select a color for the area). If desired,
the standard deviation can be set to a different value (“SET STD DEV’s”).
This way, you can try to improve the cluster statistics and display the matches
again. After displaying the matching areas, you are asked whether to accept
this signature. If yes, you can specify a “Signature description” in the terminal
window for this spectral signature. You can then continue to digitize the next
training area. With some experience, you will become familiar with the con-
cept of this module. Please note that the vector lines of the digitized training
areas are not stored. See the next paragraph for an alternate approach based on
retrieving training areas from auxiliary maps.

To obtain good results, you should not digitize border pixels of any land
use patch because such pixels often contain mixed spectral signatures. It is
also important not to digitize very small areas since these will be ignored for
statistical reasons (i.class will print a warning message accordingly). Once
you leave this module, the generated spectral signatures will be stored.

The spatial assignment of the data set pixels to the classes is done with
i.max1lik. Specify the file generated by i.class as the “Result signature
map”. The other settings are the same as described in the previous section.
Finally, the reclassification map and the “Reject threshold map” are created.

Generating training areas from auxiliary maps. When additional maps
with information about the current land use are available, they can be used to
extract training areas. It is also useful to digitize training areas independently
from i.class and store them in a separate map for later use/verification.

For raster maps, r.mapcalc (if-conditions) will be useful, for vector maps
it will be the v.extract module. If training areas need to be digitized from a
map, v.digit can be used (see Section 6.1.2). After digitizing, vector areas
have to be converted with v.to.rast to a raster map. It is very important that
the training areas are assigned a vector label, for example, within v.digit.
Otherwise unlabeled areas will not be converted by v.to.rast. It is also
possible to digitize from a raster image with r.digit.

The training map in the raster model is input for i.gensig. This module
creates a signature file using the training area statistics similar to i.class.
The spatial assignment of the pixels is subsequently handled by i.max1ik.

Partial supervised reclassification. The partial supervised reclassification
is similar to the above-described unsupervised reclassification. The differ-
ence lies in the incorporation of training areas, which have to be defined
prior to the application of i.cluster using i.class or i.gensig. Af-
ter preparing spectral signatures from training areas, the clustering mod-

Satellite image processing 251

ule i.cluster is started and the “Result signature file” is generated with
i.classor i.gensigis used as “Seed signature” for i . cluster. Finally
the 1 .max1ik is used to generate the reclassification map and “Reject thresh-
old map”. Beyond this step the procedure is the same as for the unsupervised
classification.

Also, in the reverse order, the hierarchical classification is a way to derive
thematic maps from satellite data. Based on an unsupervised reclassification,
potential training areas are identified and stored in a map. This map is a basis
for a supervised reclassification as shown above. As signature files can be used
across the modules, better results are eventually achieved through an iterative
approach rather than a straight-forward classification.

9.8.3 Supervised combined geometric and radiometric
reclassification

GRASS provides an additional sophisticated supervised reclassification
tool. The algorithm is a combined radiometric/geometric reclassification
method which is called “SMAP — sequential maximum a posteriori - estima-
tion”. Unlike the pixel-based approach described above, this method uses an
image pyramid approach which also takes neighborhood similarities into ac-
count (Schowengerdt, 1997:107, see also Ripley, 1996:167-168). This combi-
nation leads to a significant improvement of the reclassification results (Red-
slob, 1998). A second advantage is that the module also accepts a single chan-
nel data, so it can be used for image segmentation which we demonstrate later
in Section 10.4. The SMAP implementation module is i . smap.

The steps for a SMAP-classification are as follows. First the data set images
are joined into a group with i.group. Training areas have to be digitized
with v.digit, r.digit or generated from existing vector or raster maps.
The training areas map has to be a raster map. Note that the number of train-
ing areas defines the number of classes. Similarly to the other reclassification
methods, the training areas should cover several pixels; otherwise they will be
ignored if the pixel number is too small. The spectral signatures are generated
from the training map with i.gensigset. This module first queries the name
of the training map, then the group and subgroup names. The module creates a
“Subgroup signature file” which corresponds to the above mentioned “Result
signature file”.

From the spectral signatures, the supervised reclassification can be per-
formed with 1. smap. Again, group and subgroup have to be entered, followed
by the name of the recently generated “Subgroup signature file”. After this, the
computation will be started.

With a sufficient number of training areas, the results of this algorithm are
superior to the MLC. A comparison of SMAP, MLC, and the ECHO reclassifier

252 OPEN SOURCE CIS

(the latteris not implemented in GRASS) can be found in McCauley and Engel,
1995.

Summary of the standard reclassification techniques. As explained above,
GRASS provides several options to reclassify multispectral data. Table 9.1
summarizes the available main reclassification techniques.

radiometric, radiometric, supervised radio- and geo-

unsupervised metric, supervised
Preprocessing i.cluster i.class (monitor) i.gensig (maps) i.gensigset (maps)
Computation i.maxlik i.maxlik i.maxlik i.smap

Table 9.1. Classification methods in GRASS

NOTES

1 SAR User Guide from Alaska SAR Facility,
http://www.asf.alaska.edu/SciSARuserGuide.pdf
Remote Sensing Core Curriculum (RSCC),
http://www.research.umbc.edu/~tbenjal/umbc7/

santabar/rscc.html
ISPRS tutorial collection,
http://www.isprs.org/links/tutorial.html

2 Imagery data set, http://grass.itc.it/data,html

3 GLCF Maryland LANDSAT Data for Spearfish (SD) region,
ftp://ftp.glcf.umiacs.umd.edu/glcf/Landsat/WRS2/

p033/r029/

4 NHAP documents,

http://edc.usgs.gov/products/aerial /nhap.html

Xgobi/Ggobi software, http://www.ggobi.org

6 Atmosphere model 6S (Msix) software,
http://www-loa.univ-1lillel.fr/informatique/

system _gb.html

T Generating a surface temperature map from LANDSAT-TM7 channel 6, see
Landsat 7 Science Data Users Handbook,
http://landsat7.usgs.gov/resource.html

8 Asterweb (ASTER/TERRA), http://asterweb.jpl.nasa.gov

9}

Chapter 10

PROCESSING OF AERIAL PHOTOS

Aerial photography provides a common base for large scale mapping. It has
been widely used for creating and updating maps as well as for maintaining up
to date GIS databases. Aerial photos can be used to extract georeferenced data
representing topography, landforms, vegetation cover as well as man-made fea-
tures. Besides creation of thematic maps, area and distance measurements at
a large scale (in comparison to satellite-based methods) are often performed.
Digital processing of aerial photos in GRASS allows the user to incorporate
them into a GIS database. To minimize distortions, mainly displacement due
to relief and airplane attitude, orthophotos are generated from (scanned) aerial
photographs using a digital elevation model and a referenced map. They com-
bine the characteristics of an aerial photo with the geometric qualities of a map,
showing all objects in their precise geographic position.

In the first part of this chapter we introduce generation of orthophotos, in
the second part we explain image segmentation of aerial photos for land use
classification and edge detection.

10.1. BRIEF INTRODUCTION TO AERIAL
PHOTOGRAMMETRY

Before going into details of generating a digital orthophoto, we describe
the basic terminology used in aerial photogrammetry. Aerial photos are usu-
ally taken with overlap of around 60% for stereoscopic analysis; however, this
method is not covered here.

This chapter focus is on vertical aerial photos; however, a brief description
of oblique aerial photos processing is included in Section 10.3.3. The aerial
photo geometry is shown in Figure 10.1. Assuming that the aircraft which takes

254 OPEN SOURCE GIS

the photos moves (in the ideal case) over the target area without any deviation,
the plumb line from the camera will be perpendicular to the horizontal ground
plane. This case is called a true vertical image. The plumb line is also called
the optical axis. Up to deviation of 3° in each direction, the image is called a
tilted vertical image. If the inclination exceeds 3°, it is referred to as an oblique
image. The nadir (also called plumb point) is the point on the earth’s surface
(datum plane) which lies exactly below the recording camera. If a photo is
taken without deviations from the plumb line, then the nadir will be in the
image center (principal point).

Ifthe aircraft was tilted (oblique photo) then the principal pointis not identi-
cal with the nadir. The principal point is found by connecting opposite fiducial

lens

nadir distance L

projected. . -
_..nadir © -

fiducial mark

® principal point

%
Y
w

Figure 10.1. Aerial photo terminology (adapted from Neteler, 2000:178)

Processing of aerial photos 255

marks through lines, it is the point where these lines intersect. For oblique
photos the nadir is offset from the principal point, the angle between the two
being called the nadir-distance (see Figure 10.1). In such case the nadir can
be derived by connecting the alignments of vertical objects such as trees or
buildings.

A vertical aerial photo is in central projection. This projection can also
be assumed for the above mentioned slightly tilted vertical photos. There are
significant differences between an aerial photo and a map (which is in orthog-
onal projection). Because of central projection aerial photos are free from dis-
placements only in the nadir. Displacements increase from the nadir towards
the image edges (Hildebrandt, 1996:151), which requires ortho-rectification.
These displacements are intensified by uneven topography (see Figure 10.2) or
increased aircraft tilt.

Elements of an aerial photo. In an analogous aerial photo metadata are dis-
played in the annotation bar (instrument strip). It is usually a side bar that
includes information about the altimeter, aircraft attitude, watch, approximate
focal length and photo counter of the camera. The camera calibration certifi-
cate describes the calibrated focal length of the camera that was used to take
the photos. It also describes measured distortions within the camera, and the
center of symmetry, the principal point (PP). The provider of the photo should
be able to make this report available to the user. Ideally, the principal point
should fall directly on the intersection of the radii at the center of the picture,
which is usually not the case. The small deviation on the order of a few mi-
crometers is relevant for a precise orthophoto. Additionally, the fiducial marks
numbering scheme should be given in a diagram (Fig. 104 shows examples).

Orthogonal projection Central projection
image (aerial photo)
plane of projection

map plane plane of aerial photo

Figure 10.2. Terrain mapping to map plane (orthogonal projection) and aerial photo plane (cen-
tral projection) (adapted from Albertz, 1991). Objects are displaced in the aerial photo (right)
due to relief impact

256 OPEN SOURCE GIS

Only if the report is unavailable, standard camera parameters may be taken
from literature, if focal length or camera type are known (e.g. Hildebrandt,
1996:80).

Aerial photos and map scale. The averaged image scale my (or the image
scale number M) is elevation-dependent and can be calculated as follows:

Mthg (10.1)
1

The height above ground h, [in meters] is a function of the topography,
the terrain elevation above sea level has to be subtracted from the aircraft’s
recorded altitude above sea level. The focal length f of the camera is printed
approximated (in millimeters) on the aerial photo, or, preferred, given correctly
in the calibration certificate. The value must be changed to meters for the for-
mula above. M is the image scale number. The image scale m;, which we are
interested in can be derived from Equation 10.2. In general, higher terrain el-
evations within the aerial photo are recorded in larger scale than lower terrain
elevations (Hildebrandt, 1996:152). Furthermore, the horizontal displacement
depends on the elevation according to the central projection. Therefore, Equa-
tion 10.2 can be used to obtain only an averaged scale for the aerial photo.
During ortho-rectification, the displacements are eliminated as the terrain un-
dulation is taken into account.

The image scale is usually not constant over the covered area: If the aircraft
was horizontally tilted, then the image scale of the down-side (whose distance
to ground is decreased) will be larger than the scale of the up-side. Undulated
terrain adds further bias on the overall scale. If the terrain undulation covered
by the aerial photo is relatively small it is possible to use an unrectified aerial
photo for area or distance measurements. In such a case, minor distortions are
ignored (Bierhals, 1988:91). The unrectified photo can be used, if the elevation
range in this photo is less than 1/500 of the image scale number. For example,
if an aerial photo was taken at a average scale of 1:10,000, the photo may be
used unrectified if the elevation range does not exceed 20 m (10000/500=20).
Otherwise, an orthophoto should be generated as described below.

The earth’s curvature is another factor that affects aerial photos. It becomes
a relevant factor only for high altitude or orbit-based images (such as for im-
ages from the Russian KVR1000 or similar systems). Note that also shrinking
and stretching of film material may cause displacements as well as the usage
of a non-photogrammetric scanner.

Processing of aerial photos 257
10.2. FROM AERIAL PHOTO TO ORTHOPHOTO

To generate an orthophoto we need a digital elevation model (DEM) and
a topographic reference map. The elevation model is required to normalize
the terrain undulation. The raster resolution of the DEM should be similar to
the resolution of the aerial photo. Usually such high-resolution DEMs (raster
cell length below 1 m) are not available. Therefore, interpolation of a given
DEM to a higher resolution, as shown in Section 5.3.4 and Section 7.3.1, is
recommended to minimize displacement effects. The topographic reference
map is needed to find corresponding ground control points (GCPs) between
aerial photo and this map for geocoding. The map scale of the reference map
should at least match the average scale of the aerial photo (for example 1:5000),
but should be probably larger to provide more details for improved geocod-
ing accuracy. The ground control points are required to register the image xy
coordinate system to a georeferenced coordinate system (like UTM or Gauss-
Kriiger).

Metadata like time stamp, flight altitude above the sea level, tilt, and focal
length will be taken from the calibration certificate and the annotation bar. An
important requirement are the camera parameters.

In general “true” orthophotos and “pseudo” orthophotos are distinguished.
In true orthophotos all elevated objects such as building roofs are corrected
for their displacement due to the central perspective. This means that
displacement-corrected buildings are seen from above which leads to no-data
areas where the displaced roofs have been hiding the ground (on the build-
ings’ back sides as seen from the nadir of the aerial photo). To create true
orthophotos, you need an elevation model containing all individual building
heights. High resolution DEMs can be produced from stereo measurements
of the original aerial photo stereo pairs or from LIDAR flights which are done
to create surface elevation models (compare Section 7.3.4). Generally, pseudo
orthophotos are easier to generate since displacements of building roofs are not
corrected. The tilted views of buildings and other structures of notable height
remain unchanged so that the buildings’ sides remain partly visible.

10.3. ORTHOPHOTO GENERATION

For accurate measurements, image mosaics and cross-referencing photos to
other GIS data, it is necessary to generate orthophotos. The main features of
an orthophoto are:

m compensation for the tilt of the aircraft;

258 OPEN SOURCE GIS

s transformation of the central projection of the photo to an orthogonal pro-
jection including the correction of elevation-induced scale changes;

u if needed, orientation of the aerial photo towards north (rotation by 90°
or 270°), because imaging flights are mostly done in either east-west or
west-east direction, to minimize sun illumination effects.

10.3.1 Aerial photo and LOCATIONS preparation

If the aerial photo is available only on an analog medium, the diapositive, it
needs to be scanned using a (photogrammetric) backlight scanner. To change
a standard flatbed scanner to a backlight scanner a special device is necessary.
High quality is important to avoid the introduction of internal image distor-
tions.

The scan resolution during the scanning process determines the effective
ground resolution. The required value for the scan software can be calculated
from the averaged image scale (see above Equation 10.1). The scanning res-
olution is usually specified in dpi (dots per inch). The ground resolution R,
in relation to the photo map scale is derived from the scale number M and the
scanning resolution Ry (first considered in centimeter) as follows:

M

Rs(lines/cm] (10.3)

Rylem] =
For example, we have an aerial photo with the average scale 1:10,000. The
scale number is M = 10,000 cm accordingly. The desired spatial resolution on
ground R, for the aerial photo is 40 cm (raster cell width and length). After
rearranging the Equation 10.3, the scan resolution Ry which has to be defined
for the scanner software is calculated as:

. M

Rs[lmes/cm] = W (104)

10000 1

= =250—

40cm 2 cm

M cm

Rildpil = 2.54— 10.5
slapi] Rgy(cm] * in (10:5)

= 250- +2.54™ — 635dpi
cm n

In our example, the scan resolution has to be set to 635 dpi to obtain an average
ground resolution of 40 cm. It is important to know that a certain pixel reso-
lution does not allow to recognize objects of the same size. An object always
needs to be covered by several pixels to become recognizable.

Processing of aerial photos 259

Another decision has to be made about the desired color depth, e.g. whether
256 or more colors should be used. The amount of required disk space is
increased accordingly; a standard aerial photo scanned at 1200 dpi with 24 bit
color depth will need more than 300 MB per image. Once the scan procedure
is done, an image processing software (e.g. gimp) should be used to ensure
that the bright fiducial marks within the fiducial marks are well visible. A
zoomed fiducial mark is shown in Figure 10.3. These marks are crucial for the
image-rectification task. This test of visibility can be used to define the lowest
acceptable scan resolution. While verifying the fiducial marks, it is useful to
zoom-in and denote the parameters from the photo’s annotation bar: aircraft
altitude, (calibrated) focal length and the timestamp.

Generation of the georeferenced target LOCATION. In the process of or-
thophoto generation, the scanned and imported aerial photo is ortho-rectified
into a georeferenced LOCATION. This LOCATION, containing the reference
map and the DEM, has to be created first. The default resolution should be
defined in respect to the final target ground resolution of the aerial photo(s).
Further details about defining a LOCATION are given in Section 3.2. As men-
tioned above, it may be necessary to interpolate the DEM to a higher resolution,
as shown in Section 5.3.4, in order to minimize unwanted displacements due
to DEM resolution problems. Before leaving the projected LOCATION it is
recommended to adjust the settings such as resolution and current region to the
desired resolution and coordinates to enable GRASS to store the orthophoto
accordingly.

Figure 10.3. Zoomed fiducial mark in an aerial photo. The center of the bright point within the
fiducial mark is used during the ortho-rectification process

260 OPEN SOURCE GIS

Creation of the xy LOCATION for the scanned aerial photo. You need to
restart GRASS to generate the xy LOCATION for the scanned aerial photo(s).
Multiple aerial photos can be imported into the same xy LOCATION. Be sure
to define the LOCATION large enough to hold the image(s). When importing
photos with r.in.gdal, this module optionally extends the current region if
needed (flag —e). The resolution is set to one pixel. Then you need to create
a separate image group for each aerial photo (see Section 9.3.2). Only in case
of multi-channel aerial photos you will add all channels in one group. For our
example, the xy LOCATION imagery is already available on the GRASS
Web site which we will use in this chapter.

10.3.2 Orthophoto generation from vertical aerial photos

The examples provided in this subsection are based on the aerial photos
available in the Imagery LOCATION. We will ortho-rectify the photo gs13.1
into the Spearfish LOCATION and also give additional tips for processing your
own data. For our example, the gs13.1 photo, it is important to have an
appropriate high resolution elevation model available in the Spearfish LOCA-
TION. To create it from the existing map elevation.dem, you may restart
GRASS with this LOCATION, zoom into Spearfish city (located north-west
in the Spearfish region) and set the raster resolution to 1m. Now interpolate
the elevation model elevation.dem to the new resolution within the current
region.

Start the generation of orthophoto by restarting GRASS and entering the
demo xy LOCATION imagery with your name as MAPSET. Then gener-

ate an image group aerial with i.group and select the photo gs13.1 as
member:

i.group group=aerial in=gsl3.1

The GRASS orthophoto module incorporates several photogrammetric
tools. After opening a GRASS monitor, it starts with:

i.ortho.photo

If you have already generated the group aerial, it will be automatically
loaded. Otherwise, enter the previously created image group containing the
aerial photo. Then you reach the main menu:

i.ortho.photo —- Imagery Group = aerial
Initialization Options:

1. Select/Modify imagery group
2. Select/Modify imagery group target

Processing of aerial photos 261

3. Select/Modify target elevation model
4. Select/Modify imagery group camera

Transformation Parameter Computations:

5. Compute image-to-photo transformation
6. Initialize exposure station parameters
7. Compute ortho-rectification parameters

Ortho-rectification Option:
8. Ortho-rectify imagery files

RETURN exit

We will use all menu items sequentially, except for menu item (6) which is re-
quired only for oblique aerial images (see Section 10.3.3) or for GPS-equipped
flights. It is possible to interrupt the procedure between the steps and continue
later; 1.ortho.photo will store all settings.

1. Select/Modify imagery group. You have already completed this task
when starting the module when you had to select a group. Check on top of the
menu in the terminal window whether the appropriate image group is selected.
If necessary, you can switch to another image group.

2. Select/Modify imagery group target. As a next step, the target LO-
CATION has to be selected. Enter the name of the projected LOCATION and
MAPSET. This menu item corresponds to the module i.target (as discussed
earlier in Section 9.4.1). For Spearfish enter spearfish as TARGET LOCA-
TION and your name as MAPSET (if that MAPSET does not exist, you can
use userl). To see a list of existing LOCATIONS or MAPSETs enter list
into the related line.

3. Select/Modify target elevation model. Specify the name of
the DEM which is stored in the target LOCATION. For Spearfish enter
elevation.dem or the recently interpolated elevation model at a higher res-
olution.

4. Select/Modify imagery group camera. We will now define camera spe-
cific parameters. If you previously defined a camera within this MAPSET, you
can load it. For our example, we enter the new name gscamera. Then the
following screen appears:

262 OPEN SOURCE GIS
Please provide the following information:

Camera Name DBA SYSTEMS CAMERA_
Camera Identification

Calibrated Focal Length mm.

Point of Symmetry: X-coordinate mm.
Point of Symmetry: Y-coordinate mm.

Maximum number of fiducial or reseau marks

oo O o

We enter the following parameters which belong to the photo gs13.1 (in
MAPSET userl you can find the camera parameters file gscam which be-
longs to the aerial photos gs13.1 and gs14.1):

Please provide the following information:

o +
Camera Name gscam
Camera Identification gs-vgcy.
Calibrated Focal Length mm. 152.41
Point of Symmetry: X-coordinate mm. 0
Point of Symmetry: Y-coordinate mm. 0
Maximum number of fiducial or reseau marks 8
o e +

Important parameters are the Calibrated Focal Length which is usually printed
on the aerial photo (or delivered along with the aerial photo in a calibration
report, for explanation see Section 10.1). The calibrated focal length is unique
for each camera. In our example, the “gscam” focal length is 152.41 mm. The
coordinates of the Point of Symmetry are kept zero since it is the origin for the
image coordinates. If the camera data sheet provides different values for the
Point of Symmetry than the ones provided by the manufacturer, they have to
be specified. The number of fiducial marks can be seen on the aerial photo
or taken from the photo accompanying camera description file. Four and eight
fiducial marks are common. After leaving this screen by <ESC><ENTER> the
screen for definition of the distances of the fiducial maps appears.

These distances are referring to the Point of Symmetry. The distance of the
bright point inside the fiducial marks with respect to the point of symmetry has
to be entered. The fiducial marks may be numbered as desired, but once de-
fined, the numbering sequence must be kept identical to avoid reference errors
from assignments of coordinates. If the calibration report defines the order, it
should be used. Examples of photos with four or eight fiducial marks are given
in Figure 10.4.

In a perfect 23 cm * 23 cm (9” = 9”) aerial photo, the distance of the bright
points is 113 mm from the point of symmetry. The distances depend on the
camera type and will be provided by the camera manufacturer. According to
the coordinate system, with its point of origin being set to the image center,

263

Processing of aerial photos

we define the following values for the gs13.1 aerial photo (all values are in
millimeters). You may start with the upper left fiducial mark (no. 1), the other
marks are numbered clockwise, until we reach the middle fiducial mark on the
left side (no. 8, compare Fig 10.4). The coordinates are entered accordingly:

Please provide the following information:

o +
Fid# Fid Id Xf Yf
1 1 -106.01___ 106.01__
2 2 0 106.01__
3 3 106.01__ 166.01__
4 4 106.01__ 0
5 5 106.01___ -106.01___
6 6 0 -106.01___
7 7 -106.01_ -106.01__
8 8 -106.01__ __ 0
Next: end___
o +

Now all required camera data are entered and we can go back to the main
menu.

5. Compute image-to-photo transformation. Now we will establish the
“interior orientation” of the image, which describes the relation between the
physical extent of the aerial diapositive (in millimeters) and its pixels. The
coordinate system is centered between the fiducial maps on the photo. The
fiducial marks coordinates (as listed in the above table) are assigned to the
fiducial marks in the image. This is done graphically in the GRASS monitor

w - | w - |
O @ &) = ® =
{0 J io
i RO + of i BO + og
i ——1| | e
20 £0
‘ i
ﬂ ®] 5\ ®
g |y I 5 O i ©|

Figure 10.4. Fiducial marks in aerial photo. Left a variant with four fiducial marks, right a

variant with 8 fiducial marks. The contents of annotation bar depend on the camera type

264 OPEN SOURCE GIS

by mouse. It is important to refer the table entries carefully to the zoomed
centers of the fiducial mark. Small deviations may case large errors in the
“exterior orientation” that will be established later.

If the GRASS monitor is not open, you need to exit i.ortho.photo,
open a monitor, and restart the i.ortho.photo module. After selecting this
menu entry (no. 5), the aerial photo has to be selected in the monitor. The list
of fiducial marks will be automatically displayed. The orthophoto module now
expects the assignment of the fiducial coordinate points to the fiducial marks
in the image by digitizing.

Using the “zoom” function, enlarge the first mark (mark 1 in the upper left
corner of the gs13.1 photo), until the bright point is visible as composed from
multiple pixels. Generally, if no bright point is visible, the scanning resolution
was set too low and you will have to start again from scratch by rescanning the
aerial photo. In our sample data, the quality of the photo gs13.1 is unfortu-
nately very low, the fiducial marks in the corners are very difficult to identify.
For now you may guess their position — this photo is from 1971, nowadays im-
ages are of course of much better quality. The center of the bright point within
the enlarged fiducial mark is digitized using mouse by clicking into it. Then
the related entry (row) in the fiducial marks table must be selected by double
clicking on it. Now both image and fiducial marks coordinates are also shown
in the terminal window. The marker in the GRASS monitor will turn to green
color once the control point is accepted. This procedure has to be done for all
fiducial marks.

The menu item ANALYZE in the monitor allows us to verify the digitizing
accuracy. The RMS-error should be less than half pixel size. A misplaced
point can be deactivated through a mouse double click on the corresponding
control point in the ANALYZE table. This fiducial mark must then be re-
digitized again. Once all fiducial marks have been successfully assigned to
table entries, select QUIT to go back to the i.ortho.photo main menu.

We skip the menu step 6 as it is only needed for rectifying oblique aerial
photos as described in Section 10.3.3.

7. Compute ortho-rectification parameters. Now we define the “exterior
orientation” which relates the aerial photo to the target coordinate system us-
ing ground control points. Reasonablerectification results can be obtained with
around twelve control points well distributed over the image. The related ele-
vations, which are crucial for the creation of an orthophoto, are automatically
read from the elevation data raster map that we have chosen earlier. To start,
select again the aerial photo in the GRASS monitor for display. Then click
on the “Plot Cell” entry and into the right part of the monitor to display the
reference map. For the example session, you may again select the map roads.

Processing of aerial photos 265

Similarly to i.points, the corresponding control points are digitized by
zooming into a map portion and digitizing the GCPs using mouse both in the
aerial photo and in the reference map. When a ground control point pair has
been marked in both the aerial photo and the reference map you have to confirm
this with a new mouse click (left button: y, right button: n) as explained in the
terminal.

Recommended control points are road intersection centers and the centers of
objects (buildings etc.). However, be careful when using buildings. An aerial
photo will show both the roof and the bottom of a building. Due to the central
perspective in the unrectified image only the footprints of buildings may be
used, not the displaced roofs. If you want to create a true orthophoto instead
of a pseudo orthophoto, the DEM needs to contain the building heights. In this
case, the building roofs have to be geocoded, so that both the buildings lower
and upper edges are georeferenced.

When more than four GCPs have been digitized, their accuracy can be ver-
ified using the ANALYZE menu item. It displays a table of all control points
with their RMS error. Each error value is calculated for the control points from
the current transformation equations (depending on the camera type, etc). The
value is computed for the target LOCATION, so it is given in the projection
units of the target LOCATION (usually meters). If a control point appears
heavily deviated according to the transformation equations, the row will be
shown in red color. Such a control point can be deactivated by double clicking
the entry in the ANALYZE table. The total RMS-error is acceptable if it is less
than half target resolution of the aerial photo, e.g. below half a meter. Note that
the RMS error significantly depends on the digitizing accuracy of the fiducial
marks (see above, menu no 5).

If GCPs have been measured by other means, e.g. using a GPS, these co-
ordinates should be entered. Each ground control point is marked within the
aerial photo and then “KEYBOARD” is selected as an “input method” instead
of the default “SCREEN”. When sufficient number (twelve or more GCPs well
distributed over the image) of ground control points have been digitized, you
can leave the GCPs identification mode with “QUIT” and return to the main
menu.

8. Ortho-rectify imagery files. Finally, the ortho-rectification process of
the aerial photo can be performed by selecting the menu item (8). Enter a new
name for the target orthophoto, in our example we will choose gs13. If several
aerial photos have been stored in the image group (menu item (1)), they will
be all listed here (e.g., multiband aerial photos). Because the defined control
points are valid only for the current aerial photo, a new name for the target
LOCATION for this photo will be entered here. After leaving this screen, the
transformation equations are internally generated (“Computing equations...”).

266 OPEN SOURCE GIS

Then another query follows: Selecting “1. Use the current window in the target
location” will start the rectification based on the settings in the target LOCA-
TION. Selecting “2. Determine the smallest window which covers the image”
allows us to override the settings in the target LOCATION from here, due to
the image size and boundaries. The pre-defined values in this screen result
from the current aerial photo and the ortho-rectification parameters. Eventu-
ally, the ground resolution should be modified to appropriate values and the
photo boundaries should be extended to appropriate rounded coordinates.

GRASS will send an email when the rectification process is completed and
the new orthophoto generated. Meanwhile, you can exit GRASS and perform
other tasks on the computer. Once the email arrives, GRASS can be started
with the target LOCATION to view and verify the new orthophoto. An overlay
with the reference map will show the quality of the rectification.

10.3.3 Generating orthophotos from oblique aerial photos

The procedure is similar to the one described in Section 10.3.2, but we insert
an extra step to take into account the flight and aircraft position parameters,
that are needed to generate orthophotos from oblique aerial photos. This step
is added after the computation of image-to-photo transformation.

6. Initialize exposure station parameters. In this step, the flight path pa-
rameters such as the aircraft tilt and crab, and the camera coordinates and alti-
tude above sea level have to be defined (to be taken from aerial photo auxiliary
data). The following three values for the camera position have to be specified
(for an example see below):

s X: East aircraft position;
® Y: North aircraft position;
m Z: Flight altitude above sea level

Further the (approximate) tilt of the aircraft has to be specified. This is
defined by the angles Omega (roll), Phi (pitch), Kappa (yaw). They represent
(see Fig. 10.5, Hildebrandt, 1996:149, Schowengerdt, 1997:95):

s Omega (roll): Raising or lowering of the wings (turning around the air-
craft’s axis);

s Phi (pitch): Raising or lowering of the aircraft’s front (turning around the
wings’ axis);

& Kappa (yaw): Rotation needed to align the aerial photo to true north: needs
to be denoted as +90° for clockwise turn and -90° for a counterclockwise
turn.

Processing of aerial photos 267

Yaw
\L_/'
E————
-~ Pitch

Figure 10.5. Attitude angles of an aircraft

Since Omega and Phi could only be guessed from the aerial photo’s annotation
bar (if present), approximate angles can be used. Only GPS-supported flights
can provide these data accurately.

Then default values for the ortho-rectification calculations have to be en-
tered, to provide initial values for the internal iterative computations. Appro-
priate value can be derived from the RMS-error. In our example, we set all X,
Y and Z to 10m. The question “Use these values at run time? (1=yes, 0=no)”
we use “17:

Please provide the following information:

o +
Initial Camera Exposure X-coordinate Meters: 593933__
Initial Camera Exposure Y-coordinate Meters: 4926053__
Initial Camera Exposure Z-coordinate Meters: 12192
Initial Camera Omega (roll) degrees: 0
Initial Camera Phi (pitch) degrees: 0
Initial Camera Kappa (yaw) degrees: -90
Apriori standard deviation X-coordinate Meters: 10

Apriori standard deviation Y-coordinate Meters: 10
Apriori standard deviation Z-coordinate Meters: 10
Apriori standard deviation Omega (roll) degrees: 0.01__
Apriori standard deviation Phi (pitch) degrees: 0,01_
Apriori standard deviation Kappa (yaw) degrees: 0.01___

Use these values at run time? (l=yes, 0=no) 1

Now the oblique camera position and additional initial parameters are defined,
and we return to the main menu and continue with the step “7. Compute ortho-
rectification parameters” and the subsequent procedure as described in the sec-
tion above.

268 OPEN SOURCE GIS

104. SEGMENTATION AND PATTERN RECOGNITION
FOR AERIAL IMAGES

Aerial photos can be used for land use/land cover classifications similarly
as the satellite data. However, because often only a single channel is available,
either in black-and-white, in visible colors or in the infrared spectral range,
the reclassification of aerial photos is different from satellite images. Image
segmentation is a method for semi-automated feature extraction, such as the
land use/land cover classes or edges from remote sensing data. A segmentation
algorithm is implemented in the SMAP module i.smap which we already
introduced in Section 9.8.3 for multi-channel satellite data.

The SMAP algorithm exploits the fact that nearby pixels in an image are
likely to belong to the same class. The module segments the image at various
scales (resolutions) and uses the course scale segmentations to guide the finer
scale segmentations (image pyramid). In addition to reducing the number of
misclassifications, the SMAP algorithm generally produces results with larger
connected regions of a fixed class which may be useful in numerous appli-
cations. The amount of smoothing that is performed in the segmentation is
dependent on the behavior of the data in the image. If the data suggest that
the nearby pixels often change class, then the algorithm will adaptively reduce
the amount of smoothing. This ensures that excessively large regions are not
formed. The SMAP segmentation algorithm attempts to improve segmenta-
tion accuracy by segmenting the image into regions rather than segmenting
each pixel separately.

The size of the submatrix used for segmenting the image has a principle
function of controlling memory usage; however, it can also have a subtle effect
on the quality of the segmentation in the SMAP mode. The smoothing param-
eters for the SMAP segmentation are estimated separately for each submatrix.
Therefore, if the image has regions with qualitatively different behavior, (e.g.,
natural woodlands and man-made agricultural fields) it may be useful to use a
submatrix small enough so that different smoothing parameters may be used
for each distinctive region of the image.

Generating a training map. The module i.smap runs with single im-
ages as well as multispectral images. The raster polygons resulting from the
segmentation process may be vectorized later with r.poly. To reclassify,
i.smap requires a training map containing spectral signature. This training
map contains numbered raster polygons which cover selected areas with ho-
mogeneous land use/land cover. The pixels inside a training area are consid-
ered to be spectrally similar. The training map is analyzed by i.gensigset
which generates statistical information from the input aerial image based on the

Processing of aerial photos 269

training map. The training map can be digitized (r.digit or v.digit with
v.to.rast subsequently). The image statistics derived by i.gensigset
is input to i.smap. As opposed to the Maximum Likelihood Classifier algo-
rithm which operates pixel-wise, the SMAP also considers spectral similarities
of adjacent pixels. The module i.smap expects the aerial image listed in an
image group and subgroup.

If the aerial photo is a color image, it may be analyzed in three channels.
During import, a 24 bit aerial color image can be split into the red, green and
blue channels. Also black-and-white images can be roughly split into three
pseudo-color images with r.mapcalc (# operator, see Section 5.2). The
operator can be used to either convert map category values to their grey
scale equivalents or to extract red, green, or blue components of a raster map
layer into separate raster map layers. The # operator has three forms: r#map,
g#map and b#map. These extract the red, green, or blue pseudo-color compo-
nents in the named raster map, respectively. For example,

.region rast=gsl3

.mapcalc "gsl3.r=r#gsl13"
.mapcalc "gsl3.g=g#gsl13"
.mapcalc "gsl3.b=bfigs13"

.rgb b=gsl3.b g=gsl3.g r=gsli3.r

Q8 8 K Q

results in three pseudo-color channels which may be used for the segmenta-
tion. However, when working with 24bit images, the information contents is
certainly higher.

Sometimes it is useful to generate and additionally use synthetic channels
for the classification. For example, the module r.texture creates raster
maps with textural features from image channels. The textural features are cal-
culated from spatial dependence matrices at 0, 45, 90, and 135 degrees within
a given moving window. For details, please refer to the related manual page.

A sample segmentation session. A sample segmentation procedure for the
aerial image gs13 which was previously ortho-rectified into the Spearfish LO-
CATION may be performed as follows:

g.region rast=gsl3
i.group group=segment subgroup=segment in=gsl3

#digitizing training areas such as fields, forest, roads etc,
#save as map "training":

r.digit

d.rast training

#generate class statistics from training map:
i.gensigset training gr=segment sub=segment sig=smapsig

270 OPEN SOURCE GIS

#run segmentation:
i.smap gr=segment su=segment sig=smapsig out=gsl3.smap
d.rast gsl3.smap

#vectorization and visual./report of land use/land cover map:
.poly ~1 in=gsl3.smap out=gsl3.smap

v.support gsl3.smap

d.vect gsl3.smap

v.report gsl3.smap type=area units=h

~

Depending on the training map, the result can be a vectorized land use/land
cover map. However, this map may contain a lot of spurious areas. These
can be filtered with the script r.reclass.area. As an example, only areas
greater than 0.25 hectares will be preserved (note, this script only operates in
georeferenced LOCATIONS):

r.reclass.area -g 0.25 gsl3.smap gsl3.smap.filt
d.rast gsl3.smap.filt

The deleted areas are filled with NULL (no-data) values. To reassign values
to these NULL cells, we can use a mode filter which replaces the NULL cells
by the dominating land use value in the 3x3 neighborhood. The mode filter is
implemented in r.neighbors:

#mode filter to replace NULL cells:
r.neighbors gsl3.smap.filt out=gsl3,smap2 method=mode size=3
d.rast gsl3.smap?Z

#vectorization:

r.poly -1 in=gsl3.smap2 out=gsl3.smap2
v.support gsl3.smap2

d.rast gsl3

d.vect gsl3.smap2 col=yellow

#area report:
v.report gsl3.smapZ2 type=area units=h

We have now the land use/land cover map available as raster and vector map
layers. Special care has to be taken for shadows resulting from sun which may
either be treated as a special class or reduced by image pre-processing.

Chapter 11

NOTES ON GRASS PROGRAMMING

GRASS provides a unique opportunity to improve and extend GIS capabil-
ities by a new code development. The GNU General Public License (GPL)
keeps the code as Free Software, while protecting the rights of the individ-
ual authors. Because the source code can be studied, modified and published
again, there is an ongoing exchange of knowledge, methods and algorithms
between GIS and software engineering experts.

To make the development of GIS tools more efficient, GRASS provides a
large GIS library with documented application programming interface (API).
The code is portable on numerous architectures and operating systems. The
available programming documents and an ongoing reorganization of the code
base will enable potential developers to better estimate the workload of adding
functionality to GRASS. At the time of writing this book the restructuring is
work-in-progress.

An important aspect of the GRASS development is the fact that the develop-
ers are advanced GRASS users who improve or extend the existing functional-
ity, based on the needs of their daily GIS use in production.

11.1. GRASS PROGRAMMING ENVIRONMENT

Important communication channel supporting GRASS development is the
“GRASS 5 developers mailing list”. Here advanced users exchange ideas and
discuss problems related to code development or bugfixes. As the source code
is managed in CVS (Concurrent Versioning System) the development is free
from personal constraints, and the core team members can submit changes at
any time. Write access to CVS is granted to those who contribute on a reg-
ular basis. The “GRASS Programmer’s Manual” is managed in CVS as well

272 OPEN SOURCE GIS

and updated regularly. The access to the full source code, either as a released
package, or as a weekly CVS snapshot, or directly extracted from CVS, allows
the developers to study the code structure of a full featured GIS. We will de-
scribe the general code structure of GRASS 5.3 in greater detail below. Note
that the code structure for GRASS 5.7 is different and more standardized. Fig-
ure 1.1 at the beginning of the book in Section 1.2 shows the current GRASS
Development Model.

11.1.1 GRASS source code

The complete GRASS source code is available on the GRASS Web sites.
Those who want to participate in the ongoing source code development of
GRASS should learn more about the “GRASS-CVS”. This electronic man-
agement tool (CVS: Concurrent Versioning System!) for the source code is
used in GRASS development since December 1999. The idea of CVS is to
enable the developers to have direct read/write access to the GRASS source
code for independent development. CVS supports the centralized management
of GRASS development, as the developers work on a single code base with
restricted write, but public worldwide read access. You can find more infor-
mation about this topic on the GRASS Web servers. Another advantage is
that the CVS client minimizes data transfer after an initial download: during
a subsequent synchronization of the local GRASS source code copy with the
centralized CVS server (“cvs update” command) only new code changes are
transferred through network.

CVS snapshots which cover the latest development are generated on a
weekly basis and made available in a package for download. This is useful
for skilled users who do not want to learn CVS but who would like to fol-
low the latest development. However, knowledge about how to compile source
code packages is required.

To compile the source code, first download either an officially released
source code package, or the “GRASS CVS snapshot”, or the latest source code
directly from CVS. Read the REQUIREMENTS.html file provided with the
source code as well as the INSTALL file to make sure that you have all the
necessary libraries installed on your system. After extracting the code (not
needed when directly accessing the CVS server), the compilation is done with
three steps:

./configure <parameters>
make
make install

Note that the configure script may expect parameters depending on your
local installation of required libraries. Please refer to the INSTALL file within
the source code for further details and explanations.

Notes on GRASS programming 273

11.1.2 Methods of GRASS programming

GRASS 5.3 is written in ANSI C programming language. Additionally,
UNIX Shell scripts and a few PERL scripts are implemented. The current
graphical user interface tcltkgrass is based on Tcl/Tk libraries, the nviz
visualization tool includes OpenGL function calls. The command line parser is
part of the GIS library, but it was extended to print the module descriptions (as
shown with help parameter) in XML. A simple automatic wxPython GUI
builder based on the XML-based GRASS user interface descriptions along
with a Document Type Definition (DTD) is implemented. Also a preliminary
GRASS/JAVA interface has been implemented for GRASS 4.x and is currently
undergoing a major update to current GRASS. However, there are a few more
ongoing GRASS/JAVA projects linked to the GRASS Web site, see also Sec-
tion 2.1.2 for references.

The modular concept of GRASS provides huge potential for development.
Two basic levels of programming are supported apart from the standard use.
Average users will use “script programming” to simplify repeating processes,
while advanced users can extend existing code or develop new modules based
on the C-APL

For script programming, there are no general limitations. After setting the
specific environment variables as discussed below, more or less any UNIX
compliant script language can be used. UNIX shell and PERL scripts are
already implemented, also Web-based technologies such as Common Gate-
way Interface (CGI), Hypertext Preprocessor (PHP) and others are applicable.
Writing of customized scripts is supported by the availability of numerous im-
plemented scripts (stored in $GISBASE/scripts/) which can be studied and
adapted. The advantage of scripts is that they may utilize other UNIX tools
such as awk, sed, or cut. If you are familiar with the command line usage
of GRASS, it resquires only a small step to start writing your own scripts. To
write Web-based applications such as developing a “remotely controlled” GIS
which dynamically generates Web map pages will certainly need more time.
Besides functionality, issues like software ergonomy, speed, and security will
play an important role. In Section 13.4 we will demonstrate a simple example
how to publish GRASS raster data with a fast Web mapping server.

We can only provide few introductory notes about GRASS C-programming
because this book does not intend to replace a general C-programming tutorial.
Our objective is to depict the current source code structure to guide newcomers
within the huge code base.

11.1.3 Level of integration

There are different levels of integrating new or external functionality into
GRASS. We can distinguish between:

274 OPEN SOURCE GIS

®» links to external software:

— loose coupling: linking other GIS to GRASS via data exchange through
shared data formats (e.g. using GRASS in a heterogeneous network
such as Linux/Samba/MS-Windows along with proprietary GIS soft-
ware);

— tight coupling: direct access to GRASS LOCATION through “libgrass”
(e.g. toread maps from a LOCATION directly with UMN/MapServer);

» full integration: modification/extension of GRASS functionality (e.g. writ-
ing new code in C, JAVA, UNIX Shell, PERL, etc., such as gstat and the
GRASS/R interface).

In the following sections we provide several examples of scripts and programs
illustrating the possibilities for extending GRASS capabilities. To improve
legibility, we have typeset these scripts and programs in a language-sensitive
formatting. You can download the larger scripts explained in this chapter from
the Internet.”

11.2. SCRIPT PROGRAMMING

UNIX Shell and PERL scripts can be used to automate procedures which
are repeatedly performed for different maps. The standard GRASS installation
provides a set of scripts which, from the user’s side, mostly behave like mod-
ules programmed in C language. The major drawback is that scripts run slower
than compiled implementations. Scripts are stored as ASCII files. Because the
GRASS modules can be called within the scripts, complex applications can be
developed. When writing such a script for the first time, it is useful to perform
the task by running the commands step by step in command line mode. Then
the UNIX history command allows you to view and save the previously en-
tered commands. Another option is to use the UNIX script program which
logs a session into a text file.

As a simple example, we write a script d. rast . region which first adjusts
the current region settings to the map which is given as parameter, and then
displays the map:

#1/bin/sh

#

This program is Free Software under the GNU GPL (>=v2).
Adjust the current region settings to a raster map

specified as parameter, then display the map

Notes on GRASS programming 275

if test "SGISBASE" = ", then
echo "You must be in GRASS to run this program."
exit

fi

#map name is first parameter:
MAP=$1

#zoom:

g.region rast=SMAP

#erase monitor and display map:
d.erase

d.rast $MAP

The first line is mandatory for UNIX Shell scripts. After performing a test
to ensure that the script is executed in GRASS environment, the first param-
eter given on command line is stored into a script-internal variable. GRASS
modules are then used to perform the desired task. The map name is stored
in the new variable $SMAP. It is a good programming practice to use easy to
understand variable names and to document the functionality step-by-step. It
is also important to set the proper file permissions after storing the script into
file d.rast.region:

chmod a+x d.rast.region

The script may be stored in the directory $GISBASE/scripts/ or in a
special directory which has to be defined by the environmental variable
SGRASS ADDON PATH before starting GRASS itself. This allows you to keep
your scripts and modules physically separated from the standard GRASS. The
path(s) defined in SGRASS ADDON_ PATH are added to the modules search
path during startup.

The next example, demonstrating the potential of script programming,
slightly extends the GRASS functionality by introduction of the awk tool. This
script calculates general geostatistical information for raster images (adapted
from Albrecht, 1992). You may save this script as statistics.sh and set
the UNIX execute permissions:

#1/bin/sh
This program is Free Software under the GNU GPL (>=v2).
calculate univariate statistics for GRASS raster data

if test "SGISBASE" = ""; then
echo "You must be in GRASS to run this program."
exit

fi

276 OPEN SOURCE GIS

MAP=$1
r.stats —1 $MAP | awk 'BEGIN {sum = 0.0 ; sum2 = 0.0}
NR == 1{min = $2 ; max = $1}

{sum += 81 ; sum2 += $1 * $1 ; N++}

{

if ($1 > max) {max

if ($1 < min) {min

}

§1}
§1}

END {
print "Number of raster data samples N =",N
print "Minimum value MIN =",min

print "Maximum value MAX =", max

print "Variation v =", {(max — ((min * -1) * -1))
print "Mean MEAN =", sum / N

print "Variance S2 =", (sum2 - sum * sum / N) / N

print "Standard deviation S =", sqgrt{(sum2 - sum * sum/N) / N)

print "Variation coeffic. V =",100* (sqrt ((sum2 - sum*sum/N) /N)) \
/ (sum/N)

}l

This script must be used from inside GRASS. The name of the input raster map
is specified as a parameter. Within this script the output of the GRASS module
r.stats is piped to the program awk. The statistical calculations are done
within awk, and the results are printed out. A modified version of the above
script, r.univar, is provided with GRASS.

The next script example calculates the center of gravity of an area (area
centroid). You can use it to find the center of gravity of a region defined
by a watershed boundary. The script requires a watershed map generated
by r.watershed. Internally, all basins except the watershed of interest are
masked out with r.mask. You can save the following script as a text file
r.centroid:

#1/bin/sh

#

This program is Free Software under the GNU GPL (>=v2).
Calculate centroid of raster area (center of gravity)

#

#Parser definitions:

#%Module

#% description: Calculates centroid of raster area (center of gravity)
#%End

#%option

#% key: map

#% type: string

#% gisprompt: old,cell,raster

#% description: raster input map

Notes on GRASS programming 277

#% required: yes

#%end

#%option

#% key: areanumber

#% type: integer

#% description: number of area for centroid calculation
#% required: yes

#%end

if test "SGISBASE" = ""; then
echo "You must be in GRASS to run this program."
exit 1

fi

eval ‘g.gisenv'
. ${GISBASE?} ${GISDBASE?} ${LOCATION_NAME?} ${MAPSET?}
LOCATION=$GISDBASE/$LOCATION_NAME/$MAPSET

if ["$1" |= "@ARGS_PARSED@"] ; then
exec $GISBASE/etc/bin/cmd/g.parser "S0" "S@"
fi

MAP="$GIS_OPT_map"
ARFEANO=$GIS_OPT_arecanumber

here we go for centroid calculation:
centroid is defined as

N

xc = I/A * SUM (xdi * al)

i=1]

#

M

yec=1/A*SUM (yi * al)

i=1

with

N: total number of cells in x direction

M. total number of cells in y direction

x_i: distance of cell center from left boundary
y.i: distance of cell center from upper boundary
a_i: area of ith cell

calculate area in square meters:

AREA='r.report —ghen $MAP u=me | sed —e "s/ //" |\
grep " | SAREANO|(." |\
cut —d’ |’ —f4]| awk /' {printf "%.2f", $1}'°

#is area not present in map’?
if { | $AREA] ; then
echo "ERROR: Selected area $AREANO not found in map $MAP."

278 OPEN SOURCE GIS

exit 1
fi

determine current resolution and LOCATION units:
EWRES=‘awk ’ /e-w/ { print $3}’ $LOCATION/WIND'
NSRES=‘awk ’ /n-s/ { print $3}’ $LOCATION/WIND'
if [—f $SLOCATION/. /PERMANENT/PROJ_UNITS] ; then
UNITS='cat $LOCATION/../PERMANENT/PROJ_UNITS |\
awk ’ /units:/ {print $2}"°
clse
UNITS="cellunits"
fi

echo "Area of basin SAREANO: $SAREA meters”™2"
echo "Current cell resol. [SUNITS]): EW: SEWRES, NS: $NSRES"

#set MASK 1o get only selected area:
g.rename rast=MASK,$TMPMASK 2> /dev/null
r.mapcalc MASK="1if ($SMAP == $AREANO)"
echo "Showing selected area. . ."
d.rast $MAP
echo "Calculating x_min and x_min of area. . ."
#calculate x_min
XMIN="r.stats —1gng $MAP |cut —d * ’ —fl | awk 'BEGIN{min = 0.0}
NR == 1{min = $1}

{if ($1 < min) {min = $1}}
END{print min}’’

#calculate y_min
YMIN="r.stats —1gnq $MAP jcut —d * ¢ —f2 | awk 'BEGIN{min
NR == 1{min = $1}
{if (81 < min) {min = $1}}
END{print min}’*

I
o
o

echo "Calculating centroid. . ."
calculate x_c:
r.stats —1gng $MAP |cut —d’ 7 —fl | awk 'BEGIN({
sum = 0.0 ; calc = 0.0 ; xmin2 = 0.0
ewres = '$EWRES’ ; nsres = ' $NSRES’
xmin = "$XMIN’ ; area = '$AREA’)
NR == 1{xmin2 = xmin * 1.0}
{calc = ($1 - xmin2) * ewres * nsres}
{sum = sum + calc}
END{printf "Center of gravity x_c: %$.2f\n", sum/area + xmin2}’

calculate y_c:
r.stats ~1gng $MAP [cut —d’ * —f2 | awk 'BEGIN({
sum = 0.0 ; calc = 0.0 ; ymin2 = 0.0

Notes on GRASS programming 279

ewres = '$EWRES’ ; nsres = ' $NSRES’
ymin = ‘$YMIN’ ; area = '$AREA’)}
NR == 1{ymin2 = ymin * 1.0 }
{calc = ($1 -~ ymin2) * ewres * nsres}
{sum = sum + calc}
END{printf "Center of gravity y_c: %.2f\n", sum/area+ymin2}’

#restore old MASK, if present
g.remove MASK > /dev/null
g.rename rast=$TMPMASK,MASK 2> /dev/null

This script shows how UNIX commands and GRASS modules can be linked.
It also provides a simple parser (through g.parser), so the script will both
run both in the command line mode, and, when started without parameters, in
interactive mode. The first test checks if the module is started within GRASS,
and exits if it is not. The usage description is stored in a function to save space
within the script and to improve the legibility.

With g.parser a simple parser is provided to query input maps. Here a
raster map such as a watershed or other raster area map are of interest. The
module checks if the user requested the module help description or otherwise
accepts the first parameter as raster file name. Then the ID number of the raster
polygon is checked (which might be queried with d.what . rast earlier). This
is followed by the centroid calculation according to the centroid formula. The
calculation requires the area of the current raster polygon which is retrieved
from r.report. Additionally the current resolution is needed. In case that
MASK is present, it will be saved and later restored. This is necessary, as
the area of interest has to be selected inside the input raster map with a new
MASK. To see the r.centroid script operating on Spearfish region data,
you may run:

#calculate watershed (minimum area size: 1000 cell units):
g.region rast=elevation.dem -p

r.watershed elevation=elevation.dem basin=basins threshold=1000
d.rast basins

#calculate area and centroid coordinates for watershed no. 42:
r.centroid map=basins areanumber=42

display centroid of watershed no. 42,

coordinates from above r.centroid:

echo "593934.29 4918883.74 42" | s.in.ascii sites=grav_center
d.sites grav_center col=red

Generally you may face the problem that a script is not working as ex-
pected. To identify problem(s), you can add printing of variable contents

280 OPEN SOURCE GIS

with echo $VARIABLE. An alternative, recommended method to debug shell
scripts is to start them with —x flag. This will switch the shell into an echo-
mode:

sh -x r.centroid map=basins areanumber=42

This will echo every line in the terminal window which simplifies error identi-
fication.

Further scripts are described in Albrecht, 1992 and Shapiro and Westervelt,
1992. Plenty of scripts to learn from are included in GRASS (from inside
GRASS change to $GISBASE/scripts/).

11.3. AUTOMATED USAGE OF GRASS

Due to the modular character of GRASS a monolithic “GRASS program”
does not exist. In fact GRASS is a collection of modules which are run in a
special environment. The structure allows GRASS to be completely controlled
from outside through scripts.

GRASS in batch mode. The usage of GRASS in batch mode requires setting
of some environment variables, which can be also done manually or in scripts.
An example in “bash-shell” style may be as follows:

echo "LOCATION_NAME: spearfish" > $HOME/.grassrcs
echo "MAPSET: userl" >> $HOME/ grassrcs
echo "DIGITIZER: none" >> $HOME/.grasstcs
echo "GISDBASE: /usr/local/share/grassdata" >> $HOME/ grassrcs
echo "GRASS_GUT: text" >> $HOME/.grassrcs

export GISBASE=/usr/local/grass53
export GISRC=$HOME/ grassrc5
export PATH=$PATH:$GISBASE/bin:$GISBASE/scripts

After setting these variables, the environment is defined and all GRASS
modules can be used. Note that GRASS 5.3 allows the user to run only a
single session at a time. Otherwise region setting conflicts may arise. However,
the user can work in multiple session in the same LOCATION, when using
different MAPSETs. The module-specific environment variables are further
explained in the software documentation, check with:

g.manual env_vars

Notes on GRASS programming 281

Once the minimum number of environment variables has been set, GRASS
commands can be integrated into shell, CGI, PERL, PHP and other scripts.
A CGl-based example to build a mapping server on top of GRASS is
“SlideLinks™ on Internet which also integrates PHP and a PostgreSQL
database management system for landslide inventory. From time to time it
is recommended to remove temporary GRASS files by:

$GISBASE/etc/clean_temp

Automated generating of a LOCATION from external raster data. A
nice application for running GRASS in batch mode is the automated gener-
ating of LOCATIONs from external GIS raster data. We use r.in.gdal
for this purpose as the module supports many formats and it can also read
projections from metadata if provided:

#!/bin/sh
This program is Free Software under the GNU GPL (>=v2).
create a new LOCATION from a raster data set

#variables to customize:
GISBASE=/usr/local/grass53
GISDBASE=/usr/local/share/grassdata
MAP=$1

LOCATION=$2

#nothing to change below:

if [$# -t 2] then

echo "Script to create a new LOCATION from a raster data set"
echo "Usage:"

echo " create_location.sh rasterfile location_name"

exit 1

fi

#generate temporal LOCATION:
TEMPDIR=$%.tmp
mkdir —p $GISDBASE/$TEMPDIR/temp

#save existing SHOME/.grassrc5
if test —e $HOME/ grassrc5 ; then
mv $HOME/.grassrc5 /tmp/$TEMPDIR.grassre5

fi

echo "LOCATION_NAME: STEMPDIR" > $HOME/. grassrc5
echo "MAPSET: temp" >> $HOME/.grassrc5
echo "DIGITIZER: none" >> $HOME/.grassrcS
echo "GISDBASE: $GISDBASE" >> $HOME/.grassrc5

export GISBASE=$GISBASE
export GISRC=$HOME/.grassrc5
export PATH=$PATH:$GISBASE/bin:$GISBASE/scripts

282 OPEN SOURCE GIS

import raster map into new location:
r.in.gdal —oe in=3MAP out=$MAP location=$LOCATION
if [$? —eq 1] ; then
echo "An error occured. Stop."
exit 1
fi

#restore saved $HOME/.grassrc5
if test —f /tmp/$TEMPDIR.grassrc5 ; then

mv /tmp/$STEMPDIR.grassrc5 $HOME/.grassrc5
fi

echo "Now launch GRASS with:"
echo " grass53 $GISDBASE/SLOCATION/PERMANENT"

In case that no projection information is found in the raster data set, you
may use g.setproj to later store the projection information. Note that
g.setproj does not reproject any data. The above script accepts only raster
data sets. Because a general import tool for vector data does not yet exist in
GRASS 5.3 (but in GRASS 5.7), the script for the same task based on vec-
tor data would require vector import modules and a format detector based on
file extensions. Another approach would be to query the data format as addi-
tional third parameter. In this way the script can be extended into a general
LOCATION creation and import script.

Another method to launch GRASS directly without manually specifying the
names of LOCATION, MAPSET and DATABASE is:

grassb3 /usr/local/share/grassdata/spearfish/userl

This is only successful if the LOCATION and MAPSET exist.

11.4. NOTES ON PROGRAMMING GRASS MODULES
INC

This section explains the GRASS code organization for a user with basic
C language programming knowledge. While we cannot explain GRASS pro-
gramming within this book, we provide a brief introduction to the huge code
base. GRASS provides an ANSI C language API with several hundred GIS
functions, from reading and writing maps to area and distance calculations for
georeferenced data as well as attribute handling and map visualization. All
important aspects of GRASS programming are covered in the “GRASS 5.3
Programmer’s Manual” (available from the GRASS Web site). To understand
the usage of the GRASS API it is helpful to explore the existing modules. The

Notes on GRASS programming 283

general structure of modules is similar, with each module stored in a directory
of the GRASS source code. You can find further useful tips for GRASS pro-
gramming style as well as recommendations to avoid portability traps in the
file SUBMITTING. This file is included in the source code.

It is important to know that the GRASS modules are linked against an inter-
nal “front.end”. The “front.end” module will call the interactive version of the
command if there are no command-line arguments entered by the user. Other-
wise, it will run the command-line version. If only one version of the specific
command exists (for example, if there is only a command-line version avail-
able) the existing command is executed. Code parameters and flags are defined
within each module. They are used to ask user to define map names and other
options.

GRASS source code structure. The GRASS 5.3 source code structure is as
follows:

8 GRASS GIS library (only the most relevant components are listed):

- src/CMD/ # internal scripts for compilation

- src/include/ # header files

- src/libes/ # GIS library routines

- src/display/devices # display and file drivers

- src/fonts/ # character fonts

- src/front.end/ # internal routines for the
interactive mode of modules

s Modules (standard tree):

- src/display/ # modules for displaying maps in the
GRASS monitor

- src/general/ # file management modules

- src/imagery/ # image processing modules

- src/mapdev/ # vector modules

- src/misc/ # miscellaneous modules

- src/paint/ # paint driver (PPM)

- src/ps.map/ # postscript driver

- src/raster/ # raster modules

- src/scripts/ # scripts

- src/sites/ # sites modules

- src/tcltkgrass/ # Tcl/Tk GUI

- html/ # modules descriptions

m Contributions form various institutions (additional contributions are in the
standard tree):

- src.contrib/
a Modules with linked simulation models and various interfaces:

- src.garden/

284 OPEN SOURCE GIS

Note that this structure is subject to change in future releases.

The “GRASS programming library” (C API) is structured as follows (typ-
ical function name prefixes for related library functions are listed in squared
brackets):

s GIS library: database routines (GRASS file management), memory man-
agement, parser (parameter identification on command line), projections,
raster data management etc. [G]

m vector library: management of area, line, and point vector data [Vect |,
V2 ,dig |

a image data library: image processing file management [I_]

a site data library: site data management [G _sites]

s display library: graphical output to the monitor [D_]

= raster graphics library: display raster graphics on devices [R_]
s segment library: segmented data management [segment]

m vask library: control of cursor keys etc. [V_]

m rowio library: for parallel row analysis of raster data [rowio]

Modules consist of one or more C program files (x.c), the local header files
(*.h) and a Gmakefile. GRASS 5.3 is provided with its own “make” rou-
tine: gmake53. The file Gmakefile contains instructions about files to be
compiled and libraries to be used (GRASS and UNIX libraries). The GRASS
libraries are predefined as variables. The structure of Gmakefile follows spe-
cial rules. A simple example illustrates a typical Gmakefile (it is important
to generate indents with <TAB>, not with blanks!):

PGM=i.sat.reflectance
HOME=$(BIN_.CMD)

LIBES= $(IMAGERYLIB) $(GISLIB) $(VASKLIB) $(VASK)
DEPLIBS=$(DEPIMAGERYLIB) $(DEPGISLIB)
OBJ = main.o\

open.o\

almos.o\

sun_pos.o\

correction.o\

histogram.o\

history.o

Notes on GRASS programming 285

$(HOME)/$(PGM): $(OBJ} $(LIBES)
$(CC) $(LDFLAGS) —o $@ $(LIBES) $(MATHLIB) $(XDRLIB)

$(LIST): global.h

$(IMAGERYLIB): #
$(GISLIB): #
$(VASKLIB): #

The line $ (HOME) /$ (PGM) . .. and the following line contain compiler in-
structions. Above this line several variables are set which contain library
names, the name of this GRASS module and the target directory for storing
the compiled code. Numerous variables used here are pre-defined in:

src/CMD/head/head. $ARCH

The variable SARCH is extended by the name of the system’s architecture on
which GRASS is compiled (e.g. head.i686-pc-1linux-gnu). This “head”
file is created depending on the platform by configure script, which has to
be run before a first compilation of GRASS. It contains information related to
the compiler, paths to local libraries and include files etc. The other internal
variables are defined in

src/CMD/generic/make.mid

These settings should be kept unchanged.

It is a good programming practice to subdivide a C program (here a GRASS
module) into several files, organized by functionality. All these files have to
be listed in the objects list in the Gmakefile. GRASS GIS library commands
can be used in the source code when the code is linked against the related
libraries. A short example of a raster module (file main.c):

/%
* This program is Free Software under the GNU GPL (>=v2).
* Conversion of LANDSAT-TM5 DNs to at-sensor radiances
*/

#include <stdio.h>
#include <string.h>
tinclude <math.h>
#include "gis.h"

int main(int argc, char *argv[])
{

CELL *cellbuf;

DCELL *result_cell;

286 OPEN SOURCE GIS

int nrows, ncols;
int row, col;
char *groupname;
int fd;
struct GModule *module;
struct
{
struct Option *group;
} parm;
struct
{
struct Flag *quiet;
} fNag;

module = G_define_module();
module—>description = "Module to convert LANDSAT-TMS "
"digital numbers to at-sensor radiances";

parm.group = G_define_option();

parm.group—>key = "group";

parm.group—>type = TYPE_STRING;

parm.group—>required = YES;

parm.group—>description = "Imagery group of images to\
be converted";

flag.quiet = G_define_flag();
flag.quiet—>key = " q’;
flag.quiet—>description = "Run quietly™";

G_gisinit (argv[0]);

if (G_parser(argc,argv))
exit(—1);

groupname = parm.group—>answer;

/* function defined in other file */
open_file(groupname, fd);

nrows = G_window_rows();

ncols = G_window_cols();

cellbuf = G_allocate_raster_buf(CELL_TYPE),
result_cell = G_allocate_raster_buf(DCELL_TYPE);

/¥ go row wise and col wise through image */
for (row = 0; row < nrows; row++) /* rows loop ¥/
{

/* read integer satellite channel */

G_get_raster_row (fd, celibuf, row, CELL_TYPE);

for (col = 0; col < ncols; col++) /% cols loop */

Notes on GRASS programming 287

{

/* the formula is defined in another file: */
result_cell[col] = calc_new_pixel(cellbuf);
} 7* end cols loop ¥

G_put_raster_row(fd, result_cell, DCELL_TYPE);
} 7* end rows loop */

G_close_cell (fd);
return O;

The calculation is done row-wise and column-wise (see “for” loop). This draft
program illustrates only the general structure of GRASS code, for copyright
reasons it is not a real GRASS program. Please refer to the GRASS source
code for the real world implementations.

Future of GRASS programming. At the time of writing this book an initial
GRASS 5.7 version providing the new 2D/3D vector engine was published.
The developments for GRASS 5.3 will be shifted to GRASS 5.7. Migration
of the code to the new code repository will be accompanied by a major code
cleanup. Besides a more standardized code structure the code spread in var-
ious modules will be organized into new library functions. Existing library
functions will be examined for consistency, and if needed, functions perform-
ing similar tasks will be merged. Also, at the module level, merging of mod-
ules with similar functionality will be done. In general the goal is to provide a
well defined, layered GRASS model with GRASS-Core, providing all library
functions, GRASS-Base, providing basic modules for importing, exporting,
displaying and basic manipulation of spatial data sets and extended GRASS
packages including specialized add-on packages for image processing, hydro-
logic modeling, volume data management and analysis, etc.

GRASS intends to be a general purpose GIS. The new GRASS 5.7 version is
a major step to develop areliable, intuitive to use, flexible GIS in terms of Free
Software. Skilled users are invited to participate in it’s further development.

NOTES

1 CVS software, http://www.cvshome.org

2 GRASS Tutorials Web site,
http://mpa.itc.it/grasstutor/

3 SlideLinks — GRASS Web server,
http://gisws.media.osaka-cu.ac.jp/slidelinks/

Chapter 12

USING GRASS: APPLICATION EXAMPLES

In this chapter, we explain the practical use of GRASS using examples in
the area of natural resources. First, we illustrate simple modeling using the
Spearfish data set. More complex application is included in the section fo-
cused on land use management. To save space, we use the command line
mode throughout this chapter; however, the same tasks can be performed by
accessing the commands using the TclTk interface or an interactive mode (see
Section 3.1.3).

12.1. WORKING WITH DIGITAL ELEVATION
MODELS: EROSION RISK ASSESSMENT

In this section, we will use topographic analysis and map algebra to find
locations with high erosion rates. To compute simplified erosion risk maps,
we can use the widely accepted Universal Soil Loss Equation (USLE), modi-
fied for complex terrain (see Mitasova et al., 2001). It is often referred to as
USLE3D or the updated RUSLE3D. The general formulation for both USLE
and RUSLE is defined as follows:

A = RKLSCP (12.1)

where A is average annual soil loss in ton/(acre.year)=0.2242kg/(m?.year),
R is rainfall factor in (hundreds of ft-tonf.in)/(acre.hr.year)=17.02
(MJ.mm)/(ha.hr.year), K is soil erodibility factor in (ton acre.hr)/(hundreds
of acre ft-tonf.in)=0.1317(ton.ha.hr)/(ha.MJ.mm), LS is a dimensionless to-
pographic (length-slope) factor, C is a dimensionless land cover factor, and P
is a dimensionless prevention measures factor. The major difference between
USLE and RUSLE is in the values of these factors and the methodology for

290 OPEN SOURCE GIS

their derivation (you can download the field-based RUSLE and its documenta-
tion from Internet'). USLE was originally designed for uniform planar fields
with slope steepness and slope length estimated in the field. It has been shown
that the standard form of the LS factor can be modified to better express the
influence of complex terrain (Moore and Burch, 1986, Mitasova et al., 1996,
Desmet and Govers, 1996, Moore and Wilson, 1992). The modified factor,
representing topographic potential for erosion at a point on the hillslope, is a
function of the upslope area per unit width and the slope angle:

LS=(m+1) (2;]—1> (%’:)—g) (12.2)

where U is the upslope area per unit width (measure of water flow) in meters
(m?/m), B is the slope angle in degree, 22.1 is the length of the standard USLE
plot in meters and 0.09 = 9% = 5.15° is the slope of the standard USLE plot.
The values of exponents range for m = 0.2 — 0.6 and n = 1.0 — 1.3, where the
lower values are used for prevailing sheet flow and higher values for prevailing
rill flow. When nothing is known about the type of flow, m = 0.4 and n =
1.3 are usually used (see RUSLE for ArcView?®). We will derive the required
parameters using the data available in our Spearfish data set.

12.1.1 Computation of the LS factor

We start GRASS typing grass53 and select spearfish and userl for
LOCATION and MAPSET. By running g.list rast we can see that we
have some elevation data, as well as the soil and vegetation map layers that we
need for estimation of erosion risk.

First, we compute the LS factor using the older 30 m resolution DEM
elevation.dem, as both upslope area and slope are derived from a DEM.
To make sure that our data are not inappropriately resampled, we set the region
to the one defined by the elevation map layer. We can then compute the flow
accumulation and slope as follows:

.region -p rast=elevation.dem

.flow elevation.dem dsout=flowacc.30m

.slope.aspect elevation.dem slope=slope.30m aspect=aspect.30m
.rast flowacc.30m

.rast slope.30m

[N o TR o B A S te]

Note that r.flow creates a special non-linear color table for the flow accu-
mulation map layer so that the spatial pattern of flow is visible both on the
hillslopes, where the values are very low, and in the valleys, where flow accu-
mulation can be several magnitudes higher.

Using GRASS: Application Examples 291

LS

38

25

Figure 12.1. LS factor computed at a) 30 m resolution using the original Speafish integer DEM,
b) 15 m resolution using the re-interpolated floating point DEM, c¢) 10 m resolution using the
new USGS DEM from National Elevation Dataset. The center of this zoomed-in area is located
at -103.68632, 44.42721 longitude, latitude. White areas have high topographic potential for
erosion, dark grey areas are stable

When computing the LS factor, we multiply the flow accumulation by the
resolution to get the upslope contributing area per contour width (it is in fact
the flowline density multiplied by cell areain m? divided by cell width in m)
and calculate the Equation 12.2 using r.mapcalc:

292 OPEN SOURCE GIS

r.mapcalc "lsfactor.30m=1.4*exp (flowacc.30m*30./22.1,0.4)\
*exp(sin{slope.30m)/0.09,1.3)"

Before displaying the 1sfactor.30m map layer, we assign it a special color
table to account for its skewed distribution (similarly to flow accumulation):

r.colors lsfactor.30m col=rules
fp: Data range is 0.000 to 182.750
0 200 255 200

5 yellow

10 orange

20 red

50 magenta

400 black

end

VvV V.V V V V Vv

d.rast 1lsfactor.30m

Because this is a floating point map representing a continuous field, the colors
smoothly change between the defined color values. The first color is light
green, defined as RGB (see Chapter 8). The last black color is defined for a
value higher than the maximum LS factor, so that the map color for the highest
LS factor is darker magenta. It also makes the color table usable for map layers
with a greater range of values than we have in 1sfactor.30m that we will
compute later. When we display the map, we can see that we have a substantial
area with zero topographic factor for erosion (Figure 12.1). This indicates that
the vertical precision the DEM (given as integer values in meters) may not be
adequate.

Re-interpolation of DEM. We will try to improve the representation of to-
pography by re-interpolating the DEM from 30 m resolution integer z-values
to 15 m resolution floating point z-values. While the re-interpolated DEM
does not include more information than the original elevation data, its digital
representation is improved by removal of the flat areas and “steps” due to the
integer representation, by better description of “curved” terrain features such
as valleys and shoulders through a finer grid. We will use the RST method (see
Section 7.3.2, Mitas and Mitasova, 1999) for re-interpolation. Note that this
step is not necessary ifthe DEM already has adequate resolution and precision.

We will base the re-interpolation on random points generated from the orig-
inal integer DEM. First, make sure that the region (extent and resolution) is the
same as the original elevation map by running g.region. Then, sample the
existing DEM with 100,000 random points (you can use r.info to find the
number of cells in your DEM and then choose about 1 point for 2-3 cells):
g.region rast=elevation.dem -p

r.info elevation.dem
r.random elevation.dem nsites=100000 sites_out=elev30.sites

Using GRASS: Application Examples 293

Next, change the resolution to 15 m and interpolate the newly created sites
map layer using s.surf.rst with lowered tension and increased smoothing
parameter to reduce the impact of “steps” and noise in the low elevation areas
(see Section 7.3.2 for more details on parameters for spline interpolation). Be-
cause we will also need slope angle, we add the computation of topographic
parameters to the interpolation. Finally, we add the UNIX & symbol to make it
run in the background, because interpolating a 932 x 1266 grid will take some
time:

g.region -p res=15
s.surf.rst in=elev30.sites elev=elev.15m ten=30 smooth=1.0\
slope=slope.1l5m aspect=aspect.l15m &

We can now use this re-interpolated and smoothed DEM to derive a new LS
factor:

r.flow elev.15m dsout=flowacc.15m

r.mapcalc "lsfactor.1l5m=1.4*exp(flowacc.15m*15./22.1,0.4)\
*exp(sin(slope.1l5m)/0.09,1.3)"

r.colors lsfactor.15m rast=1lsfactor.30m

d.erase

d.rast lsfactor.15m

To make the visual comparison with the 1sfac.30m easier, we have assigned
the new lsfactor.15m the same color table.

Recently, a new 10 m resolution DEM has become available for the
Spearfish area; it is included in the data set as elevation.1l0m. You can
set the region to the new DEM and compute the refined LS factor as follows:

.region -p rast=elevation.l1l0m

.flow elevation.10m dsout=flowacc.10m

.slope.aspect elevation.1l0Om slope=slope.l10m aspect=aspect.10m

.mapcalc "lsfactor.10m=1.4*exp(flowacc.10m*10./22.1,0.4) \
*exp(sin(slope.1l0m)/0.09,1.3)"

r.colors lsfactor.1l0m rast=lsfactor.30m

d.erase

d.rast lsfactor.10m

nviz elevation.l0m col=1lsfactor.1l0m

N B K Q

You can see much more detail in the resulting map, especially when displayed
in 3D using nviz (Figure 12.1). Noise has been greatly reduced, but there are
some waves along contours and local pits, typical for spline interpolation with
tension set too high (see Section 7.3). Unfortunately, USGS does not provide
details about the method used to create this new product.

Comparison of the 10 m, 15 m and 30 m resolution LS factors. The visual
comparison of the lsfactor.10m, lsfactor.15m, and lsfactor.30m
maps indicates that there is a larger extent of areas where LS = 0.0 in the 30 m

294 OPEN SOURCE GIS

resolution map than in the 15 m and 10 m resolution result (Figure 12.1). You
can run

d.rast lsfactor.30m val=0
d.rast lsfactor.1l5m val=0
d.rast lsfactor.10m val=0

to see the difference. To quantify it, we can compare the summary statistics for
the results by running r.univar. To make sure that the comparison is correct,
we apply MASK so that the NULLs present in 1sfactor.30m (due to the
NULLSs in the original DEM) are also counted as NULLs in 1sfactor.15m
and lsfactor.10m, (see Section 5.1.7 on how to apply a MASK):

g.region -p rast=lsfactor.30m
r.mapcalc "maskdem=if (elevation.dem,1)"
g.copy rast=maskdem, MASK
r.univar lsfactor.30m

[...]

Number of cells {(excluding NULL cells): 290123
Minimum: 0

Maximum: 182.7502010664

Range: 182.75

Arithmetic mean: 6.90423

Variance: 63.3764

Standard deviation: 7.96093

Variation coefficient: 115.306 %

g.region -p rast=lsfactor.l5m
r.univar lsfactor.1l5m

[...]

Number of cells (excluding NULL cells): 1169268
Minimum: O

Maximum: 279.8847366021

Range: 279.885

Arithmetic mean: 7.35935
Variance: 61.6206

Standard deviation: 7.84988
Variation coefficient: 106.665 %

g.region -p rast=lsfactor.10m
r.univar lsfactor.10m

[...]

Number of cells (excluding NULL cells): 2626610
Minimum: 0

Maximum: 274.7339156185

Range: 274,734

Arithmetic mean: 7.77852

Variance: 75.6691

Standard deviation: 8.6988

Variation coefficient: 111.831 %

Using GRASS: Application Examples 295

Note that you may get slightly different numbers for 1sfactor.15m because
your DEM will be re-computed from a different set of random points than the
one used in this book. The results show that the mean LS factor is lower for
the 30 m resolution, which was expected from the visual comparison. The
reinterpolation of the DEM to 15 m resolution brings the result closer to the
values derived from the new, more accurate 10 m resolution DEM. The dif-
ference in range is much larger; however, displaying the cells with values over
180 by d.rast lsfactor.15m val=180-280 reveals that the higher val-
ues are only present in very few cells (41 out of over 1 million). These are
mostly due to the fact that smoothing removed some of the smaller pits and
the flowlines are generally longer. To quantify the visible differences in the
extent of LS = 0.0 values and assess their impact, we extract them from the
lsfactor.30m, lsfactor.l5m, and lsfactor.l0m map layers using
r.mapcalc and compute their proportion with r.report:

g.region rast=lsfactor.30m
r.mapcalc "1lsfac0.30m=1if(lsfactor.30m==0.000,0,1)"
r.report -n lsfacO0.30m unit=p

[...1]
101 « o« 20.03]
e

g.region rast=lsfactor.15m
r.mapcalc "lsfac0.15m=if (lsfactor.15m==0.000,0,1)"
r.report -n lsfac0.15m unit=p

[...]
X -1

0 I Y ¢

g.region rast=lsfactor.1l0m
r.mapcalc "lsfac0.10m=if (lsfactor.1l0m==0.,000,0,1)"
r.report -n lsfac0.10m unit=p

[...]
0 T -

0 Xl

The new binary layers have 0 in those areas where the LS = 0.000 (with floating
point accuracy) and 1 everywhere else. You can see that there is a significant
difference in the spatial extent of zero areas between the original map (20.03%
) and the re-interpolated map (3.99%). Again, comparison with the percent
area with LS = 0.000 for 1lsfactor.10m (2.71%) demonstrates that reinter-
polation to 15m resolution brings the results much closer to the ones obtained
from more accurate 10m resolution DEM. You can also run d.histogram for
lsfactor.15m and lsfactor.30m and see how the lower values of erosion
are lumped into the zero LS factor when the original data were used. This is the
impact of insufficient vertical resolution, which causes the topography in low

296 OPEN SOURCE GIS

slope areas being represented by plateaus with zero slope. Using the result di-
rectly derived from the original DEM would have significantly underestimated
the spatial extent of area with topographic potential for erosion; therefore, we
will continue our computation and analysis using the lsfactor.15m map
layer.

If you display the LS values higher than 40.0 using:

d.rast lsfactor.15m val=40-400

you will see that these high values cover only very small, narrow areas with
concentrated flow. In these areas (hollows, upland valleys), values are substan-
tially higher than those typical for the traditional field application of USLE, be-
cause they indicate a risk for gully erosion, not modeled by traditional USLE.
You can also see that the mountains have the highest topographic risk of ero-
sion due to steep slopes and a high density of concentrated flow areas. How-
ever, the mountains have also the largest proportion of forest, so we will now
compute the full equation, including the cover factor C, to see how much the
forest cover compensates for the high topographic risk.

12.1.2 Estimating R, K, and C factors

The R factor is not spatially variable in our study area and we can use a
constant R = 65 (you can find the values in any USLE handbook or a related
textbook such as Haan et al., 1994). The soil erodibility factor K is already
included in the Spearfish data set as a raster map soils.Kfactor. You can
check its values by running r.report soils.Kfactor and you will see
that the K values are stored as category labels ranging from 0.10 to 0.43 for
categories 1 through 8.

The C factor is based on land cover. It can be derived from the 100 m resolu-
tion vegetation map vegcover by editing the category labels. A more detailed
C factor map can be created from the new 30 m resolution land cover map. It
has larger number of classes, so using r.recode will be more efficient. The
C-factor values for different types of land cover can be obtained from literature
(Haan et al., 1994).

When using the “category approach” (more typical for GRASS4.*, when
only integer values were allowed for raster map layers), copy the map
vegcover to cfactor.100 and modify the category labels:

g.copy vegcover,cfactor.100m
r.support

Enter name of raster file for which you will create/modify
support files

[...1

> cfactor.100m

Edit the header for [cfactor.100m]? n

Using GRASS: Application Examples 297

Update the stats (hist.,range) for [cfactor.l100m]? (y/n) [n] n
Edit the category file for [cfactor.100m]? vy

The current value for the highest category in ([cfactor.100m] is
shown below. If you need to change it, enter another value

Highest category: 6

Do not change the number of categories and proceed to the next step using
<ESC> <ENTER>. You can now change the TITLE and replace the category
labels representing the vegetation by the C factor values:

TITLE: Vegetation Cover
CAT NEW CATEGORY NAME

NUM
0 no data
1 irrigated agriculture
2 rangeland
3 coniferous forest
4 deciduous forest
5 mixed forest
6 disturbed

Retype the TITLE and labels to:

TITLE: C_factor
CAT NEW CATEGORY NAME
NUM

.0008
.0005
.0005

[o) @) I - VS I \ O R = o}
[l elleNolelNo N ol

Leave this screen with <ESC><ENTER>, and move on using <ENTER> on all
remaining questions. Now you have a C factor map with raster cells containing
the value of the category number and with each category labeled with C factor.
The P factor is not available, so we can assign it a value of 1.0 and ignore it in
our further computations.

Recently, USGS started to provide seamless National Land Cover Dataset
on-line, so it was possible to download a much more detailed, 30 m resolution
land cover map for Spearfish. We have included it in the Spearfish data set as
a raster map layer landcover.30m. You can use this map to create a refined
C factor layer by receding the land cover classes to C factor values as follows
(run r.report to see the land cover associated with each class):

This page intentionally left blank

298 OPEN SOURCE GIS

g.region -p rast=landcover.30m
d.erase

d.rast landcover.30m
d.rast.leg -n landcover.30m
r.recode landcover.30m out=cfactor.30m
> 11:23:0.:0.

> 31:32:0.8:0.8

> 41:41:0.0005:0.0005

> 42:42:0.0008:0.0008

> 43:43:0.0005:0.0005

> 51:71:0.001:0.001

> 81:81:0.01:0.01

> 82:83:0.2:0.2

> 85:85:0.001:0.001

> 91:92:0.:0.

> end

The individual categories are described in more detail in the metadata file pro-
vided with the land cover map; therefore, more accurate values of the C factor
can be assigned. To get a nice map, we define a special color table:

.colors cfactor.30m col=rules
0. blue
0.0005 0 180 O
0.0008 0 100 O
0.001 green
0.01 100 255 Q
0.2 orange

0.8 brown

1.0 black

end

V V V V V V V V VK

jo3

.rast cfactor.30m

You can compare the new C factor with the one derived from the 100 m reso-
lution vegcover data to appreciate the higher quality of the new data.

12.1.3 Computing and analyzing erosion risk

Finally, we can calculate the erosion risk for the given vegetation cover us-
ing r.mapcalc. In the map layers soils.Kfactor, cfactor.100m, we
use the representation of K factor and C factor as category labels and we have
to put “at” (@) in front of the map name so that r.mapcalc uses the category
labels instead of category numbers:

g.region -p rast=lsfactor.1lbm
r.mapcalc "erosion.l15m=65. * @soils.Kfactor\
* lsfactor.15m * @cfactor.100m"

Using GRASS: Application Examples 299

The resulting map layer represents soil erosion rate at the center of each grid
cell in ton/(acre.year). Note that GRASS has automatically resampled the
rasters representing the soils and the C factor from their original resolutions
(20 m and 100 m) to 15 m resolution. Because these two map layers represent
discrete homogeneous areas, identified by their integer category numbers (and
not continuous fields), such resampling is appropriate.

Similarly as for the LS factor, it is useful to define a special color table and
categories for the resulting map, while keeping in mind the skewed distribution
of erosion rates, with most areas within the low rates range and very few areas
in a large interval of high values:

.colors erosion.15m col=rules
0 200 255 200

1 yellow

5 orange

10 red

20 magenta

100 violet

1500 black

end

vV V V V V V V Vv R

d.rast erosion.15m
r.support

[...]

Edit the category file for [erosion.l15m]}? (y/n) [n] vy
There are no predefined fp ranges to label

Enter the number of fp ranges you want to label 0

Now type 7 over 0 followed by <ESC><ENTER>, and you will see the cate-
gory table with floating point ranges all set to zero. Overwrite the zeros with
your selected values and add the category labels:

The fp data in map erosion.15m ranges from 0.00 to 699.056291
[erosion.15m] ENTER NEW CATEGORY NAMES FOR THESE CATEGORIES
65.*@soils.Kfactor*lsfactor.15m*@cfactor.100m

TITLE: Erosion

FP RANGE NEW CATEGORY NAME

0 -1 stable

1 -5 low

5 -10 moderate

10 -20 high

20 -50 severe

50 -100 extreme

100 -1500 exceptional

Next range number: end__ (of 7)

<ESC><ENTER>

Category file for [erosion.15m] updated

300 OPEN SOURCE GIS

You can then run the histogram and report:

d.erase
d.histogram -C erosion.15m
r.report -Cn erosion.lbm unit=p,k

| Category Information | % | square |
| #ldescription | coverlkilometers|
st e e i |
0-1|stable 61.491161.694225]
1-511low. 15.14| 39.8088001

20-50]severe
50-100|extreme.
100-1500|exceptional.

7
5.22] 13.720500]
0.87| 2.282400]
0

i
e e e e e e .
5-10|moderate o 9.34} 24.571575]
|
|
[
| .37] 0.972675]

|
!
I
| 10-20lhigh .57 19.893375]
I
f
|

The report shows that in spite of the very high topographic erosion risk, most
of the Spearfish area is quite stable with over 76% area at relatively low erosion
risk. However, there is still about 15% area which has high potential for ero-
sion. You can find where those areas are and what their land use is by creating
a land cover map for hot spots using r.mapcalc:

.mapcalc "erosionrisk.veg=if (erosionl5.m>20.,vegcover,null{))"
.colors erosionrisk.veg rast=vegcover

.rast erosionrisk.veg

.legend -sm vegcover

[o RN O TR o B A

If erosion is above 20 ton/(acre.year), then the raster value from vegetation
map layer will be copied to the new raster, all other cells will be assigned
the NULL. The result is a land cover map for areas with high erosion risk
and NULLs elsewhere. You can see that the forest dramatically lowers the
erosion risk making the mountainous area mostly stable, except for areas with
rangeland. You can also compute statistics for your erosion.15m map layer:

r.univar erosion.l5m

[...]

Number of cells (excluding NULL cells): 1168638
Minimum: O

Maximum: 699.0562907236

Range: 699,056

Arithmetic mean: 5.02223

Variance: 211.117

Standard deviation: 14.5299

Variation coefficient: 289.311 %

Using GRASS: Application Examples 301

While the range of values is extremely high, the mean erosion for this area
is relatively low, confirming that the exceptionally high erosion risk applies to
only a very small number of grid cells (mostly disturbed areas on steep slopes
over 25°). Note that your numbers may be slightly different because of small
differences in DEM due to its interpolation from random sites and potential
future updates to the Spearfish data set.

To compute a more detailed and up-to-date erosion risk map, you can change
your region to the raster map lsfactor.10m and re-run the computation
using the LS factor and C factor based on the new data.

This example demonstrated an application of GRASS for regional scale nat-
ural resource management task by assessing erosion risk and identifying criti-
cal areas where land use change may be desirable.

12.2. GIS MODELING FOR LAND MANAGEMENT (1)

In this section you will be a GIS expert for a team preparing sustainable
land management plan for an experimental farm in Wake county, North Car-
olina. You will be asked to provide comprehensive geospatial support for your
colleagues who will be making decisions and creating plans for this area.

Our study location faces development pressures from the neighboring
metropolitan area. At the same time there is a strong support of the current
community for preserving open spaces and the rural character of the area. Wa-
ter from the farm goes to a water reservoir which serves as a backup for drink-
ing water for the neighboring city, making water pollution prevention a key
land management issue.

To fulfill this task you propose to do the following:

= Build a GIS database for the study area:

search the Internet, contact local agencies to find what data are avail-
able;

— decide which coordinate system will be used for the core LOCATION
used for modeling and analysis;

— set up the necessary LOCATION(s), import and project data to com-
mon coordinate system;

— evaluate the quality of data, identify missing information and needs for
additional mapping and/or monitoring together with other members of
the team;

s Analyze the data and derive additional map layers needed for the project:

-~ create raster DEM from contours, add buildings for 3D view;

302 OPEN SOURCE GIS

— derive slope, aspect, and curvatures describing the terrain geometry;
— delineate watersheds and flow related parameters;

— create high resolution land cover map;
m Analyze the current land use, identify potential problems and solutions:

— identify areas unsuitable for crop production;
~ find suitable locations for selected crops;

— evaluate erosion and sedimentation risks;

— assess need for conservation measures;

— evaluate the impact of potential development;
s Communicate the results: create maps, views and put data on-line.

While we cannot describe all these tasks in detail, we will show how to do some
of them and you can try to find out how to do the ones that sound interesting
by yourself.

12.2.1 Building the GIS database

Building the database is usually the most time consuming and sometimes
frustrating part of GIS work, no matter what kind of software you use. How-
ever, once the data are gathered and nicely integrated in a consistent manner,
the work with geospatial data may become quite exciting and rewarding. The
task of searching and acquiring the georeferenced data is becoming easier due
to the rapid development of WebGIS technology. For example, several data
sets needed for this project are available from the Wake county GIS site’. Our
study area is covered by tiles 0791 and 0792 that can be accessed directly from
the related Map Section.* We have downloaded the data from the Wake county
GIS and other sources, and prepared a ready to use database available from the
GRASS Tutorials Web site’ as wake spft new.tar.gz. After download-
ing and installing it (in a similar way as we did for Spearfish) we can start to
explore the data that are available.

First, we need to check the projection, units, and region that have been used
for the database:

g.projinfo

PROJ INFO file:

name: State Plane

datum: nad83

[...]

proj: lce

a: 0.63782064e+07

es: 0.6768657997291094e-02
x_0: 0.6096012192024384e+06

y_0: 0

Using GRASS: Application Examples 303

lon_0O: 79dw
lat_0: 33d45'n
lat_1: 36d10'n

lat_2: 34d20'n
PROJ_UNITS file:
unit: foot

units: feet

meters: 0.3048000000

g.region -p

projection: 99 (State Plane)

zone: 0

datum: nad83

ellipsoid: a=6378206.4 es=0.006768657997291094
north: 728002

south: 719500
west: 2089600
east: 2100604
nsres: 6
ewres: 6

rows: 1417
cols: 1834

Many counties in US still use feet for their GIS, so to minimize the need for
data projection, the database was set up in the State Plane NADS83 coordinate
system with feet as units. This will allow us to discuss some issues related
to the use of units different from meters in GRASS. Note that in GRASS 5.3,
information about the horizontal datum is included in the PROJ INFO file.

For our project, we will need the base map data such as elevation, surface
water (streams and lakes), roads, railroads, and land use/land cover. We may
also need thematic map layers important for land management, such as soils
or climate data. By running the g.1list command we can find out which data
layers are available and then evaluate whether they are suitable for our project.
We will now look at some of the given data in more detail.

Elevation. First, we explore the possibility of using the elevation data
elev.90ft from the USGS National Elevation Data set (NED) which merges
the best elevation data available into a seamless, approximately 90 ft (30 m)
resolution raster format. The data were downloaded from the USGS NED web
site in geographic coordinates and projected into the State Plane, feet coordi-
nate system. To evaluate the data quality, we compute and display the slope
and aspect and then view the data in 3D using nviz:

g.region rast=elev.90ft -p
r.slope.aspect elev.90ft slo=slope.90ft asp=aspect.90ft \
zfac=0.3048

304 OPEN SOURCE GIS

Figure 12.2. Sample from the USGS seamless National Elevation Data set (elevation map with
vector roads overlayed) showing insufficient resolution in our study area and overall variable
quality, revealed when viewing in nviz

d.rast aspect.90ft
d.rast slope.9%0ft
nviz elev.90ft

Using GRASS: Application Examples 305

When computing slope in a LOCATION with units set to feet, it is important
to use zfac=0.3048 to obtain the correct values of slope. GRASS internally
transforms the distance to meters and it is the user’s responsibility to trans-
form the elevation values to meters, too; otherwise, the slopes will be severely
exaggerated. The slope and aspect maps, as well as Figure 12.2 created with
nviz, show that in our study area, the NED elevation model has low reso-
lution, and within the region it has uneven quality. While this elevation data
would be appropriate for a regional scale study, they are not suitable for local
land management.

Wake county provides topographic data in the form of 2 ft contours as vector
data in ESRI SHAPE and EOO format upon request. We have acquired the data
and included them in the provided data set. To view the contours run:

g.region vect=lw_contour -p
d.vect lw_contour col=brown

The contours provide a detailed description of topography; however, for most
of our applications, we will need elevation data as a raster DEM. We will create
it using spatial interpolation in the next Section 12.2.2.

Recently, LIDAR-based elevation data became available for this area in the
form of bare ground point data, 20 ft grid and 50 ft grid with stream enforce-
ment. The data can be downloaded from the North Carolina Flood Mapping
Program®.

Roads, buildings, streams, soils. Additional vector data are line features
representing roads, streams and lakes and building footprints. We will display
them using d.vect:

d.vect lw_roads col=black
d.vect lw_hydro col=blue
d.vect lw_buildings col=grey

The soil data are available as a polygon map layer. After running v. support,
we transform them to a soil raster map at 6 ft resolution:

.erase
.vect lw_soil

.support -r lw_soil

.region res=6 vect=lw_soil -p

.to.rast lw_soil out=lw_so0il.6 row=2000
.rast lw_soil.é6

O Tt T S o %

We get a nice map; however, if we run r. report lw soil. 6 we can see
that the map includes only polygon numbers. To create raster maps with prop-
erties that we will need for modeling and analysis, we have to make a new copy

306 OPEN SOURCE GIS

of this map for each attribute and then copy its vector category file to the new
raster category file (see Section 4.2.1 and Section 5.1 for more details about
categories). You can check which attributes were included with the soil data
layer by listing the files in the vector categories subdirectory dig cats in the
related MAPSET directory:

1ls
lw_soil.awch lw_soil.laydepl lw_soil.phh
lw_soil.awcl lw_soil.layernum 1lw_soil.phl
lw_soil.bdh lw_soil.musym lw_soil.poly#
lw_soil.bdl lw_soil.omh lw_soil.surftex
lw_soil.compname 1lw_soil.oml lw_soil.texture
lw_soil.kfact lw_soil.permh lw_soil.wtdeph
lw_soil.laydeph lw_soil.perml lw_soil.wtdepl

The attributes are described in the NRCS documentation.” If you plan to do
substantial work with multiattribute data, it is worth considering the link with
databases such as PostgreSQL or another DBMS linked through the ODBC
interface. This functionality has been substantially improved in GRASS 5.7,
the development version. Here, however, we will work only with GRASS 5.3
tools.

To create a raster map layer with the names of soils using the category file
lw soil.musym, we run (from within the appropriate MAPSET directory):

g.copy rast=lw_soil.6,lw_soil.musym
cp ./dig_cats/lw_soil.musym ./cats
d.rast lw_soil.musym

r.report lw_soil.musym unit=a,p

A raster map layer for the K factor can be generated from 1w soil. kf act
file in a similar way:

g.copy rast=lw_soil.6,lw_soil.kfact
cp ./dig_cats/lw_soil.kfact ./cats
d.rast lw_soil.kfact

r.report lw_soil.kfact unit=a,p

If we need additional raster maps of soil properties, we just create a copy of the
raster lw_soil. 6 with the appropriate name and copy the relevant category
file to the raster cats directory as shown above.

Land cover. Land cover data are usually derived from satellite or aerial im-
agery. For our area, 50 ft (16 m) resolution Land use/Land cover (LULC) data
and 90 ft (30 m) resolution National Land Cover data are available. Both are
derived from satellite imagery for regional scale studies. They do not have the

Using GRASS: Application Examples 307

level of detail needed for local planning, for example, the individual fields or
service roads are not represented.

To get more detailed information about the land cover, we downloaded and
imported the 1 ft resolution Infrared Digital Orthophoto Quarter Quadrangles
(IR-DOQQ, from the Wake county GIS, see URL in Endnotes). The imported
images can be used to digitize the individual fields, roads, ponds and other
features and to create a high resolution land use map layer. We have imported
such a land use map as polygon vector data; you can display it and transform it
to a raster as follows (remember that you need to be in an appropriate MAPSET
directory to copy the category files):

d.vect lw_landcov

v.to.rast lw_landcov out=1lw_landcov

d.rast lw_landcov

g.copy rast=lw_landcov, lw_landcov.type_id

cp ./dig_cats/lw_landcov.type_id ./cats/lw_landcov.type_id
d.rast lw_landcov.type_id

r.mapcalc "lw_landcov.type=int (@lw_landcov.type_id)"
d.rast lw_landcov.type

We have created two raster maps for land cover. The values stored in
lw_landcov.type id are unique category numbers for each field, with
category labels representing a number associated with a particular land use.
This map can be used for creating new management scenarios by assign-
ing different types of crops or land use to the individual fields. Because
many fields have the same land use type, we have created a simplified raster
map lw_landcov.type using r.mapcalc. In this map, the values repre-
sent the land use type; we assign them description as a category label using
r.support. You can check the land use categories and their area as follows:

r.report lw_landcov.type unit=a,p

| Category Information | | % |
| #ldescription | acres| cover|
IRt et ettt |
| 1|water. | 0.213218] 0.09]
| 2|forest | 16.333529| 6.89]|
| 3fbuilding . | 2.715643| 1.15}
| 4|bare soil. | 0.782628| 0.33]
| 5lasphalt road| 2.603249] 1.10]|
| 6|lgravel road.+ .+ o o .| 3.309019} 1.40]
{ 7lgrapes { 1.065266} 0.45]
| 8Jagriculture. | 54.097169| 22.83]|
| 9lwetland. | 0.842130] 0.36]
|10ldirt road. | 0.354538| 0.15]
|lligrass. | 56.086382| 23.67|
| *Ino data. { 98.550746| 41.59]|

| TOTAL |236.9535171100.00|

308 OPEN SOURCE GIS

12.2.2 Deriving new map layers

The basic data sets provide foundation for the study of landscape, its prop-
erties, and spatial relations between its features. To analyze the landscape and
its processes, we need to derive additional map layers which provide informa-
tion about the landscape properties in the form needed for models and decision
making.

Computing the DEM and basic topographic parameters. While the con-
tour data are a standard for representation of topography on paper maps, spa-
tial analysis and modeling can be done more efficiently with a raster DEM. To
compute the raster DEM we can transform the points defining the contour lines
to sites and use s.surf.rst. It allows us to simultaneously compute the to-
pographic parameters slope, aspect and curvatures that we will need later both
for planning and modeling. First we set the region to our study area, defined
by the soil map layer, and the resolution to 6 ft, which is enough to capture the
roads and dams. Then we can try to run s.surf.rst with the default param-
eters and include the profile curvature in the output. As we have mentioned
in the Section 6.4.3, interpolation from contours often leads to a surface with
waves along contours. This can result, for example, in a false pattern of erosion
and deposition (see Mitas and Mitasova, 1999) and it is useful to check this by
displaying profile curvature along with contours as shown in the Figure 12.3.
.region res=6 vect=lw_soil -p

.to.sites —-ad lw_contour out=lw_contour

.info lw_contour

.surf.rst lw_contour elev=elev.6 pcu=pcurv.6 &

.rast pcurv.b
.vect lw_contour

Q0 v g\

As you can see, for this data set, the tension is too high and the curvatures
follow the pattern of contours (Figure 12.3). In some locations, we can even
see the triangles which were used to derive the contours. The geometry of the
resulting surface thus reflects the geometry implied by the distribution of data
points rather than real terrain. To minimize this bias we can lower the tension,
reduce the density of points, and introduce slightly higher smoothing:

s.surf.rst lw_contour elev=el.6t1l0 slope=sl.6t10 asp=as.6t10 \
pcu=pc.6t10 tcu=tc.6tl0 dmin=9 ten=10 smo=0.8 &

d.rast pc.6tl0

d.vect lw_contour

nviz el.6tld

We will lose some detail, but we will also reduce the artificial patterns, as you
can see by overlaying the profile curvature with contours. We can explore the
results by displaying the DEM in nviz and draping the computed topographic
parameters and contours over it.

Using GRASS: Application Examples 309

Figure 12.3. Interpolating DEM from contours: profile curvature displayed with input contours
a) tension is too high and the pattern of curvature follows contours, b) with lower tension the
pattern disappears

For some applications it is useful to create a DEM with buildings. We can
compute it using the building footprints which are available as vector data.
First, we need to transform them to raster and then we add their average height,
in our case 20 ft, to the DEM:

310 OPEN SOURCE GIS

.to.rast lw_buildings out=buildings

.rast el.6tl0

.rast -o buildings

.null buildings null=0

.mapcalc "elevbldg.6=if (buildings > 0, el.6t10+20, el.6t10)"
.mapcalc "elevbldgco.6=if (buildings > 0, -1, el.6tl0)"
.colors elevbldgco.6 rast=el.6t1l0

nviz elevbldg.6 col=elevbldgco.6 vector=lw_roads,lw_hydro

MR R R O Q<

Note that we had to convert NULLs in the buildings map to zeroes first
because NULLs override any other value when used in r.mapcalc expres-
sions (see Section 5.2). We have also created an additional raster to be used
for color and displayed it together with roads and streams in 3D using nviz
(Figure 12.4). The surface has the typical elevation color scheme with build-
ings displayed in white with grey shades. You can adjust the z-exaggeration
and light to enhance the 3D perception and save your view as a PPM, TIFF or
RGB image (see Chapter 8).

Topographic analysis. Topography has a profound influence on fluxes in
landscapes and is often a major factor in decisions related to land use. There-
fore map layers representing watershed boundaries and topographic parameters
(see Section 5.4) are used as the basis for selection of land management units,

Figure 12.4. High resolution DEM interpolated from 2 ft contours with buildings viewed in
nviz. Our practice area is in the west section

Using GRASS: Application Examples 311

placement of monitoring equipment, evaluation of suitability of the current
land use for existing topographic conditions and a number of other issues.

Local (point) topographic parameters. A number of parameters describing
the geometry of the terrain surface are needed as inputs for land use suitabil-
ity analysis and modeling of various processes. These parameters represent
measures of change in elevation (gradient) and measures of rate of this change
(curvatures) and are usually expressed as the following parameters (see also
Section 5.4.5 and the exact mathematical definitions and equations in the Ap-
pendix B.3):

m slope (steepest slope angle, magnitude of gradient);

= aspect (slope orientation, direction of gradient, steepest slope direction, di-
rection of flow);

s profile curvature (curvature in the direction of the steepest slope — perpen-
dicular to contour lines, convex curvature leads to accelerated and concave
to decelerated flow);

= tangential curvature (curvature in the direction of contour tangent — perpen-
dicular to the steepest slope direction, convex curvature leads to dispersal
and concave to convergent flow).

It is possible to define a number of additional parameters (see, for example
the module r.param.scale), however, for most applications only slope and
aspect is needed.

We have already computed these parameters simultaneously with inter-
polation using v.surf.rst, and we have used the profile curvature to
look for artificial patterns in the DEM (Figure 12.3). We have also used
r.slope.aspect to derive slope and aspect from the USGS NED data to
evaluate potential problems in this DEM (see the relevant paragraph above).

Because the landscape processes have multiscale character and different
processes are dominant at different scales, it is sometimes useful to extract
topographic features and patterns at different levels of detail. In s.surf.rst
or v.surf.rst, this can be achieved by changing tension and smoothing
(lower tension and higher smoothing produces smoother topography with cur-
vatures representing main features, higher tension captures more detail and
smaller features, see Section 7.3 as well as the Figure 12.3). We can also
use r.param.scale, which has additional options to extract the main topo-
graphic features, peaks, ridges, passes, channels, pits and planes and compute
a number of additional parameters.

Learn more about topographic analysis in the book by Wilson and Gal-
lant, 2000, and publications by Wood, 1996, Mitasova and Hofierka, 1993,
and Moore and Burch, 1986.

312 OPEN SOURCE GIS

Watersheds and flow parameters. Watersheds (also called basins or catch-
ments) are defined as the areas draining into a single point. They are a suitable
choice as landscape units for land use and natural resource management. Out-
put of such units, in terms of water discharge, sediment, and pollutant loads
can be relatively easily monitored, providing a quantified measure of impact of
land management actions.

Because each point of landscape has a watershed associated with it (it can be
anything from the point itself for a peak to hundreds of square miles for outlets
of big rivers), we need to select a suitable size for our watershed management
units. For our study area, a 50000 grid cells watershed size can be used as a
threshold parameter for r.watershed. We also compute a flow accumulation
map and a drainage map, as they may be needed as inputs for models:

r.watershed elev=el.6t10 accum=accum.6 basin=basin.6 \
threshold=50000 drainage=drain.6 stream=stream.6

.rast basin.é6

.report basin.é unit=p,a

.what.rast

[...]

2095334 ,40430738(E)Y 722934.27614887 (N)

basin.6 in lakewheeler_hm (6)

o R A

The report shows that our basins have areas from 15 to 153 acres. We have used
d.what.rast to find the number of the watershed that will be the focus of
our more detailed study (it has category number 6) and according to our report
table it has 62.81 acres. We can create a vector representation of watershed
boundaries (Figure 12.5) using r . poly so that we can overlay them over other
data such as imagery, or transfer them to GPS to guide mapping activities:

r.poly basin.6 out=basin.é6
d.vect basin.6 col=red
v.support -r basin.6
d.vect.labels basin.6 col=black

To view the accumulation map, you need to create a non-linear color table for
accum. 6 as explained in the previous Section 12.1, or display only the cells
with high values, for example:

d.rast accum.6 cat=10000-400000

Remember that r . watershed uses the D8 algorithm, so it is not suitable for
hillslope flow pattern (Figure 12.5 a, b). It “flows” through all depressions
(unless they are explicitly given as input), so the stream network will be fully
connected and drain into the outlet. We can get the coordinates for the water-
shed outlets using d.what .rast:

Using GRASS: Application Examples 313

d.rast basin.6
d.vect lw_hydro
d.what.rast

[...]
2096054.56 (E) 721547.96(N)
basin.6 in lakewheeler_hm (6)

2097854.97(E) 721043.84(N)
basin.6 in lakewheeler_hm (4)

[...]

and then input the outlet coordinates into GPS for evaluation of the suitability
of these locations for monitoring directly in the field. It is highly probable that
the exact points derived from the watershed map won’t be ideal for monitoring
and new locations may be selected. It is then necessary to derive the modified
watershed boundaries for the exact locations of the monitoring stations using
r.water.outlet. In our study area, we are installing two monitoring sta-
tions: one at the point A (Figure 12.5) near the road above a constructed wet-
land (2095700.00, 722600.00) and one at the point B which is the outlet for our
entire study area. The first station is far from the outlet of the watershed num-
ber 6; therefore, we need to delineate a new one. Because the stream. 6 map
layer does not show a stream in our subarea (the threshold for streams is higher,
as we can see by displaying 1w_hydro vector map over stream. 6), we need
to use the accumulation map to compare the field monitoring location with the
concentrated flow defining the outlet. We find that it is shifted by a few meters
and there are only few cells “upflow” from this point. Also at 6 ft resolution,
the flow from r.watershed is split into many parallel lines (Figure 12.5 a),
therefore we need to decrease resolution to get a single, clearly defined outlet.
We can then find new coordinates for outlet using d.what . rast and define a
new watershed. The entire procedure is as follows:

g.region res=20 -p
r.watershed elev=el.6t10 accum=accum.20 basin=basin.20 \
threshold=2000 drainage=drain.20 stream=stream.20
r.colors accum.20 rast=accum.6
d.what.rast
[...]
2095648.79956928 (E) 722620.03377117(N)
{...1
r.water.outlet drainage=drain.20 basin=basin.A20 \
east=2095648 north=722620
d.rast basin.A20
g.region res=6
r.poly -1 basin.A20 out=basin.A20
d.vect basin.A20 col=black

314 OPEN SOURCE GIS

‘.\: ¥
b
)

4
f

R

Figure 12.5. Flow accumulation maps based on a) D8 method (r.watershed) 6 ft resolu-
tion, b) D8 method (r.watershed), 20 ft resolution, c) vector-grid (D-infinite, r.f1low) 6 ft
resolution, d) multiple directions flow (r.topidx). Watershed boundaries as derived from
r.watershed and r.water.outlet for the monitoring station A are shown as vector lines
draped over the DEM

The flow accumulation map generated at 20 ft resolution has better defined
concentrated flow areas, making the delineation of the watershed above the
monitoring station A feasible (Figure 12.5 b). Note that for some hydrologic
and pollutant transport models, we could further divide the study area into

Using GRASS: Application Examples 315

smaller sub-watersheds and half-watersheds using the r.watershed option
half .basin for this purpose.

To derive a spatial better description of overland flow, we can use r. f1ow.
The module uses the vector-grid (D-infinite) algorithm; therefore, it can better
handle flow routing at high resolution. First, we set the region to our 6 ft
resolution DEM el.6t10; then we use r.flow to compute raster maps of
flow accumulation and flow path length as well as flow lines vector map:

g.region rast=el.6tl0
r.flow el.6tl0 flout=flowline.6 lgout=flowlg.6 dsout=flowacc.6
d.rast flowacc.b6

When comparing the flow accumulation flowacc.6 with accum. 6 derived
from r.watershed, we can quickly see the more realistic and more detailed
description of flow in our new result (Figure 12.5 c). The flow path length map
flowlg.6 provides information about the length of the flowline drawn from
each cell. It can be used to compute the longest flow path for a given watershed,
a parameter needed in hydrologic models for estimation of time to steady state
(how long it will take for all water in the watershed to reach the outlet). For
our study subarea, we can estimate this distance by displaying the flowlg.6
map overlayed with the vector flowline.6 map and using d.what.rast
to find the flowline length values at the monitoring station and at the farthest
point of the watershed and then subtract those two values:

d.rast flowlg.6
d.vect flowline.6 col=black
d.what .rast

{...]
2095676.48172339(E) 722592.19867314 (N)
flowlg.6 in lakewheeler_hm, actual (1197.761963)

2094644.24811718(E) 724218.56702265(N)
flowlg.6 in lakewheeler_hm, actual (3213.695557)

After subtraction, the value is 2016 ft (about 600 m). When using the out-
put from r.flow, it is important to know that the module stops flow rout-
ing when slope is 0.0, so it is suitable for estimation of flow on hillslopes,
smaller watersheds, or DEMs without pits or flat areas. To see where the
flow stopped, it is useful to display the flow accumulation as a surface using
nviz flowacc.6. For comparison, we can also extract the flow accumula-
tion map from the saturated flow index generated by the module r. topidx,
which uses the multiple directions flow algorithm capable of representing dis-
persal flow (Figure 12.5 d).

316 OPEN SOURCE GIS

12.2.3 Land use analysis, problems and solutions

We will use our baseline data and derived parameters to answer some ques-
tions that are relevant to land use planning. Because there is a large number
of possibilities for combining the data to get answers to specific problems, we
show only few examples.

Locate areas unsuitable for crop production. ~With input from our agricul-
ture engineering colleagues we define the areas unsuitable for selected crops
using the following conditions:

a slope greater than 7°;

m distance to streams and ponds less than 60 ft, to prevent the pollution of
water with nutrients and chemicals applied to the fields;

s distance to roads 15 ft to provide space for road maintenance and prevent
pollution of crops from traffic.

After transforming the vector representation of roads and streams to raster we
use a combination of r.buffer and r.mapcalc to identify the areas that
fulfill the above conditions:

.to.rast lw_hydro out=lw_hydro

.buffer lw_hydro out=lw_hydro.buff60 dist=60 units=feet
.null lw_hydro.buffé60 null=0

.to.rast 1lw_roads out=lw_roads

.buffer lw_roads out=lw_roads.buffl5 dist=15 units=feet
.null lw_roads.buffl5 null=0

La TR TR A T IR

Note that the result of r.buffer is a category map with categories 1 (original
data) and 2 (buffers), while the distance values are stored as category labels.
We use r.null to change unclassed NULL values to zeros, because NULL
would override everything else in our map algebra operations:

r.mapcalc "noagrlanduse=if(sl.6tl10 >= 7 || 1lw_hydro.buffé60 \
]} lw_roads.bufflb, lw_landcov.type, 0)"

r.colors noagrlanduse rast=lw_landcov.type

d.rast noagrlanduse

r.report noagrlanduse unit=p,a

The resulting map layer shows the land use which is in the areas that are not
suitable for agriculture, that is on steeper slopes or too close to roads and water.
We can see that most of these areas are already forested or covered by grass,
except for small patches along the roads and on steeper slope. The report
provides us with information about the number of acres in different land use
classes that are in these locations. For example, we can find that we have only

Using GRASS: Application Examples 317

about 3 acres of agricultural land in unsuitable locations, if the above criteria
are used.

You can further explore the effects of various stream buffer widths by using
multiple distances for the buffer map layer:

r.buffer lw_hydro out=1lw_hydro.buff dist=30,60,120,180 uni=feet

resulting in a raster map with 5 categories (one for original data and 4 for
distances). Use r.mapcalc to find out how much of the current agricultural
land we may lose if we increase the size of buffers. We can also explore the im-
pact of various definitions of stream. For example, the map layer 1w_hydro
includes only the permanent streams large enough to be included on a map.
It does not capture intermittent streams and concentrated flow areas. To in-
clude them, we can create an alternative map layer representing all areas with
concentrated flow using the flow accumulation map from r. flow, repeat the
analysis, and compare the results.

Locations suitable for a specific crop. To find the best locations for a spe-
cific type of plant within the areas designated as agricultural fields, we need to
consider additional conditions, such as soil properties, soil moisture, and solar
radiation. While there are complex plant growth models available as external
software tools, a quick assessment can be performed using the GRASS mod-
ules. For example, the properties of a location suitable for a given crop can be
defined as follows:

® land suitable for agriculture (as derived above), within the existing agricul-
tural fields;

= location receives total of at least 2100 kWh/m? of global radiation during
the growing season;

w location has suitable soil properties, such as pH, and soil texture.

We can review various soil properties by inspecting the related soil attributes
stored in the files in the vector categories subdirectory (see the previous Sec-
tion 12.2.1), and see that many properties, such as pH and texture are spatially
homogeneous in our area and their distribution will not affect the selection of
a particular location. Therefore, we will focus our analysis on spatial distribu-
tion of insolation and the conditions defined as suitable for agriculture in the
previous paragraph.

To find the spatial distribution of potentially available global solar radiation
we can compute all of its three components: direct, diffuse, and reflected using
the module r. sun. We will use the latitude 35.5° N found by g.region -1
and the elevation, slope, and aspect maps computed in the Section 12.2.1 as

318 OPEN SOURCE GIS

inputs (see Section 5.4.5, the manual page for r.sun and Appendix B.4 for
more details on this module). If the growing season for a specific crop is be-
tween March 15 and October 15, we can use a shell script (see Chapter 11) to
compute a sum of daily global radiation for this period of the year:

#1/bin/sh

echo "Enter elevation map:"
read elev

g.copy rast=$efev,SOLelev

ccho "Enter slope map:"
read sl

g.copy rast=$s¢,SOLslope

echo "Enter aspect map:"
read asp

g.copy rast=$asp,SOLaspect

echo "Enter Latitude of given region:"
read lat

i=75
lastday=288

#generate an empty map for global radiation:
r.mapcalc "global.rad=0"

while [$i —le $/astday]

do

generate map names convenient for xganim and rout.mpeg:

DAY='echo $i | awk ‘ {printf "%03i", $1}"'

echo "Computing radiation for day $DAY. . ."

r.sun elevin=SOLelev aspin=SOLaspect slopein=SOLslope\
lat="$1lat™ day="51i"\
beam_rad=b_rad. $DAY diff_rad=d_rad. DAY\

refl_rad=r_rad. $DAY

#add to (cell-wise) global energy:

r.mapcalc "global.rad=global.rad + b_rad.$DAY +\
d_rad.$DAY + r_rad.SDAY"

r.timestamp b_rad. $DAY date="$i days"

r.colors b_rad. $DAY col=gyr

r.timestamp d_rad.$DAY date="$i days"

r.colors d_rad.$DAY col=gyr

r.timestamp r_rad.$DAY date="$1i days"

r.colors r_rad.$DAY col=gyr

i='expr $i + 1
done

Using GRASS: Application Examples 319

#cleanup:
g.remove rast=SOLelev,SOLaspect,SOLslope
echo "Finished."

The module outputs all three components of global radiation separately, so
we need to add them to get the global radiation. We then use map algebra to
find the areas within the agricultural fields where this value exceeds our given
threshold, while excluding the areas which were identified as unsuitable for
growing crops in the previous paragraph:

r.mapcalc "plant=if (global.rad/1000.>2100 && noagri==null \
&& lw_landcov.type==8,1,0)

d.rast plant

r.report plant

We can use r. report to find how large is the area that is suitable for our
plant. The resulting time series of radiation maps (e.g. b_rad. 075 through
b rad.288) can be animated in xganim to get a better insight into evolution
of solar radiation pattern:

xganim viewl="b_rad.*"

The module also allows us to display several maps simultaneously as time
series:

xganim viewl="b_rad.*" viewZ2="d_rad.*" view3="r_rad.*"

To animate the result in 3D as a color draped over the DEM along with the vec-
tor map layer representing the land use polygons, you can use nviz scripting
capabilities with the file sequencing tool (see Section 8.2.3 and nviz tutorial
for more details).

Planning conservation measures using estimate of sediment flow. The
flow accumulation map flowacc.6 indicates a significant potential for neg-
ative impact of concentrated flow, which can cause formation of gullies and
transport of sediment and pollutants through protective stream buffers. One of
the common practices to mitigate the possible impact of concentrated flow are
grassed waterways.

We can use a simple combination of topographic analysis and map algebra
to identify the areas which may need protection by grassed waterways. This
type of management practice requires installation of a grassed path in those
areas which have concentrated flow and which are without protective vegeta-
tion during certain time of year (for example agricultural fields). First, we find
the high risk areas by computing a topographic index for sediment flow, which
combines the upslope area (flow accumulation multiplied by resolution) with
slope (we have computed both layers in the Section 12.2.2):

320 OPEN SOURCE GIS

r.mapcalc "sedflow.6=flowacc.6*6*sin(sl.6t10)"
r.colors sedflow.6 col=rules
fp: Data range is 0.00 to 26663.21484375
> 0 200 255 200
10 yellow
50 orange
100 red
500 magenta
30000 violet
end

Vv V. V V V Vv

d.rast sedflow.6

We have assigned a special color table to the new map highlighting the high
sediment flow areas. We now extract those areas where the value of the sed-
iment flow index is greater than 50 and display the result over the land use
map:

.mapcalc "gullies.6=if (sedflow.6 > 50, sedflow.6)"
.colors gullies.6 rast=sedflow.6

.null gullies.6 setnull=0

.rast lw_landcov.type

.rast -o gullies.®6

00 R KK

We can see that we have a high risk area in almost every field. To create a map
of proposed grassways we use map algebra to extract the potential gullies in
the areas with agricultural land, grapes, and bare soil (categories 8, 4, 7):

r.mapcalc "grassway.6=1f ((lw_landcov.type == 8 || \
lw_landcov.type == 4 || \
lw_landcov.type == 7} && \
gullies.6, 1)"
r.null grassway.6 setnull=0
r.colors grassway.6 col=rules
> 1 green
> end
d.rast lw_landcov.type
d.rast -o grassway.b6
r.report grassway.6 unit=p,a
[mm e T T e o !
| Category Information | % | |
| #|description | cover| acres|
[—= |
[T« v o v e o s s e e e e e s e w0019 1.162484 ¢

|*lno data.+ o . o] 99.811596.161891)

Using GRASS: Application Examples 321

The displayed map shows that almost each field needs two or more grassways,
(Figure 12.6). And the report provides us with an estimate of over 1 acre for
grassed area within the fields.

Net erosion and deposition modeling using flow divergence. Our previous
examples involving erosion processes (both for Spearfish and for grassways)
focused on soil detachment. However, the detached soil can be deposited rel-
atively close to the source without causing pollution problems in the streams.
Simulating net erosion and deposition under spatially variable topographic and
land cover conditions is a complex task and requires external simulation tools.
However, a simplified estimate of erosion and deposition pattern can be ob-
tained relatively easily using the concept of flow divergence.

r—l 1 water

[0 2 forest

[3 building
[4 bare soil
B 5 road

B 6 gravel road
B 7 vineyard
B & agriculture
B 9 wetland

B 10 dirtroad

[] 11 grass

grassways :

B 1000ft

Figure 12.6. Proposed grassways viewed as dense sites draped over DEM with the current land
cover displayed as a color map. The DEM has buildings and sediment flow potential added to
elevation to enhance the understanding of relation between flow and land use in the watershed

322 OPEN SOURCE GIS

The Unit Stream Power Based Erosion/Deposition model (USPED, Mi-
tasova et al., 2001) estimates a simplified case of erosion/deposition using the
idea originally proposed by Moore and Burch, 1986. It combines the RUSLE
parameters and upslope contributing area per unit width A to estimate the sed-
iment flow T:

T ~ RKCPA™ (sinP)", (12.3)

The net erosion/deposition D is then computed as a divergence of sediment
flow:

d(T cosa) + d(Tsina)
dx dy

where o in degrees is the aspect of the terrain surface (direction of flow). The
exponents m,n control the relative influence of water and slope terms and
reflect the impact of different types of flow. The typical range of values is
m=1.0-1.6,n = 1.0 — 1.3, with the higher values reflecting the pattern for
prevailing rill erosion with more turbulent flow when erosion sharply increases
with the amount of water. Lower exponent values close to m = n = 1 bet-
ter reflect the pattern of compounded, long term impact of both rill and sheet
erosion and averaging over a long term sequence of large and small events.
Caution should be used when interpreting the results from USPED, because
the RUSLE parameters were developed for simple plane fields and detachment
limited erosion.

We have already computed slope, aspect, and flow accumulation map layers.
We now need to use them to compute the estimate of sediment flow and its
divergence, while taking into account variability in land cover.

First, we create a C factor map layer by recoding the land cover map, where
we will recode the forest to 0.0005, grass to 0.005, agricultural fields, including
the grapes and gravel road to 0.5, dirt road to 0.7, and bare soil to 0.8:

(12.4)

l)==V-(730)=

.report lw_landcov.type

.recode lw_landcov.type out=cfl.6
1:1:0.

:0.0005

:0.

.8

O ~J 0N W

W oo 3o b wh
oo O oo
&

10:10:0.7
11:11:0.005
end

VVV V VYV V VYV VVVHKH

Using GRASS: Application Examples 323

.colors cfl.6 col=rules
0 aqua

0.0005 0 150 0O

0.005 green

0.5 orange

1. brown

end

vV V.V V V Vv R®

d.rast cfl.6

To account for variability in soils and to incorporate the relative impact of
rainfall, we also include the K and R = 270 factors. We use the topo-
graphic sediment flow map sedflow.6 (m = n = 1) and compute the net
erosion/deposition using the equation 12.4:

.mapcalc "qsx=270*@lw_soil.kfact*cfl,6*sedflow.6*cos(as.6t10)"
.mapcalc "gsy=270*Qlw_soil.kfact*cfl.6*sedflow.6*sin(as.6t10)"
.slope.aspect gsx dx=gsx.dx

.slope.aspect gsy dy=qgqsy.dy

.mapcalc "erdep.b6=gsx.dx + gsy.dy"

.colors erdep.6 col=rules
fp: Data range is -13803.640 to 17051.835

-15000 100 0 100 #dark magenta

-100 magenta

~10 red

-1 orange

-0.1 yellow

0 200 255 200 filight green

0.1 cyan

1 aqua

10 blue

100 0 0 100 #dark blue

18000 black

end

[T S T o S o T

V V.V V V V V V V V V vV

d.rast erdep.6

Red-orange-yellow areas show erosion and blue shades represent deposition.
Obviously, concentrated flow appears to be the largest source of sediment pol-
lution which we have addressed in the previous paragraph. About one magni-
tude lower, but still very high erosion is predicted in the agricultural fields, if
they were managed as a single, homogeneous area which can be bare for sev-
eral weeks or even months. We can also see that not all of the eroded soil will
be transported out of the fields. A substantial portion can be deposited directly
in the field concave areas and an additional amount is deposited on the border
of the field, where water is slowed down by grass. To improve the stability
of the fields, they have been divided into subsections which are planted with

324 OPEN SOURCE GIS

different crops. You can use the imported land cover map with divided fields to
experiment with different crops and vegetation to find which approaches work
the best.

An alternative approach would be to base the new land use plan on the ero-
sion risk map. You can create the high erosion risk map using r.recode
(net erosion/deposition D > 10, 20, 50) and assign those areas high density
vegetation (C factor 0.001), while keeping the same cover everywhere else:

.recode erdep out=erosion.hot
-3000:-50:1

-50:-20:2

~20:-10:3

-10:3000:0

end

vV V. V V V K&

d.rast erosion.hot
r.mapcalc "cf2.6=if (erosion.hot,0.001,cfl.6)"
d.rast cf2.6

Now we recompute the USPED model using the above described combination
of map algebra and r.slope.aspect. After displaying the resulting map,
we can see that the range of erosion and deposition is much lower. Some areas
which had erosion still have it, but at a smaller rate, and some areas became
depositional. We can compare the land use composition by creating labeled
ranges for C factor maps using r.support and then running r.report for
both C factor map layers.

External models can be used for more complex modeling of pollutant trans-
port, usually involving solution of partial differential equations (Mitasova et
al., 2002), see for example Path sampling modeling®, coupled with GRASS.
However, GRASS can be relatively easily linked to any model using libgrass’
or import and export of input data and results (Mitasova et al., 2001).

More complex, dynamic study of watershed hydrology in terms of predict-
ing surface and subsurface flow and related phenomena can be performed us-
ing several current and older versions of hydrologic models integrated with
GRASS, such as r.topmodel, r.water.fea and r.hydro.CASC2D. Use
of these models requires some hydrologic background, especially familiarity
with hydrologic terminology and access to input data which are not as widely
available as basic GIS map layers. Use of these models is beyond the scope of
this book; however, it is important to note that to fully evaluate the impact of
spatial distribution of land use, this type of model is needed. They capture such
important effects as the reduced velocity of water flow and higher infiltration in
areas covered by dense vegetation, or increased risk of flooding due to devel-
opment when vegetated area is replaced by an impervious surface, for example
by a parking lot. Hydrologic modeling is also an important component of sev-
eral non-point source pollution models which were linked to GRASS, such as

Using GRASS: Application Examples 325

AGNPS and ANSWERS. Unfortunately, GRASS versions of these models are
no longer supported, except for SWAT."

NOTES

1 RUSLE documents, http://www.sedlab.olemiss.edu/rusle/

2 RUSLE for ArcView,
http://abe.www.ecn.purdue.edu/~engelb/agen526/
gisrusle/gisrusle.html

3 Wake county GIS site
http://www.wakegov.com/county/
propertyandmapping/gisdigitaldata.htm

4 Lake Wheeler Map Section
http://lnweb02.co.wake.nc.us/gis/
gismaps.nsf/0762-1619!0penPage

5 GRASS Tutorials related Web site,
http://mpa.itc.it/grasstutor/

6 North Carolina Flood Mapping Program,
http://www.ncfloodmaps.com/

7 National MUIR schema,
http://www.statlab.iastate.edu/soils/
muir/schema nat.html

8 Path sampling modeling,
http://skagit.meas.ncsu.edu/~helena/
publwork/Gisc00/astart.html

9 libgrass software,
http://grass.itc.it/related projects.html

10 SWAT software, ftp://brcsun0. tamu.edu/pub/swat/

Chapter 13

USING GRASS WITH OTHER
OPEN SOURCE TOOLS (1)

GRASS is one of many Free Software projects in the GIS world, however,
it is the only full featured free GIS at time. A comprehensive list of more than
hundred free GIS projects is available online at the FreeGIS Project Web site.'
The use, development and support of Free GIS Software is promoted at this
site, as well as the use and release of publicly available geographic data. Some
free GIS projects can provide additional functionality to GRASS by addressing
some of its unsolved or intentional constraints.

Within this chapter, we first highlight procedures that extend the geosta-
tistical analysis capabilities of GRASS. We focus on two statistics software
packages, the gstat and the R project. This chapter does not try to cover the
theory of geostatistics. Excellent other books on theory and applications are
available, such as Cressie, 1993, Bailey and Gatrell, 1995, and Webster and
Oliver, 2001. In relation to the R program it is useful to read Chambers and
Hastie, 1992, Venables and Ripley, 2000, as well as Venables and Ripley, 2002.

After a brief look at GPS related software tools we close this chapter with
a demonstration of fast Web mapping through UMN/MapServer linked di-
rectly to GRASS for reading GIS data from a GRASS LOCATION.

Maas river bank soil pollution data. Throughout the following sections
we use the Maas river bank soil pollution data (Limburg, The Netherlands,
Burrough and McDonnell, 1998). These data are provided in the gstat pack-
age and used in examples in its manual. This data set is implemented also in
the R/GRASS interface package. The Maas river bank soil pollution data are
sampled along the Dutch bank of the river Maas (Meuse) north of Maastricht.
This is a flood plain of the river Maas, not far from where the Maas enters the
Netherlands (Borgharen, Itteren, about 3 to 5 km north of Maastricht).2 The
river Maas is at the north-west border of the project area, traversing the area in

328 OPEN SOURCE GIS

north-east direction. Burrough and McDonnell, 1998, use a subset of the same
data set in their book (reduced area). The data set provided with the R/GRASS
interface was re-projected from the Dutch standard coordinate system (TDN
coordinates in stereographic projection) to UTM coordinate system zone 32,
on WGS84 ellipsoid. A GRASS LOCATION was defined with following pa-
rameters: projection UTM, ellipsoid WGS84, zone 32, north 5652930, south
5650610, west 269870, east 272460, nsres 10, ewres 10, rows 232, cols 259.
A pre-defined LOCATION including the data stored column-wise in sites lists
can be downloaded from the GRASS Web site.” The data sets are stored as sites
lists plus one raster map; they can be used to experiment with interpolation or
other methods.

This data set contains the following columns (topsoil data were collected
as bulk samples during fieldwork in 1990 within a radius of 5 m according to
Burrough and McDonnell, 1998:102, 309):

East, north (UTM zone 32 coordinates in meters); X, y (local coordinates in
meters); elev (elevation above local reference level in meters); d.river (distance
from main river Maas channel in meters); Cd (cadmium in ppm); Cu (copper
in ppm); Pb (lead in ppm); Zn (zinc in ppm); LOI (percentage organic matter
loss on ignition); flfd (flood frequency class, 1: annual, 2: 2-5 years, 3: every
5 years); soil (3 unnamed soil types).

13.1. GEOSTATISTICS WITH GRASS AND GSTAT

The gstat* package is Free Software for geostatistical modeling, predic-
tion and simulation in one, two or three dimensions (Pebesma and Wesseling,
1998 and Pebesma, 2001). It requires the gnuplot’ graphical plotting soft-
ware for the display of empirical variograms and variogram models.

With gstat you can perform geostatistical modeling in terms of generating
empirical (sample) variograms and cross variograms (or covariograms). The
software calculates sample (co-)variograms from ordinary, weighted or gen-
eralized least squares residuals. Models can be fitted to these variograms to
predict data distributions. Using weighted least squares, nested models are
fitted to sample (co-)variograms. Restricted maximum likelihood estimation
of partial sills is also implemented. Variograms are plotted using the plotting
program gnuplot, when working in interactive variogram modeling user in-
terface.

The gstat software provides prediction and estimation using a model that
is the sum of a trend modeled as a linear function of polynomials of the co-
ordinates or of user-defined base functions, and an independent or dependent,
geostatistically modeled residual. This allows for simple, ordinary and univer-

Using GRASS with other Open Source tools (1}) 329

sal kriging, simple, ordinary and universal cokriging, standardized cokriging,
kriging with external drift, block kriging and “kriging the trend”, as well as
uncorrelated, ordinary or weighted least squares regression prediction. Simu-
lation in gstat comprises uni- or multivariable conditional or unconditional
multi-Gaussian sequential simulation of point values or block averages, or
(multi-) indicator sequential simulation (features cited after Pebesma, 2001).

The gstat/GRASS interface allows the user to read point data from site lists
and raster maps. This requires to have the GRASS support compiled into
gstat. You can check your version with flag -v:

gstat -v

The line “with libraries” must list “grass” besides other supported formats (e.g.
“grass gdal netcdf”).

Output of gstat (prediction or simulation results) is written to raster maps
and also to site lists. You need to run gstat from inside GRASS as the pro-
gram requires the GRASS environment to internally set up the LOCATION
definitions. When a subregion is set in GRASS, gstat will only interpolate
or simulate the raster cells according to the current region. The variables of
interest need to be floating point numbers (DOUBLE) in sites list or stored in
a raster map. The instructions for gstat are stored in an ASCII file. When
using GRASS sites lists as input maps, following column order conventions
have to be followed:

Easting{Northing|#site_no %$FP_data [%FP_data]

These are the same conventions as for standard GRASS sites lists. The pro-
gram gstat reads GRASS site data from the current MAPSET with the
data () function. Variable positions are defined as:

: coordinate column 1 contains the x-coordinate
coordinate column 2 contains the y-coordinate

: coordinate column 3 contains the z-coordinate (optional)
: data column 1 contains the first data (measurement)
variable, when 0, a grid map is read

I

1

<N‘~ﬁ><
=W NP

To illustrate how it works, we run a sample session based on the “Maas river
bank™ data set. First start GRASS with the Maas UTM LOCATION, then copy
the Zn (zinc) concentrations sites map to the current MAPSET:

grass53 /usr/local/share/grassdata/maas/userl/
g.copy sites=Zn, zinc
s.info zinc

The following example is based on the manual of gstat®. Store the following
commands to the file gstat.maasl.zn in your home-directory:

330 OPEN SOURCE GIS

Two variables with (initial estimates of) variograms,
start the variogram modeling user interface
data(zinc): 'Zn’, x=1, y=2, v=1;

data (ln_zinc): ’zn’, x=1, y=2, v=1, log;
variogram(zinc): 10000 Nug() + 140000 Sph(800);
variogram(ln_zinc): 1 Nug() + 1 Sph(800);

As the zinc concentrations are stored as first DOUBLE attribute in the sites
list (in ppm, reported by s.info zinc), we select this data column through
v=1. Run the analysis by:

gstat gstat.maasl.zn

The program starts to analyze the data and subsequently displays univariate
statistics:

gstat: Linux version 2.4.3 (04 January 2004)
Copyright (C) 1992, 2004 Edzer J. Pebesma

using Marsaglia’s random number generator
data(zinc): gisrc: [/home/neteler/.grassrc5]
GRASS site list zinc: 0 cat, 2 dim, 0 str, 1 dbl.
gstat/grass: 98 sites read successfully.

zinc (GRASS site list)
attribute: col[1l] [x:] x_1 v [269800, 272500)
n: 98 [y:] y_2 s [5.6506e+06, 5.653e+06]
sample mean: 481.031 sample std.: 398.808

GRASS site list zinc: 0 cat, 2 dim, 0 str, 1 dbl.
data(ln_zinc): gstat/grass: 98 sites read successfully.

zinc (GRASS site list)
attribute: log{col[1]) [x:] x_1 : 269800, 272500)
n: 98 [y:) y_2 : [5.6506e+06, 5.653e+06)
sample mean: 5.87065 sample std.: 0.778309

[starting interactive mode]
press return to continue...

After pressing <ENTER> we reach the main menu, which allows us to inter-
actively analyze the loaded data set:

gstat 2.4.3 (04 January 2004), gstat.maasl.zn

enter/modify data

choose variable : zinc

calculate what : semivariogram

cutoff, width : 1204.15, 80.2765

direction : total

variogram model : 10000 Nug(0) + 140000 Sph(800)
fit method : no fit

>show plot <Tab>
[...]

Command: _

Using GRASS with other Open Source tools ({}) 331

+126
+147

+109

semivariance

In_zinc +
3 0.110489 Nug(0) + 0.616352 Sph(1000.53)
T T L]) L) ¥ T T
0 200 400 600 800 1000 1200 1400 1600

distance

Figure 13.1. gstat/ GRASS: Semivariogram of zinc contaminations of the Maas river bank soil
samples (variogram model: WLS, weights n(h))

After reaching the menu you can move around with cursor keys. Now
choose the variable 1n zinc (logarithmic transformed zinc concentrations)
with <ENTER>. Set the cutoff (lag distance) to 1600 and width to 70.
Then select for £it methods “WLS, weights n(h)” (WLS is weighted least
squares, other methods are also available). Now the variogram model will be
fitted when hitting the <TAB> key or selecting show plot <Tabs. The re-
sulting semivariogram is shown in Figure 13.1.

Zinc contamination kriging example. In the next example (adapted from
Pebesma, 2001:12) we will include a raster MASK and perform ordinary krig-
ing prediction from the zinc data. This will result in a raster surface map with
predicted distributed zinc contaminations and the predicted kriging error. The
gstat instructions file looks as follows (store it as file gstat .maas2.zn):

ordinary kriging prediction

#

data(zinc): fzinc’, x=1, y=2, v=1;
variogram(zinc): 0.0717 Nug(0) + 0.564 Sph(917.8);
mask: ‘maasmask’;

332 OPEN SOURCE GIS

&.8?14&]

474140100

885 41017

1250, BH0EH

1647 a1

Figure 13.2. gstat/ GRASS: Ordinary kriging prediction of zinc contaminations on the Maas
river bank. Left: predicted zinc contaminations [ppm], right: prediction error

predictions (zinc): ’zinc_pr.map’;
variances(zinc): ’'zinc_var.map’;

In general, output grid maps are always written in the same format as the in-
put mask map. Besides the GRASS format, gstat also supports other GIS
formats. Before running the prediction, we have to generate the GRASS raster
map maasmask. The Maas LOCATION contains a raster map maasbank
which covers the river bank area. We generate the desired binary map from
this map, then we run the kriging prediction:

r.mapcalc "maasmask=if (maasbank)"
d.rast maasmask

d.sites zinc

gstat gstat.maas2.zn

During calculations the program will report similar user messages:

gstat: Linux version 2.4.3 (04 January 2004)
Copyright (C) 1992, 2004 Edzer J. Pebesmna

using Marsaglia’s random number generator
data(zinc): gisrc: [/home/neteler/.grassrc5]
GRASS site list zinc: 0 cat, 2 dim, 0 str, 1 dbl.
gstat/grass: 98 sites read successfully.

zinc (GRASS site list)
attribute: col[1l] [x:] =x_1 | 269870, 272460)
n: 98 fy:]l y_2 ¢ [5.65061e+06,5.65293e+06]
sample mean: 481.031 sample std.: 398.808
[using ordinary kriging]

ncols 259
nrows 232
initializing maps

Using GRASS with other Open Source tools ({}) 333

CREATING SUPPORT FILES FOR zinc_pr.map
CREATING SUPPORT FILES FOR zinc_var.map
100% done

Two new raster maps have been generated, which contain the predicted zinc
distribution (zinc pr.map) and the distributed error (zinc var.map). Us-
ing d.frame we can display both maps side-by-side in the GRASS monitor:

.colors zinc_pr.map col=gyr
.colors zinc_var.map col=gyr
.frame -e

.frame -c¢ at="0,100,50,100"
.frame -c¢ at="0,100,0,50"

.rast zinc_pr.map bg=white

.sites zinc col=black

.legend -ms zinc_pr.map col=black
.frame -s

.rast zinc_var.map bg=white
.legend -ms zinc_var.map col=black
.sites zinc col=black

0.0 0 0 00000 Qr K

The result is shown in Figure 13.2. For further details and examples please
refer to the gstat documents.

13.2. SPATIAL DATA ANALYSIS WITH GRASS AND R

The “R data analysis programming language and environment” (Ihaka and
Gentleman, 1996, available from Internet7), a dialect of S (Becker, 1988), is
an extensible system which can be connected directly to GRASS. R consists of
a base package and extensions that can be downloaded from the project Web
site. A regular newsletter informs about recent changes and improvements.®
Besides classical methods, graphical and modern statistical techniques are im-
plemented in the base R library and supplementary packages. Latter comprise
packages for point pattern analysis, geostatistics, exploratory spatial data anal-
ysis and spatial econometrics. While R is a general data analysis environ-
ment, it has been extensively used for modeling and simulation. Through the
R/GRASS interface (Bivand, 2000, Bivand and Gebhardt, 2000, Bivand and
Neteler, 2000, Furlanello et al., 2003) the geospatial analysis capabilities of
GRASS are substantially improved.

For the integration of R into GRASS you need to run R from the GRASS
shell environment. The interface dynamically loads compiled GIS library func-
tions into the R executable environment. The GRASS metadata about the
LOCATION’S regional extent and raster resolution are transferred to R. In
interpreted mode, when the interface installation was not compiled with the
GRASS GIS library, this is taken from g.region. The R/GRASS interface

334 OPEN SOURCE GIS

— like GRASS modules in general — assumes that the user needs the current
resolution, not the initial resolution of the map layer. The current interface is
supporting raster and site data. Work on an interface for vector data is ongoing.

Besides the base package of R it is useful to install also the following con-
tributed extensions: akima, fields, geoR, grid, lattice, MASS, scatterplot3d,
spatial, and stepfun (available from the R Web site). Additional packages in
terms of spatial-temporal analysis are focused on autocorrelation, spatial point
patterns, time series or wavelets.

Note that in this section we omit the \ character for long lines as it is not
allowed in R. Long, broken lines are indicated by the indent in the next line.

Installation of the R/GRASS interface. The installation of the R/GRASS
interface’ is very easy and can be done by a single command (you probably
have to be user “root” for this).

If your computer is connected to the Internet, you can install packages
within an R session. Start R and launch the command:

install.packages ("GRASS")

This will download the latest version of the selected package, unpack, compile
and install it. From time to time the installed extensions should be checked for
updates. The following command will download the R package list, compare
to the local installation and upgrade installed packages if new versions are
available:

update.packages ()
Offline, you can install extra packages on command line:

R CMD INSTALL GRASS_0.2-13.tar.gz

As the interface is maturing, the version number is subject to change. Also the
path to R depends on your local installation. To start a quick exploration of
standard R, simply run:

R
demo ()
demo (graphics)

q()

The function g () finishes a R session. When leaving R with g() you will
be asked: “Save workspace image? [y/n/c]:”. If answering y, the objects are
stored within the local directory into the hidden file .RData. When launching
R next time in this directory, the objects will be read into the system and you
can continue with your work.

Using GRASS with other Open Source tools ({}) 335

As mentioned above, contributed packages extend immensely the function-
ality of GRASS in conjunction with the R/GRASS interface. To find out which
packages are already available on your system, type within R:

library ()

You can load an installed package by entering its name as a parameter for
this function. Some packages also provide examples for their functions. We
try an example for fitting a trend surface, the function is provided by library
spatial:

library(spatial)
example (surf.ls)
?surf.ls

The ? command displays the function’s help text (leave with qg). Help pages
are also stored in HTML format, you can open a HTML browser with:

help.start ()

The pages provide package explanations and a local search engine.

When using R in batch mode you can develop GRASS scripts, which are di-
rectly utilizing R functionality in GRASS user environment. In Section 13.2.3
we show sample scripts.

13.2.1 Spearfish data set analysis

To illustrate how to apply R to your data, we present several examples based
on the Spearfish data set. As an exercise, we can generate a trend surface of the
distributed pH value within the Spearfish region. After starting GRASS with
Spearfish LOCATION and resetting the region to default settings, run R within
GRASS:

grassb3 /usr/local/share/grassdata/spearfish/userl
g.region -dp
R

Within R the R/GRASS interface is loaded as follows:

library (GRASS)
G <- gmeta ()

#show loaded environment:
class (G)
summary (G)

By this, we have loaded the library of interface functions and initialized an
object named G that includes metadata about the location. This object, like

336 OPEN SOURCE GIS

many in R, has a class grassmeta- which is used for selecting functions that
are applied to the object, for example, summary () or plot (). The class of
the object, which is the first argument to a generic function, passes the object
on to a function specifically for that object class, so function summary (G)
gives a summary appropriate for objects of class grassmeta. A little later,
we will see summary () used on numeric data, and the plot () function used
with G as the first argument.

Now we are ready to perform geospatial analysis of GRASS raster and site
data. As a prerequisite to generate the trend map of pH values with R, the
pH values map is read into R environment (with ¢ (F) category import set to
False):

soilsph <~ rast.get (G, "soils.ph", c(F))
str (soilsph)

names (soilsph) <~ c("ph")

str (soilsph)

The function rast.get () reads the map soils.ph from GRASS and stores
it into the R object soilsph. The str () function shows a brief view of the
structure of the soilsph object. It starts with “NA” (no-data) values because
the GRASS soils.ph map contains NULL values at the borders. For later
convenience the imported variable is renamed from soilsph$soils.ph to
soilsph$ph with the names () function.

Univariate statistics (minimum, maximum, Ist and 3rd quartile, median,
mean and the number of NA’s) of the pH values can be displayed with
summary () function. Up to now the recently imported map stored in data
object soilsph contains only the data values, but not the related coordinates.
To complete it, we generate a so-called data frame which allows us to store
associated variables in one object. In our case, the data frame will carry east
and north coordinates and the z values, which represent the ph values:

summary (soilsph$ph)

soils.ph.frame <- data.frame(east (G), north{G), soilsph$ph)
str(soils.ph.frame)

system("r.report soils.ph")

Since the original soils.ph map contains cells with “no soil data” label
(check with r. report) we have to set these values to NA. For further process-
ing we rename the variables to standard naming convention. Most functions

expect the variable names to be “x”, “y” and “z”. Note that when calling an
object in R by name, the object contents will be displayed (e.g. all cell values):

soilsph$ph([soilsphSph == 0] <- NA

names (soils.ph.frame) <- c("x", "y", "z")
summary (soils.ph.frame)

soils.ph.frame$z

Using GRASS with other Open Source tools ({}) 337

To see all data objects which are currently loaded into R, use the 1s() function.
Next we want to plot the map stored in object soils.ph.frame:

1s ()
plot (G, soils.ph.frame$z)

A new window opens with the pH values map displayed. The map col-
ors may differ from GRASS display, but they can be adjusted. The object
soils.ph. frame is now prepared for further analysis. Next we can calcu-
late the cubic trend surface with function surf.ls() (Venables and Ripley,
2002). The function does not accept no-data (NA) values, so we have to mask
all NAs by na.omit () function. The functions to fit the trend surface through
the data points are provided by spatial package which we have to load first:

library(spatial)
ph.ctrend <- surf.ls(3, na.omit (soils.ph.frame))
summary {(ph.ctrend)

This function fits a polynomial model to the data set. The parameters for the
trend surface modeling function are the degree of polynomial surface (in our
case it is 3 for a cubic polynomial) and the data frame with NAs omitted. The
calculations require some memory and computational power. The generated
trend surface model is then stored into the object ph.ctrend. From this
model the trend surface map is evaluated by function trmat .G (). The result-
ing map can be visualized either as contour lines (function contour.G()) or
as solid surface (plot () function). To shorten commands, we evaluate the
trend surface on the fly directly within the plot () function which draws the
surface into the R graphics window:

plot (G, trmat.G(G, ph.ctrend), col=terrain.colors(20))

Another option is to store the trend surface map into its own object and plot it
later (as a solid surface or labeled contour lines):

trendSurf <- trmat.G(G, ph.ctrend)

plot (G, trendSurf, col=terrain.colors(20))

contour.G(G, trendSurf)

title("Cubic trend surface of pH values in Spearfish region")

It is possible to redirect the R graphical output into a file. For example, to
export plots into a Postscript file (function postscript ()), use:

postscript ("trendSurf.ps")

plot (G, trendSurf, col=terrain.colors(20))

contour.G(G, trendSurf, add=T)

title("Cubic trend surface of pH values in Spearfish region")
dev.off ()

338 OPEN SOURCE GIS

Cubic trend surface of pH values in Spearfish region

4920000 4925000 4930000
] 1]

4915000
|

T T T T
530000 595000 600000 605000

Figure 13.3. R/GRASS: Cubic trend surface of pH values in Spearfish region (calculated at
100 m raster resolution)

The additional parameter add=T for the function contour.G() overlays
the contour lines over the previous map plot. The dev.off () call writes
the requested postscript file. Other devices are pdf (), pictex(), x11()
(the screen), png (), xfig () and jpeg(). To generate EPS (Encapsulated
PostScript) files compatible for integration into other documents, e.g. into La-
TeX, you may want to use the function dev.copy2eps (). The cubic trend
surface from Spearfish pH values is shown in Figure 13.3.

Sometimes it may be necessary to free some memory, so we want to remove
objects:

1s ()
rm(ph.ctrend, soilsph,soils.ph.frame, trendSurf)
history{)

al)

Note that removing objects before leaving the R program is not needed (we
just wanted to show how to do it in general). The function history () works
similarly as the UNIX history command: It displays all commands used in
the current R session.

Using GRASS with other Open Source tools ({}) 339

Working with reclassified raster maps. In this sample session we want to
find the average elevation of each of the Spearfish soil classes and the area
occupied by each of the classes in hectares. In GRASS, this is done by cre-
ating a reclassed map layer in r.average, which assigns mean values to the
category labels, and r.report to access the results:

.region -p rast=elevation.dem

.average base=soills cover=elevation.dem output=avheight
.report soils units=h

.report avheight units=h

8RR R Q

Remember that documentation material, such as soil names explanations for
the Spearfish soils map, can be found on the GRASS Web site (“sample data”
section).

To answer the same question in R using the R/GRASS interface, we im-
port the two required maps into R, soils as factor map (classes), and
elevation.dem as a numeric vector:

g.region -p rast=elevation,dem

R

library (GRASS)

G <- gmeta ()

spearfish <- rast.get (G, c("soils", "elevation.dem"), c(T, F))
names (spearfish) <- c("soils.f", "dem")

str{spearfish)

While the soil classes are imported with category label support, the labels for
the elevation are omitted. Again we rename the variables for convenience.

R provides the tapply () function which lets us apply the declared function
mean () to the subsets of the first argument grouped by the second, giving the
results we need. The count of cells by land use type are given by table (),
which we use to convert square meters to hectares using the metadata on cell
resolution. Finally, as an advantage over GRASS functionality, we can con-
struct a boxplot of elevation by soil unit, making box width proportional to the
number of cells in each land use class using the table soilareas (note that
we drop the areas filled with NA values by subsetting to the row range 2 - 55
with soilareas[2:55]). We get the number of rows, number the of soil
types (55 including the no-data area) from the dim() function which returns
number of rows and columns:

soil.h.mean <- tapply{spearfish$dem, spearfish$soils.f, mean)
soil.h.min <~ tapply(spearfish$dem, spearfish$soils.f, min)
soil.h.max <- tapply(spearfish$dem, spearfish$soils.f, max)
soil.h.range <- tapply(spearfish$dem, spearfish$soils.f, range)
soilareas <- table(spearfish$soils.f)* ((GSewres*GSnsres)/10000)
soiltable <- cbind(soil.h.mean,soilareas,soil.h.min, soil.h.max)

340 OPEN SOURCE GIS

Spearfish soil data: Total Area (ha) - Mean elevation (m)

g - ? ;
E . 5
: < o
. ' : 5
g7 g i
i g | }
g H N I i E
Y N Y I
o j 200 . ,
81! pao)l T antel
S . H L ||' B | |
ol b T
el et i i ’\|“|.egj=:;
e g Il hig R

TITT i
Aab BeE CaE GdE LaE NaC NdC RBF SbB TaB VaB

Figure 13.4. R/GRASS: Boxplot of soil type distribution against altitude in Spearfish region
(calculated at 100 m raster resolution). The box sizes are representing the area sizes

colnames (soiltable) <-c("Average Height (m)","Tot. Area (ha)",
"Min. Height (m)", "Max. Height (m)")
sollareas
dim(soilareas)
boxplot (spearfish$dem =~ spearfish$soils.f,
width=soilareas[2:55], col="gray", horizontal=TRULE)
title("Spearfish soill data: Total Area (ha) -
Mean elevation (m)")
soiltable
soil.h.range

The boxplot (see Figure 13.4) does not display all soil names due to the space
limitations. When directly calling object soiltable in the terminal window
the values table is printed into the terminal. In soil.h.range the elevation
ranges per soil name are stored. While some soil types are found in a wider el-
evation range (e.g. VBF, Vanocker-Citadel association, from 1117 m - 1705 m
altitude), others are restricted to much narrower range (e.g. NaC, Nevee silt
loam, from 1072 m - 1292 m altitude). Boxplots such as above help to show
more about the empirical distributions of cell values.

Using GRASS with other Open Source tools ({}) 341

Analyzing interpolated maps. The empirical cumulative distribution func-
tion (ECDF) can be useful for identification of a bias towards contours in in-
terpolated DEMs. It is also known as hypsometric integral. After generating a
data frame of the input raster map, the ECDF function can be plotted directly.
To improve legibility, we use a for () loop to draw lines in the range of the
elevation. After starting R and loading the R/GRASS interface, we run:

library (stepfun)

elev <- rast.get (G, "elevation.dem")

elev.f <- data.frame(east (G), north(G), elevSelevation.dem)

names (elev.f) <- c("x", "y", "z")

summary (elev.f)

plot (ecdf (elev.f$z), verticals=T, do.points=F,
xlab="elevation", main=NULL)

for (i in seq(1000,1900,20)) lines(c(i,i), c(0,1), 1lty=2,

col="red2")
title("Spearfish elevation.dem data: ECDF plot")

As shown in Figure 13.5 the plot looks very smooth. This indicates that the
Spearfish raster map elevation.dem does not have waves along contours.

Spearfish elevation.dem data: ECDF plot

Fnix)

1000 1200 1400 1600 1800

elevation

Figure 13.5. R/GRASS: Empirical cumulative distribution function (ECDF) plot to identify
interpolation artifacts in Spearfish integer elevation.dem map

342 OPEN SOURCE GIS

Spearfish elevation.dted reclass data: ECDF plot

Fni(x)

0 50 100 150 200 250

elevation class

Figure 13.6. R/GRASS: Empirical cumulative distribution function (ECDF) plot to identify
interpolation artifacts in Spearfish reclassified elevation.dted map

For comparison we can do the same analysis with the elevation.dted, a
map which was reclassified from the original elevation data:

dted <- rast.get (G, "elevation.dted")

dted.f <- data.frame (east (G), north(G), dtedSelevation.dted)

names {dted.f) <- c("x", "y", "z")

plot (ecdf (dted.f$z), verticals=T, do.points=F,
xlab="elevation class", main=NULL)

for (i in seq(0,300,10)) lines{c(i,i), c(0,1), 1lty=2,

col="red2")
title("Spearfish elevation.dted reclass data: ECDF plot")

As expected, “stairs” are visible in the ECDF plot (see Figure 13.6). They are
the result of the reclassification of the original elevation map to a reclassed
map.

An additional useful tool for analysis of interpolation artifacts is the density
plot over elevation (smoothed histogram). The function density () computes
kernel density estimates with the given kernel (default: Gaussian) and given
bandwidth. If the DEM was interpolated from contour lines, we can probably

Using GRASS with other Open Source tools () 343

Spearfish elevation.dem data: Density plot

i e e

o e N (Raa - o E

. Ceaf T bwsBl
ihE \
i fJ \M_W“\.
g J i WA
S i S R T R
) j \ ; 4 _“ﬁvA\
j + \\

g s,

T T T T
1200 1400 1600 1800

N = 26335 Bandwidth = 2

Figure 13.7. R/GRASS: Density plot of Spearfish elevation.dem data

see a local over-representation of the contours compared to the interpolated
values (depending on interpolation method, see Jacoby, 1997:23pp for details).

Note that NA values are not permitted in the R density function, therefore
we mask them on the fly. The legend has to be placed by mouse into the graph,
the locator () function silently waits for a click of the middle mouse button:

plot (density (na.omit (elev.£f$z), bw=2), col="black",
main="Spearfish elevation.dem data: Density plot")
lines (density (na.omit (elev.£$z), bw=4), col="green")
lines(density(na.omit (elev.f$z), bw=6), col="brown")
lines{density(na.omit (elev.f$z), bw=8), col="blue")
for (i in seq(1000,1900,20)) lines(c(i,i), <(0,0.015), lty=2,
col="grey")
legend{locator (), legend=c("bw=2", "bw=4", "bw=6", "bw=8"),
col=c("black", "green", "brown", "blue"), lty=1)

Instead of the locator () function you can also specify x,y coordinates re-
lated to the current coordinates’ ranges. In our example, you may specify
1600, 0.004 instead of locator (). The graph (see Figure 13.7) shows
only slight artifacts up to a kernel bandwidth of 4 meters. These methods may

344 OPEN SOURCE GIS

be interesting to compare results from different interpolation methods as de-
scribed in Section 6.4.3 or to verify unknown interpolated data.

13.2.2 Maas river bank soils data analysis

When analyzing spatial data taken at various sample locations, we may be
interested in predicting values in unsampled areas. With variogram modeling
and kriging we can generate raster surfaces from point spatial data. GRASS
does not include functional modules for analysis of variograms, but R provides
extended capabilities. See Section 7.3.8 for a short discussion on geostatis-
tics, kriging and splines. The next examples cover basic data analysis while
variogram analysis and kriging are not presented due to the complexity of the
topic. The R libraries fields and geoR, partly also the R/GRASS interface
provide the relevant functionality and examples.

To do the following examples we must run R from inside GRASS. This time
we will use the data set which is stored in the R/GRASS interface (and which
was the base for the GRASS Maas LOCATION).

Maas soil data analysis. To set the environment, start GRASS with the
“maas” LOCATION and R within GRASS. Note that you can always use
help (function) toread afunction’s help page and example (function)
to run the examples provided for that function. This will also show examples
explained in this section as they are based on the interface documentation. In-
side R first load the environment and, in this case only for plotting purposes,
the library geoR (Ribeiro and Diggle, 1999, Ribeiro and Diggle, 2001, see also
online'’) which provides numerous geostatistical functions:

grass53 /usr/local/share/grassdata/maas/userl/
g.region -dp

R

library (GRASS)

G <- gmeta ()

library (geoR)

Next load the “maas” data set (this time directly the built-in data). The Maas
data set contains numerous variables. You can plot all variables against each
other (compare Burrough and McDonnell, 1998:112):

data (utm.maas)

str (utm.maas)

plot (utm.maas)

plot (utm.maas[1:5])

You can see the complete list of variables in the “utm.maas” object with
str (utm.maas) . The second plot () command plots only a subset of all
variables. As we want to analyze the zinc contamination, we focus on these

Using GRASS with other Open Source tools (1}) 345

=1 A 4 A o o®@ o% o
2 oo B e, o@®@©° &
B] . S o
1+ %] o
[rs] o 0@ © o
GQO o
B] E o, o
2 B o °
o o
28_ A g@ o o o
uw uw o o o
$ B Bo8 =
-l. o
4 | g"o& °
3 o
S - [+] o
(=] (=]
w0 wn
o - o -
§ I | I | 1 § 1 1 I
270000 271000 272000 500 1000 1500
X Coord data
o
o
g o @
= o
o© 2
2 o
g8 & g
o [+] g
°Og® g o 3;0 2 >
o o © s g 56530 ©
g _|o%0 @° ° g s 5652500 &
3 08 o ° 5652000 O
° o o ° 00 © 8 5651000
6 o
o0 o o
ooocg%%ao $8° o 500
T T T T T
270000 271000 272000 Coord X
Coord X

Figure 13.8. R/GRASS: Maas river bank zinc contamination data. Upper left: zinc contami-
nations quantile plot; upper right: zinc data against y coordinates; lower left: zinc data against
x coordinates; lower right: 3D scatterplot

data now. We generate an empty data frame, in which we store the coordinate
pairs as matrix and the related zinc (Zn) concentrations in the “data” variable:

zinc <- data.frame ()

class(zinc) <- "geodata"

zincScoords <- cbind(utm.maas$east, utm.maas$north)
zincSdata <- utm.maas$Zn

str{zinc)

The function class() is used to store the class information in the object.
The plot () function uses this information to invoke the standard data plot
as implemented in gecR package. As we have compounded several variables
into the zinc data object, we can plot numerous graphs right away, according
to the definitions in underlying functions of plot.geodata ():

346 OPEN SOURCE GIS

plot (zinc, scatter3d=T)
quantile{zinc$data)

In Figure 13.8 the upper two plots are data locations, the lower two plots
show the zinc data against the x and y coordinates. If the R extension
scatterplot3d is not installed, the lower right plot will show a normal
histogram instead of a 3D point data plot. The quantiles for the upper left plot
are generated according to the results of the quantile () function.

The Maas river bank area can be retrieved from the already loaded
maasmask data set which is a binary mask for the area. To generate a map
with coordinates matching those of the binary mask (which is a R data vec-
tor only without coordinates), we export the map to GRASS and re-import it
again. This will apply the related coordinates to the mask values:

str {maasmask)

rast.put (G, lname="riverbank", maasmask)
riverbank <- rast.get (G, "riverbank")
names (riverbank) <- c("z")

str (riverbank)

plot (G, riverbank$z)

Here we are using the plot method for geospatial data as available through the
R/GRASS environment (invoked through the G GRASS metadata object).

To plot the individually measured zinc concentrations into the Mass river
bank map, we can use the points () and text () functions for setting the
labels (pos=4 prints the labels right to the label point, cex=0.75 decreases
the label font size):

points (utm.maas$east, utm.maas$north, pch=20, col="blue")
text (utm.maas$east, utm.maas$north, utm.maas$Zn,pos=4,cex=0.75)
title("Maas river bank: zinc contamination [ppm]")

We see all sampling points labeled with the zinc concentrations measured as
parts-per-million (ppm). The river Maas is at the north-west border of the
project area, flowing in the north-east direction.

To find out whether the zinc concentration depends from the distance to
the river we plot the variables “Zn” against “d.river”, both untransformed and
transformed using natural logarithm (Log () function in R). We can split the
output screen into two parts with function par () and display two (or more)
plots at the same time (we reset directly after plotting):

par (mfrow=c{2,1))

plot (utm.maasS$d.river, utm.maas$zn)

title("Maas river bank: zinc concentrations/distance")

plot (log {(utm.maasS$d.river), utm.maas$Zn)

title("Maas river bank: zinc concentrations/1n\{(distance\)")
par (mfrow=c (1,1))

Using GRASS with other Open Source tools (1) 347
Zinc contamination severeness Flood frequency classes
8 e 54 = oﬁ-ﬁﬂ %o
o insignificant o annual
ﬁ n A low b A 2-5years (ﬂ
8 + medium iéﬁ o 8 + every5years 88 A
n % high o &éa
1 o crss od“:,o:o o&‘:a:.s
Wno® Bhpn®
g b : &
8 +ado 00° oy 2 S5En G0t oy
il T T T T T n T T T T T
269000 270000 271000 272000 273000 269000 270000 271000 272000 273000
Histogram of utm.maas$Zn Histogram of log{utm.maas$Zn)
L
) ﬁ)
2 g o
g2 w 3 -
o b o
2 2
w W
(=] (=]
I T T e | T T T T 1
0 500 1000 1500 2000 4 5 6 7 8
uim.maas$Zn log{utm.maas$Zn)
Normal Q-Q Plot Normal Q-Q Plot
Zn data log(Zn) data
L])
o]
3 & 3 o
@ & W
o [=%
3 Ch i e
= o
T T I L T T Ll
-2 -1 [1} 1 2 -2 -1 0 1 2
Theoretical Quantiles Theoretical Quantiles

Figure 13.9. R/GRASS: Maas river bank data: zinc contamination analysis. Upper left: classes
of zinc contamination severeness; upper right: flood frequency classes: 1=annual, 2=2-5 years,
and 3=every 5 years; middle left: histogram of zinc concentrations [ppm]; middle right: his-
togram of logarithmic transformed zinc concentrations; lower left: QQ plots (Quantile-Quantile
plot) of zinc data; lower right: QQ plots of log-transformed zinc data

The plot shows that moving from the river border, the zinc concentrations tend
to decrease as expected.

We can look at the zinc data in more detail by analyzing the zinc concentra-
tions for their severeness. First a new object is created with ordered data using
the “utm.maas” object which contains the zinc concentrations. We generate
five classes with defined thresholds, the example is based on the R/GRASS
interface’s help pages:

Zn.o <- as.ordered(cut (utm.maas$Zn, labels=c("insignificant",
"low", "medium”, "high", "crisis"), breaks=c (100, 200,
400, 700, 1000, 2000), include.lowest=T})

table(Zn.o)

348 OPEN SOURCE GIS

To plot the ordered zinc severeness data as a map with legend and title (com-
pare Burrough and McDonnell, 1998:107), enter:

plot (utm.maas$Seast, utm.maas$north, pch=codes(Zn.o), xlab="",
ylab="", asp=1)
legend (x=c (270000, 270600), y=c(5652100,5652700), pch=c(1:5),
legend =levels{(Zn.o))
title("Maas river bank: zinc contamination severeness")

The codes () function is required to access the category numbers for the leg-
end symbols. The legend is placed at certain coordinates into the map. The
levels () function shows the different category labels for the legend. You
can always call a function directly to see which results are generated (e.g.
levels (Zn.o)). The map is shown in Figure 13.9.

Next we plot a map of flood frequency classes, see Figure 13.9. The function
rug () allows us to plot small lines at the map border to illustrate the data
points position:

plot (utm.maas$east, utm.maas$ncrth, pch=utm.maas$Fldf,xlab="",
ylab="", asp=1)

floodtext <- c("annual","2-5 years","every 5 years")

legend (x=c (270000, 270800), y=c(5652300, 5652700), pch=c(l:3),
legend=floodtext)

rug (utm.maas$east, side=1, ticksize=0.02)

rug (utm.maas$north, side=2, ticksize=0.,02)

title("Maas river bank: Flood frequency classes"

We can identify points in this map using mouse (the value will be printed into
the map, end the query with right mouse button):

identify (utm.maas$east, utm.maas$north, labels=utm.maas$Fldf)

Let us have another look at the “flood frequency class Fldf” related to zinc
contamination. We can compute the mean and standard deviation (sd) and
do the same with log-transformed data (compare Burrough and McDonnell,
1998:107). At the end, we print the results:

ZnFldf.mean <- round{tapply(utm.maas$Zzn,
as.factor (utm.maas$F1df), mean), 2)
ZnFldf.sd <- round{tapply (utm.maas$zn,
as.factor (utm.maasSF1df), sd), 2)
logZnFldf.mean <- round(tapply{log(utm.maas$Zn),
as.factor (utm.maas$rldf), mean), 3)
logZnFldf.sd <- round(tapply(log(utm.maas$zn),
as.factor (utm.maas$rFldf), sd), 3)
ZnFldf.table <- cbind{(Zn¥Fldf.mean, ZnFldf.sd, logZnFldf.mean,
logZnF1ldf.sd)

Using GRASS with other Open Source tools () 349

colnames (ZnFldf.table) <- c{("Mean 2Zn", "SD Zn",
" Mean log(Zn)", " SD log(Zn)")
ZnFldf.table

We use the cbind() function to paste all calculations into the table
ZnF1df.table, it looks as follows:

Mean Zn SD Zn Mean log(Zn) SD log(Zn)

1 769.77 423.17 6.484 0.609
2 264.98 176.62 5.421 0.531
3 205.78 105.33 5.239 0.416

Given the flood frequency classes as: 1=annual, 2=2-5 years, and 3=every 5
years, it can be seen that high zinc contaminations only appear for areas with
annual flooding. Further tests such as t-test analysis (Burrough and McDon-
nell, 1998:107) of the statistical significance between flood frequency classes 2
and 3 are not covered here. These calculations are described in the R/GRASS
interface manual page (enter: ?utm.maas).

When working with geospatial data, it is always recommended to explore
the data distribution. To view the zinc concentrations distribution (using the
Zn data and log-transformed Zn data) run:

par (mfrow=c (1, 2))

hist (utm.maas$Zn, breaks=seq(0, 2000, 100), col="grey")

hist (log(utm.maas$Zn), breaks=seq(3.5, 8.5, 0.25), col="grey")
par (mfrow=c(1,1))

The histogram of the non-transformed data shows the typical skewness as usu-
ally found for geospatial data. It is normalized through the logarithmical trans-
formation, see Figure 13.9.

Another visual test for normal distribution of data sets are QQ plots
(Quantile-Quantile plot):

par (mfrow=c (1, 2))
ggnorm{utm.maas$Zn)

gqline (utm.maas$zn)

title("Zn data", line=0.7)
qgnorm(log (utm.maas$zn))

qaqline (log (utm.maas$Zn})
title("log(Zn) data”, line=0.7)
par (mfrow=c(1l,1})

Figure 13.9 depicts both graphs. The QQ plot of the log-transformed data is
much closer to normal distribution than the plot of untransformed zinc data.
A method for generating a smooth continuous raster surface from spatially
distributed sample points is the “kernel density” plot. It uses a moving Gaus-
sian kernel which represents a bivariate probability density function (Bailey

350 OPEN SOURCE GIS

2D Kernel density representation of Zinc

[=]

o

=]

5 4

wn

w

wn

A

8 o insignificant

[Tyl

o A low

© + medium
* high
< crisis

o

(=]

(=)

o —

[Ty}

w

wn

(=]

(=]

T3]

u

w

u

(=]

(=]

= -

[y}

w

[Tg]

I I I I T I
270000 270500 271000 271500 272000 272500

Figure 13.10. R/GRASS: Maas river bank soil data: zinc contamination 2D kernel density
(bandwidth: 300m)

and Gatrell, 1995:84-88). We generate a kernel density plot from the zinc data
as follows:

plot (G, kde2d.G(G, utm.maasS$east, utm.maas$north, h=c(300,300),
Z=utm.maas$Zn) *maasmask, col=grey(20:1/20))
contour.G{G, kde2d.G(G, utm.maas$east, utm.maasS$north,
h=c {300, 300), Z=utm.maas$Zn) *maasmask, add=T)
points (utm.maas$east, utm.maas$north, pch=codes (Zn.o))
legend (x=c (269900, 270700), y=c(5652100, 5652700), pch=c(l:5),
legend=levels(Zn.aq))
title("2D Kernel density representation of zinc")

Figure 13.10 shows the resulting map. During calculation we have multiplied
the zinc data with a mask maasmask to obtain kernel densities only for the
project area.

Using GRASS with other Open Source tools (1) 351

density(x = utm.maas$Zn*-0.2) density(x = utm.maas$Zn~-0.4)
g
(=
& =
-
= =
2 % o
§ 5
o
& 2
&
o A (=B
1 I I I 1 1 I 1
020 0.25 030 0.35 040 045 0.05 0.10 0.15
N =98 Bandwidth = 0.01708 N =98 Bandwidth = 0.01059
density(x = utm.maas$Zn*-0.6) density(x = utm.maas$Zn*-0.8)
g -
& 1 o
& - 2 -
g o & .
c c
& o | 8 8
w o~ o |
o o -

) | L T : r |. - T - T I T I I
000 002 004 006 -0005 0005 0015 0.025

N =98 Bandwidth = 0.005012 N =98 Bandwidth = 0.002142

Figure 13.11. R/GRASS: Maas river bank soil data: Distribution of power-transformed zinc
contamination data (various exponents)

Data transformations and trend surfaces. For geospatial analysis, data sets
with skewed distribution are usually normalized (for a discussion see Bailey
and Gatrell, 1995:172). As we have seen above, the zinc concentrations show
a skewed distribution. We apply a logarithmic transformation, which is often
used for normalization of geospatial data. A density plot of the log-transformed
data shows a bimodal distribution (compare Figure 13.9). Now we want to try
different approaches to normalize the data set, based on power transformation:

par {(mfrow=c(2,2))
plot (density {utm.maas$zZn"-0.2))
plot (density (utm.maas$zZn"-0.4))
plot {(density(utm.maas$zZn"-0.6))
plot (density(utm.maas$zZn"-0.8))
par (mfrow=c (1, 1))

The resulting distribution curves are shown in Figure 13.11.

352 OPEN SOURCE GIS

Before performing variogram modeling and kriging interpolation it is im-
portant to remove possible trends from data sets. As the zinc data proba-
bly contain a global trend, we apply a quadratic trend analysis (using Least
Squares) to verify the situation:

library (spatial)

zinc <- data.frame (utm.maasSeast, utm.maas$north, utm.maas$Zn)
names (zinc) <- c{"x", "y", "z")

zinc.ls2 <- surf.ls (2, zinc)

The function surf.ls () generates a trend model which is stored in object
zinc.1ls2. Next step is to evaluate a trend surface from this trend model by
trmat.G() function. We can plot the resulting quadratic trend surface map
zinc.trend2:

zinc.trend2 <- trmat.G(G, zinc.1s2)

plot (G, zinc.trend2)

points{zinc)

text (zinc$x, zincSy, zinc$z, pos=1l, cex=0.75)

Alternately we can also generate a cubic trend surface in a similar way:

zinc.1ls3 <- surf.ls (3, zinc)

zinc.trend3 <- trmat.G(G, zinc.1ls3)

plot (G, zinc.trend3)

points(zing)

text (zinc$x, zinc$y, zinc$z, pos=1, cex=0.75)

Finally we write the cubic trend surface map to GRASS as raster map:

rast.put (G, lname=“"soilsph.cts"™, zinc.trend3)
ql)

We can display this raster map with d.rast.

13.2.3 Using R in batch mode

R supports batch mode processing for a fully scripted usage. Within GRASS
(maybe also scripted) geospatial data analysis can be automated. The desired
analysis methods have to be stored in a text file (e.g. R.trendph.batch):

library (GRASS)
G <~ gmeta()

#load map:

soilsph <- rast.get (G, "soils.ph", c(F))

names (soilsph) <- c("ph")

soils.ph.frame <- data.frame(east (G), north{G), soilsph$ph)
soilsph$ph[soilsph$ph == 0] <- NA

Using GRASS with other Open Source tools (1) 353
names (soils.ph.frame) <- c("x", "y", "z")

ffcalculate cubic trend surface:

library(spatial)

ph.ctrend <- surf.ls(3, na.omit (soils.ph.frame))
ph.ctrend.surf <- trmat.G(G, ph.ctrend)

fwrite plot to PDF:

pdf ("trendSurf.pdf")

plot (G, ph.ctrend.surf, col=terrain.colors(20))

contour.G(G, ph.ctrend.surf, add=T)

title("Cubic trend surface of pH values in Spearfish region")
dev.off ()

#cleanup workspace:
rm(list = ls(all = TRUE))

The last command is needed to avoid that the loaded data are stored in the R
workspace file .RData. Alternately the flag --no-save can be used when
running the script. The other commands used here will be known from previ-
ous sections. This script is run within GRASS (Spearfish LOCATION) through
R batch mode:

grass53 /usr/local/share/grassdata/spearfish/userl
g.region -dpa res=100

R BATCH R.trendph.batch

cat R.trendph.batch.Rout

The function (and eventual error) messages are echoed in the file
R.trendph.batch.Rout for batch process verification. In the exam-
ple above, a plot of the trend surface in PDF format is included. You should
find this file in the current directory if no error occurs.

The next example shows a batch job which calculates the empirical cumu-
lative distribution function (ECDF) of a given map. Here we make use of
environment variables so that we can write the script as a general script for any
filename. Store the script as R.ecdf .batch:

#usage:

export R_INMAP=rastermap
R BATCH R.ecdf.batch

—> ecdfplot.pdf

library (GRASS)
G <- gmeta ()
library(stepfun)

#read input map from environment variable $R_INMAP:
map <- rast.get (G, Sys.getenv("R_INMAP"))

354 OPEN SOURCE GIS

mapname <- Sys.getenv ("R_INMAP")
names (map)<- c("z")

#generate data frame:
map.frame <- data.frame (east (G), north(G), map$z)
names (map.frame) <- c("x", "y", "z")

#write graph to PDF:
pdf ("ecdfplot.pdf")

tstr <- c("ECDF (hypsometric integral) :", mapname)

#plot ECDF:

mapecdf <- ecdf (map.frame$z)

plot (mapecdf, verticals=T,do.points=F, xlab="elevation", main=tstr)
for (i in seq(0,360,10)) lines{c{i,i),c(0,1),1lty=2,col="red2")
dev.off ()

#cleanup workspace:
rm(list = 1ls(all = TRUE))

To run it you have to define the GRASS raster map name to be analyzed in the
environment variable SR INMAP. We define it before starting the batch job
(here for bash shell):

grass53 /usr/local/share/grassdata/spearfish/userl
g.region -dpa res=30

export R_INMAP=elevation.dem

R BATCH R.ecdf.batch

cat R.ecdf.batch.Rout

The resulting PDF file ecdfplot . pdf contains the graph showing the hypso-
metric integral of the input map (here: elevation.dem). When using above
approach with environment variables, complex (pseudo) GRASS scripts can
be written to extend functionality of GRASS by R.

13.3. GPS DATA HANDLING

The FreeGIS Web portal lists a set of programs freely available to handle
GPS data. A basic problem to be addressed is the data transfer from GPS
device to GIS including eventual datum transformations. These issues heavily
depend on the GPS device. We only refer to a few software packages:

» GPS Manager (GPSMan'") is a graphical manager of GPS data that makes
possible the preparation, inspection and edition of GPS data in a friendly
environment. GPSMan supports communication and real-time logging with
both Garmin and Lowrance receivers and accepts real-time logging infor-
mation in NMEA 0183 from any GPS receiver;

Using GRASS with other Open Source tools ({}) 355

= gpspoint'? is a program to get position, down- and up-load waypoints,
routes and tracks form your GPS to your computer. Several Garmin de-
vices are supported by gpspoint;

m GPStrans' is a program which allows for track, route, and waypoint data
to be transferred to and from various Garmin GPS;

s GPSBabel'* reads and writes GPS waypoints in a variety of formats.
Backends include GPX, Magellan and Garmin serial protocols, Geo-
caching.com, GPSMan, Garmin Mapsource, Magellan Mapsend, and many
others. It runs on various operating systems.

GRASS itself provides two scripts: v.in.garmin.sh as well as
s.in.garmin.sh (both require gpstrans). However, no checks are
performed in these scripts for datum, projection and format of data. You must
check by yourself that your receiver, gpstrans and GRASS use the same
map datum and projection.

evaticm (GeoTIF ;
roads (SHAPE) |
Select mapis) and click:
Browse maps

© Query road map

< Zoom in (2x)

| ®Pan

| % Zoom out {-2x)

owered by MapServer Tt kn /\/ Road |

Figure 13.12. Screenshot of GRASS / UMN/MapServer demonstrational Web site as imple-
mented at ITC-irst

356 OPEN SOURCE GIS

13.4. WEBGIS APPLICATIONS WITH UMN/MapServer

An excellent, fast and flexible Open Source mapping Web software is
UMN/MapServer. On a basic level, the program is run through CGI (Com-
mon Gateway Interface). Then it only requires a definition file and a HTML
template (and GIS data of course) to respond to a variety of spatial requests
like making maps, scale-bars, and point, area and feature queries. The in-
stallation is quite convenient as the configuration for the Web mapping inter-
face can be done without any programming. For more complex applications,
UMN/MapServer can be enhanced using Java, JavaScript, PHP or other Inter-
net technologies. The MapScript extension which is based on PERL provides
access to the underlying UMN/MapServer C API. Developers may add map-
ping functions to their PERL scripts. With MapScript also SHAPE files can
be read or written. The UMN/MapServer software is freely available from
the UMN/MapServer Web site.”” It can be extended with UMN/MapServer
Applets'® to add menu icons into the map or other extended features which
require JAVA.

In addition, with GDAL and OGR libraries (shipped with GDAL),
UMN/MapServer reads common GIS raster and vector formats. When
GDAL was compiled with “libgrass” support (GDAL/libgrass page'’),
UMN/MapServer directly reads raster data from a GRASS LOCATION
through GDAL. With future releases of “libgrass” also vector and site data
may become supported. Figure 13.12 provides a screenshot of the simple
demonstrational GRASS / UMN/MapServer which is implemented at GRASS
Web site.'®

A more complex implementation using several Free Software tools is shown
in Figure 13.13. Requirements for this implementation are: Web server such
as Apache Server (with PHP), UMN/MapServer, GDAL/OGR, PROJ4, lib-
grass, GRASS and PostgreSQL/PostGIS. At the time of writing this book there
have been limitations to automatically color-resample those GRASS raster data
which contain more than 256 colors. If you intend to directly read from
GRASS LOCATION:S, consider to rescale the map range to 8bit which is
mostly sufficient for Web presentations (be sure not to use these maps in GIS
computations!). The GRASS module for rescaling is r.rescale.

To read raster data directly from a GRASS LOCATION, you need, as men-
tioned above, the “libgrass” which is available on the GRASS Web site and
CVS. This library reads the .grassrcS file for definition of LOCATION,
MAPSET and GISDBASE (compare also Section 11.3). The file has to be
stored in the $DOCUMENT ROOT directory (might be the $SHOME of the user-
ID under which the local Web server is running). Due to GRASS permissions
handling, the GRASS LOCATION data for UMN/MapServer have to be stored
with the same user-ID as the Web server is running.

Using GRASS with other Open Source tools (1}) 357

PHP/Per|

PostgreSQL/PostGIS
- point maps
— vector maps

Internet

MapServer/Apache
HTML Forms
Map display
Map query

External GIS maps
- GeoTIFF files
- Maplnfo files
- SHAPE/DBF files

User2

8o,

ﬁbgr‘q(
s GRASS location
—rasterm aps

UserN

{

Security Layer (Apache access restriction)

Figure 13.13. Sample UMN/MapServer implementation model

Two more files are required:

u UMN/MapServer definition file: to be stored in a map-script directory
in parallel to the htdocs/ directory (see sample in the Appendix C.1);

® a HTML template file which goes into the HTML space (into htdocs/
directory, see sample in the Appendix C.2).

Additionally you may want to add further GIS data in different formats (re-
member to verify the data copyrights when publishing data online).

The minimum requirements for a UMN/MapServer implementation are a
running Web server such as Apache, and appropriate access to the files. Once
running, you may want to enrich the server with JAVA or PHP, numerous public
mapservers are accessible on the Internet to get inspired.

NOTES

1 FreeGIS Project Web site, http://www.freegis.org

2 Maas river bank soil pollution data descriptions: gstat package documen-
tation; Burrough and McDonnell, 1998:309-311 (subset)

3 Maas river bank soil data GRASS LOCATION,
http://grass.itc.it/statsgrass/
maas_grass location.tar.gz

4 gstat software, http://www.gstat.org

)]

gnuplot software, http://gnuplot.sourceforge.net
6 gstat examples, http://www.gstat.org/examples.html

358 OPEN SOURCE GIS

7 R software, http://www.r-project.org
8 R Newsletter, http://cran.r-project.org/doc/Rnews/

9 R/GRASS interface,
http://cran.r-project.org/src/contrib/

10 geoR software,
http://www.est.ufpr.br/geoR/
11 GPS Manager, http://www.ncc.up.pt/gpsman/
12 gpspoint,
http://gpspoint.dnsalias.net/
13GPStrans, http://sourceforge.net/projects/gpstrans
14GPSBabel, http://sourceforge.net/projects/gpsbabel
15UMN/MapServer project, http://mapserver.gis.umn.edu
16UMN/MapServer Applets,
http://www2.dmsolutions.ca/mapserver/
17GDAL/libgrass page
http://www.remotesensing.org/gdal/frmt grass.html
18 Simple demonstrational GRASS / UMN/MapServer (Spearfish data),
http://grass.itc.it/start.html

References

Abramowitz, M., and L.A. Stegun, 1964. Handbook of Mathematical Functions. New York:
Dover, 297-300, 228-231.

Albertz, J., 1991. Grundlagen der Interpretation von Luft- und Satellitenbildern: Eine Ein-

fiihrung in die Fernerkundung. Darmstadt: Wissenschaftliche Buchgesellschaft.

Albrecht, J., 1992. GTZ-handbook GRASS. Univ. of Vechta.
http://grass.itc.it/gdp/

Alexandrov, A.D., A.N. Kolmogorov, M.A. Lavrent’ev (eds), 1989. Mathematics. Its content,
methods, and meanings. Vol. 2, 6th print. Cambridge (MA): MIT Press.

Arge, L., J.S. Chase, P. Halpin, L. Toma, J.S. Vitter, D. Urban, and R. Wickremesinghe, 2003.
Efficient Flow Computation on Massive Grid Terrain Datasets, Geolnformatica, 7(4), 283-
313.

Bailey, T.C., and A.C. Gatrell, 1995. Interactive spatial data analysis. Essex: Pearson.

Baker, W.L., and Y. Cai, 1992. The r.le programs for multiscale analysis of landscape structure
using the GRASS geographical information system. Landscape Ecology, 7(4), 291-302.
Baker, W.L., 2001. The r.le programs. A set of GRASS programs for the quantitative analysis
of landscape structure Version 5.0. Tech. report, Department of Geography and Recreation,

University of Wyoming, 11/2001.

Bartelme, N., 1995. Geoinformatik. Modelle, Strukturen, Funktionen. Berlin: Springer.

Becker, R.A., J.M. Chambers, and A.R. Wilks, 1988. The New S Language. London: Chapman
& Hall.

Bierhals, E., 1988. CIR-Luftbilder fiir die flichendeckende Biotopkartierung. Informations-
dienst Naturschutz Niedersachsen 5/88. Hannover, 77-104.

Bill, R., 1996. Grundlagen der Geo-Informations-Systeme. Analysen, Anwendungen und neue
Entwicklungen. Vol. 2, Heidelberg: Wichmann.

Bivand, R.S., 2000. Using the R statistical data analysis language on GRASS 5.0 GIS database
files. Computers & Geosciences, 26, 1043-1052.

Bivand, R.S., and A. Gebhardt, 2000. Implementing functions for spatial statistical analysis
using the R language. Journal of Geographical Systems, 3(2), 307-317.

Bivand, R.S., and M. Neteler, 2000. Open Source geocomputation: using the R data analysis
language integrated with GRASS GIS and PostgreSQL data base systems. Proc. 5th confer-
ence on GeoComputation, 23-25 August 2000, University of Greenwich, U.K.
http://reclus.nhh.no/gc00/gc009.htm

Blazek, R., M. Neteler and R. Micarelli, 2002. The new GRASS 5.1 vector architecture. Proc.
Open Source GIS — GRASS users conference, 11-13 September 2002, Trento, Italy.

360 OPEN SOURCE GIS

Brandon, R.J., T. Kludt, and M. Neteler, 1999. Archaeology and GIS — The Linux Way. Using
GRASS and Linux to analyze archaeological data. Feature article, Linux Journal (7), 50-54.

Brown, WM., M. Astley, T. Baker, and H. Mitasova, 1995. GRASS as an integrated
GIS and visualization environment for spatio-temporal modeling. Proc. Auto-carto XII,
ACSM/ASPRS, Charlotte, NC, 89-99.
http://www2.gis.uiuc.edu:2280/modviz/brown/papers/AC12.html

Bugayevskiy, L.M, and J.P. Snyder 2000. Map Projections. A reference manual. London,
Philadelphia: Taylor & Francis.

Burns, L.E., M.B. Werdon, and R.J. Newberry, 2000. Evaluation of Satellite and Airborne Syn-
thetic Aperture Radar Data for an Area Northeast of Fairbanks, Alaska. Electronic Docu-
ment: http://www.astf.aeromap.com/dggs_fr.html

Burrough, P.A., 1986. Principles of GIS for land resources assessment. Oxford: Clarendon
Press.

Burrough, P.A., and R.A. McDonnell, 1998. Principles of Geographical Information Systems.
New York: Oxford University Press.

Chambers, J.M., and T.J. Hastie, 1992. Statistical Models in S. London: Chapman & Hall.

Chavez, P.C., S.C. Guptill, and J.A. Bowell, 1984. Image processing techniques for Thematic
Mapper data. Proc., Am. Soc. Photogr. 2, 728-743.

Chavez Jr., P.S., 1996. Image-based atmospheric corrections — revisited and improved. Photogr.
Eng. & Rem. Sens., 62(9), 1025-1036.

Clarke, K.C., 2002. Getting started with Geographic Information Systems. 4th ed. New Jersey:
Prentice Hall.

Clarke, K.C., B. Parks, and M. Crane, (eds) 2002. Geographic Information Systems and Envi-
ronmental Modeling. Upper Saddle River, New York: Prentice Hall.

Cressie, N.A.C., 1993. Statistics for spatial data. New York: Wiley.

Dana, P.H., 2000. Map projections, coordinate systems. The Geographer’s Craft Project. De-
partment of Geography, The University of Colorado at Boulder.
http://www.colorado.edu/geography/gcraft/
notes/mapproj/mapproj f.html
http://www.colorado.edu/geography/gcraft/
notes/coordsys/coordsys_f.html

Desmet, P.J.J., and G. Govers, 1996. A GIS procedure for automatically calculating the USLE
LS factor on topographically complex landscape units. J. Soil and Water Conservation, 51(5),
427-433.

Dikau, R., 1989. The application of a digital relief model to landform analysis in geomorphol-
ogy. In Raper, J. (ed), Three dimensional applications in Geographic Information Systems.
London: Taylor & Francis, 51-77.

Evenden, G., 1995. Cartographic Projection Procedures for the Unix Environment — A User’s
Manual. U.S. Geological Survey Open File Report 90-284.
http://www.remotesensing.org/proj/

Fortune, S.J., 1987. A Sweepline Algorithm for Voronoi Diagrams. Algorithmica 2, 153-174.

Furlanello, C., M. Neteler, S. Merler, S. Menegon, S. Fontanari, A. Donini, A. Rizzoli, and C.
Chemini, 2003. GIS and the randomForest Predictor: integration in R for tick-borne disease
risk assessment. Proceedings of “Distributed Statistical Computing 2003”, Eds: Hornik, K.,
Leisch, F., Vienna, Austria, 20-22 March 2003.

Goodchild, M.F, L.T. Steyaert, and B.O. Parks (eds), 1993. Geographic Information Systems
and Environmental Modeling. New York: Oxford University Press.

Goodchild, MF,, L.T. Steyaert, and B.O. Parks (eds), 1996. GIS and Environmental Modeling:
Progress and Research Issues. Ft. Colins: GIS World, Inc.

REFERENCES 361

Goodchild, M.F., L.T. Steyaert, and B.O. Parks (eds), 1997. GIS and Environmental Modeling.
Proceedings of the 3rd conference on GIS and Environmental Modeling. Santa Fe: NCGIA,
CDROM.

GSFC/NASA, 2001. Landsat-7 Science Data User’s Handbook. Electronic Document:
http://ltpwww.gsfc.nasa.gov/IAS/handbook/
handbook htmls/chapterll/chapterll.html

Haan, C.T., B.J. Barfield, and J.C. Hayes, 1994. Design Hydrology and Sedimentology for Small
Catchments. New York: Academic Press.

Hake, G., and D. Griinreich, 1994. Kartographie. 7th ed. Berlin: de Gruyter.

Hibbard, W. L., B.E. Paul, D.A. Santek, C.R. Dyer, A.L. Battaiola, and M.-F. Voidrot-Martinez,
1994. Interactive Visualization of Earth and Space Science Computations. Computer 27(7),
July 1994, 65-72.

Hildebrandt, G., 1996. Fernerkundung und Luftbildmessung: fiir Forstwirtschaft, Vegetations-
kartierung und Landschaftsokologie. Heidelberg: Wichmann.

Hofierka, J., 1997a. Modeling natural phenomena in a GIS environment. Ph.D. dissertation (in
Slovak), Comenius University, Bratislava, p. 83.

Hofierka, J., 1997b. Direct solar radiation modelling within an open GIS environment. In: Hodg-
son, S., M. Rumor, and J.J. Harts (eds). Geographical Information *97: Third Joint European
Conference & Exhibition on Geographical Information. Proc., Vienna, Austria, April 1997,
1,575-584.

Hofierka J., J. Parajka, H. Mitasova, and L. Mitas, 2002. Multivariate Interpolation of Precipi-
tation Using Regularized Spline with Tension. Transactions in GIS, 6(2), 135-150.

Hofierka, J. and M. Siiri, 2002. The solar radiation model for Open source GIS: implementation
and applications. Proceedings of the “Open Source Free Software GIS — GRASS users con-
ference 2002”, Eds: Ciolli, M. and P. Zatelli, Trento, Italy, 11-13 September 2002. CD-ROM.
p- 19.

Horn, B.K.P., 1981. Hill Shading and the Reflectance Map. Proceedings of the IEEE, 69(1),
14-47.

Hutchinson, M.F., R.J. Bischof, 1983. A new method for estimating the spatial distribution of
mean seasonal and annual rainfall applied to the Hunter Valley, New South Wales. Australian
Meteorological Magazine 31, 179-184.

Hutchinson, MLF. , 1991. The Application of thin plate smoothing splines to continent-wide data
assimilation. In: Data Assimilation Systems, Jasper, J.D. (ed), BMRC Research Report N.27,
Bureau of Meteorology, Melbourne, 104-113.

Thaka, R., and R. Gentleman, 1996. R: A Language for Data Analysis and Graphics. J. of Comp.
and Graph. Stat., (5)3, 299-314.

Jacoby, W.G., 1997. Statistical graphics for univariate and bivariate data. Sage university pa-
pers: Series 7, Quantitative applications in the social sciences (117). Thousand Oaks, Cali-
fornia: Sage.

Journel A.G., 1996. Modelling uncertainty and spatial dependence: Stochastic imaging. Int. J.
of Geogr. Inf. Sys. 10(5), 517-22.

Kasten,F., 1996. The Linke turbidity factor based on improved values of the integral Rayleigh
optical thickness. Solar Energy, 56(3), 239-244.

Kramer, H.J., 1996. Observation of the earth and its environment: survey of missions and sen-
sors. 3rd ed. Berlin: Springer.

Krcho, J., 1973. Morphometric analysis of reliefon the basis of geometric aspect of field theory.
Acta Geographica Universitae Comenianae, Geographica Physica 1, Bratislava, SPN.

Krcho, J., 1991. Georelief as a subsystem of landscape and the influence of morphometric pa-
rameters of georelief on spatial differentiation of landscape-ecological processes. Ecology
/CSFR/ (10), 115-157.

362 OPEN SOURCE GIS

Longley, P.A., M. Goodchild, D.J. Maguire, and D.W. Rhind, 2002, Geographic Information
Systems and Science. London: Wiley.

McCauley, J.D., and B.A. Engel, 1995. Comparison of Scene Segmentations: SMAP, ECHO
and Maximum Likelihood. IEEE Trans. on Geosc. & Rem. Sens., 33(6): 1313-1316.

Maling, D.H., 1992. Coordinate Systems and Map Projections. 2nd ed. Elmsford, New York:
Pergamon Press.

Mandelbrot, B.B., 1983. The fractal geometry ofnature. New York: Freeman.

Mather, P.M., 1999. Computer processing of remotely-sensed images. Chichester: Wiley.

Mitas, L., W.M. Brown, and H. Mitasova, 1997. Role of dynamic cartography in simulations of
landscape processes based on multi-variate fields. Comp. & Geosc., 23, 437-446.
http://skagit.meas.ncsu.edu/~helena/gmslab/

lcgfin/cg-mitas.html

Mitas, L., and H. Mitasova, 1999. Spatial Interpolation. In: P. Longley, M.F. Goodchild, D.J.
Maguire, and D.W. Rhind (eds), Geographical Information Systems: Principles, Techniques,
Management and Applications. New York: Wiley, 481-492.

Mitasova, H., and L. Mitas, 2002. Modeling Physical Systems. In: K.C. Clarke, B. Parks, and M.
Crane (eds), Geographic Information Systems and Environmental Modeling. Prentice Hall,

189-210.

Mitasova, H., and L. Mitas, 2001. Multiscale soil erosion simulations for land use manage-
ment, In: R.S. Harmon, and W.W. Doe (eds), Landscape erosion and landscape evolution
modeling. New York: Kluwer Academic/Plenum Publishers, 321-347.

Mitasova, H., J. Hofierka, M. Zlocha, L.R. Iverson, 1996. Modeling topographic potential for
erosion and deposition using GIS. Int. J. of Geogr. Inf. Sci., 10(5), 629-641.

Mitasova H., L. Mitas, W.M. Brown, D.P. Gerdes, 1. Kosinovsky, and T. Baker, 1995. Modeling
spatially and temporally distributed phenomena: New methods and tools for GRASS GIS.
Int. J. of GIS, 9(4), Special issue on Integrating GIS and Environmental modeling, 433-446.

Mitasova H., and L. Mitas, 1993. Interpolation by Regularized Spline with Tension: I. Theory
and Implementation. Math. Geol. 25, 641-655.

Mitasova H., and J. Hofierka, 1993. Interpolation by Regularized Spline with Tension: II. Ap-
plication to Terrain Modeling and Surface Geometry Analysis. Math. Geol. 25, 657-667.

Monmonier, M., 1996. How to Lie with Maps., 2nd ed. Chicago: University of Chicago Press.

Moore, 1.D., A.K. Turner, J.P. Wilson, S.K. Jensen, and L.E. Band, 1992. GIS and land surface-
subsurface process modeling. In: Goodchild, M.F., B. Parks, and L.T. Steyaert (eds), Geo-
graphic Information Systems and Environmental Modeling. Oxford University Press, New
York.

Moore I.D., and G.J. Burch, 1986. Modeling erosion and deposition: Topographic effects. Trans-
actions ASAE, 29, 1624-1640.

Moore, 1.D., R.B. Grayson, and A. R. Ladson, 1991. Digital terrain modelling: a review of
hydrological, geomorphological and biological applications. Hydrol. Processes, 5, 3-30.
Moore, I.D., and Wilson, J.P., 1992. Length-slope factors for the Revised Universal Soil Loss
Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47,423-

428.

Moran, M.S., R.D. Jackson, P.N. Slater and P.M. Teillet, 1992. Evaluation of simplified proce-
dures forretrieval of land surface reflectance factors from satellite sensor output. Rem. Sens.
Env. 41, 169-184.

NCGIA, 2000. The NCGIA Core Curriculum in GIScience. Electronic Document:
http://www.ncgia.ucsb.edu/giscc/

Neteler, M., 1999. Spectral Mixture Analysis von Satellitendaten zur Bestimmung von Bodenbe-
deckungsgraden im Hinblick auf die Erosionsmodellierung. M.Sc. Thesis, Univ. of Han-
nover.

REFERENCES 363

Neteler, M., 2000. GRASS-Handbuch. Der praktische Leitfaden zum Geographischen Informa-
tionssystem GRASS. Geosynthesis 11, Univ. of Hannover.
http://grass.itc.it/gdp/handbuch/

Neteler, M., 2001a. Towards a stable open source GIS: Status and future directions in GRASS
development. In: Brovelli, M. (ed), 2001. The Geomatics Workbook N. 2. Polytec. di Milano.
ElectronicDocument:
http://geomatica.ing.unico.it/workbooks2/index.html

Neteler, M., 2001b. Volume modeling of soils using GRASS GIS 3D tools. In: Brovelli, M. (ed),
2001. The Geomatics Workbook N. 2. Polyt. di Milano. Electronic Document:
http://geomatica.ing.unico.it/workbooks2/index.html

Neteler, M. (ed), 2002. GRASS 5.0 Programmer’s Manual. Geographic Resources Analysis Sup-
port System. ITC-irst, Trento. Electronic Document:
http://grass.itc.it/grassdevel .html

Oliver, C., and S. Quegan, 1998. Understanding Synthetic Aperture Radar Image. London:
Artech House.

O’Rourke, J., 1998. Computational Geometry in C. 2nd ed., Cambridge: Cambridge University
Press.

Page, J., M. Albuisson, L. Wald, 2001. The European solar radiation atlas: a valuable digital
tool. Solar energy, 71, 81-83.

Pebesma, EJ., and C.G. Wesseling, 1998. Gstat: a program for geostatistical modelling, predic-
tion and simulation. Comp. & Geosc. 24(1), 17-31.

http://www.gstat.org

Pebesma, E.J. 2001. Gstat user’s manual. gstat 2.3.3. Electronic document:
http://www.gstat.org

Peek, J., G. Todino, and J. Strang, 2001. Learning the Unix Operating System. A Concise Guide

for the New User. 5th ed. Cambridge: O’Reilly & Associates.

Pohl, C., and J.L. van Genderen, 1998. Multisensor image fusion in remote sensing: concepts,
methods and application. Int. J. of Rem. Sens., 19, §23-854.

Powell M.J.D., 1992. Tabulation of Thin Plate Splines on a very fine two-dimensional grid.
In Braess D., and L.L. Schumaker (eds), Numerical Methods of Approximation Theory 9:
221-44.

Rase, W.D., 1998. Visualisierung von Planungsinformationen: Modellierung und Darstellung
immaterieller Oberfldchen. Bundesamt fiir Bauwesen und Raumordnung, Forschungen H.
89, Bonn.

Raymond, E., 1997. The cathedral and the bazaar. Electronic document:
http://www.ccil.org/ esr/writings/cathedral-paper.html

Raymond, E., 1999. The cathedral and the bazaar. Musings on Linux and Open Source by an
accidental revolutionary. Cambridge: O’Reilly & Associates.

Redslob, M., 1998. Radarfernerkundung in niedersidchsischen Hochmooren. Diss. Inst. f. Land-
schaftspfl. u. Natursch., Univ. of Hannover.

Rektorys, K., 1969. Survey of Applicable Mathematics. Cambridge, MA: MIT Press and Lon-
don: Iliffe Books Ltd., 365.

Ribeiro, J.R., and P.J. Diggle, 1999. geoS: A geostatistical library for S-PLUS. Technical report
ST-99-09, Dept of Math. and Stat., Lancaster University.
http://www.maths.lancs.ac.uk/~ribeiro/geoR.html

Ribeiro, J.R., and P.J. Diggle, 2001. geoR: A package for geostatistical analysis. R-NEWS (1)2,
15-18. Electronic document:
http://cran.r-project.org/doc/Rnews

Rigollier, Ch., O. Bauer, L. Wald, 2000. On the clear sky model of the ESRA - European Solar
radiation Atlas - with respect to the Heliosat method. Solar energy, 68, 33-48.

364 OPEN SOURCE GIS

Ripley, B.D., 1996. Pattern recognition and neural networks. Cambridge: Cambridge University
Press.

Richards, J.A., and J. Xiuping 1999. Remote sensing digital image analysis: An introduction.
3rd ed. Heidelberg: Springer.

Robbins, A., and D. Gilly, 1999. Unix in a Nutshell: A Desktop Quick Reference for SVR4 and
Solaris 7. 3rd ed. Cambridge: O’Reilly & Associates.

Robinson, A.H., J.L. Morrison, P.C. Muehricke, A.J. Kimerling, and S.C. Guptill, 1995. Ele-
ments of Cartography. Reprint of 6th ed. New York: Wiley.

Sandmeier, S., 1995. A physically-based radiometric correction model. Correction of atmo-
spheric and illumination effects in optical satellite data of rugged terrain. Diss. Geogr. Inst.,
Univ. Ziirich.

Scharmer, K., and J. Greif (eds), 2000. The European solar radiation atlas. Vol. 2: Database and
exploitation software. Paris: Les Presses de 1'Ecole des Mines.

Schowengerdt, R., 1997. Remote sensing: Models and methods for image processing. 2nd ed.
San Diego: Academic Press.

Shapiro, M., and J. Westervelt 1992. r.mapcalc. An algebra for GIS and image processing. US-
Army CERL, Champaign, Illinois, 422-425.

http://grass.itc.it/gdp/

Siever, E. (ed), J.P. Hekman, S. Figgins, and S. Spainhour, 2000. LINUX in A Nutshell: A Desk-
top Quick Reference. 3rd ed. Cambridge: O’Reilly & Associates.

Singh, S.M., 1988. Brightness temperature algorithms for Landsat Thematic Mapper data.
Rem. Sens. Env., 24, 509-512.

Snyder, J.P. 1987. Map Projections, A working manual. U.S. Geological Survey Professional
Paper 1395. Department of the Interior. Washington, D.C.

Siri, M., and J. Hofierka, 2004. A new GIS-based solar radiation model and its application to
photovoltaic assessments. Transactions in GIS, 8(2), 175-190.

Talmi, A., and G. Gilat, 1977. Method for Smooth Approximation of Data. J. of Computational
Physics, 23, 93-123.

Teillet, P.M., B. Guindon, and D.G. Goodenough, 1982. On the slope-aspect correction of mul-
tispectral scanner data Canad. J. Rem. Sens., 8(2), 36-44.

Ulaby, ET., R.K. Moore, and A.K. Fung, 1982. Microwave remote sensing: Active and passive.
Vols 1, 2, 3. Reading (Mass.): Addison-Wesley.

U.S. Army CERL, 1993. GRASS4.1 Reference Manual. U.S. Army Corps of Engineers, Con-
struction Engineering Research Laboratories, Champaign, Illinois, 1-425.

Venables, W.N., and B.D. Ripley, 2000. S programming. New York: Springer.

Venables, W.N., and B.D. Ripley, 2002. Modern applied statistics with S. 4th ed. New York:
Springer. Supplements:
http://www.stats.ox.ac.uk/pub/MASS4/

Vermote, E., D. Tanré, J.L. Deuzé, M. Herman, and J.J. Morcrette, 1997. Second Simulation of
the Satellite Signal in the Solar Spectrum, 6S: An Overview. IEEE Trans. Geosc. Rem. Sens.
35(3), 675-686.

Wadsworth, R., and J. Treweek, 1999. Geographical Information systems for Ecology: An In-
troduction. Essex: Longman.

Wahba, G., 1990. Spline modelsfor observational data. CNMS-NSF Regional Conference se-
ries in applied mathematics, 59, SIAM, Philadelphia, Pennsylvania.

Watson, D. F. 1992. Contouring: a guide to the analysis and display of spatial data. Oxford:
Pergamon.

Watson, K., 1993. Processing remote sensing images using the 2-D FFT-noise reduction and
other applications. Geophysics, 58(6), 835-852.

REFERENCES 365

Webster, R., and M. A. Oliver, 2001. Geostatistics for environmental scientists. Chichester: Wi-
ley.

Wessel, P., and W.H.F. Smith, 1996. A Global Self-consistent, Hierarchical, High-resolution
Shoreline Database. J. of Geophys. Res., 101, 8§741-8743.

Wheeler, D., 2003. Why Open Source: Look at the numbers! Electronic Document:
http://www.dwheeler.com/oss_fs why.html

Wilson, J.P., and J.C. Gallant, 2000. Terrain Analysis: Principles and Applications. New York:
Wiley.

Wood, J.D., and P.J. Fisher, 1993. Assessing Interpolation Accuracy in Elevation Models. [IEEE
Comp. Graph. and Appl., 13(2), 48-56.

Wood, J., 1996. The Geomorphological characterisation of Digital Elevation Models. Diss.,
Dep. of Geogr., Univ. of Leicester, U.K.
http://www.geog.le.ac.uk/jwo/research/dem char/thesis/

Yeung, A.K., 1998. Unit 051 - Information Organization and Data Structure, NCGIA Core
Curriculum in GIScience, NCGIA. Electronic Document:
http://www.ncgia.ucsb.edu/giscc/units/u051/

Zevenbergen, L.W., and C.R. Thorne, 1987. Quantitative analysis of land surface topography.
Earth Surf. Proc. and Landf., 12, 47-56.

Zhou, J., D.L. Civico, and J.A. Silander, 1998. A wavelet transform method to merge
LANDSAT-TM and SPOT panchromatic data. Int. J. of Rem. Sens., 19(4), 743-757.

This page intentionally left blank

Appendix A
Using UNIX text tools for GIS data preparation

The GNU text tools cat, cut, join, head, more, paste, sed and tail and the awk
(“pattern scanning and processing language”) provide a range of possibilities to modify ASCII
texts and tables. Often attribute tables are delivered in ASCII formats such as CSV (Comma
Separated Values format) or blank delimited text. Especially in scripts the tools introduced here
are quite helpful to automate text formatting.

In a small sample session we show modifications of the Spearfish soils map legend which is
available at GRASS Web site and already included in the Spearfish sample data set (see
/usr/local/share/grassdata/spearfish/soils legend.txt). This legend is an
ASCII table, which contains further attributes for the soils map. We want to show how to modify
this table to a reclass rules file applicable to v.reclass and r.reclass. First let’s have a
look into the file:

more soils_legend.txt

Within the more program continue to a next page with <SPACE>, quit with g, search for a
phrase with /. Above file may look like this:

:no data:

:AaB:Alice fine sandy loam, 0 to 6
:Ba:Barnum silt loam

:Bb:Barnum silt loam, channeled
:BcB:Boneek silt loam, 2 to 6
:BcC:Boneek silt loam, 6 to 9
:BeE:Butche stony loam, 6 to 50

.1

— O NS W N = O

The legend columns are separated by “”. In the first column the category numbers (attribute
IDs) are stored. In the second column the first letter always capital is the initial letter of the soil
name. The second letter is a capital if the mapping unit is broadly defined; otherwise, it is a
small letter. The third letter, always a capital, A, B, C, D, E or F, indicates the slope. Symbols
without slope letter are those of mapping units that do not have slope as part of the name. In the
third column the full name of the soil is written along with the typical slope.

First we want to reduce the legend to attribute ID, soil name initials and text attribute
without the slope information (this may go into another table or derived from the Spearfish

368 OPEN SOURCE GIS

elevation.dem). Note that we proceed step-by-step although you can also compose the
commands to a few (or even a single) lines. The cut tool cuts column-wise depending on the
specified delimiter. We specify delimiter : and select the first column (with field parameter £),
then pipe the result into a new file:

cut -d’,’ -fl soils_legend.txt > soils_legend2.txt
Checking the new file with more shows us:

:no data:

:AaB:Alice fine sandy loam
:Ba:Barnum silt loam
:Bb:Barnum silt loam
:BcB:Boneek silt loam
:BcC:Boneek silt loam
:BeE:Butche stony loam

o]

— O DW= O

Starting from the new file we will select only the text label:
cut -d’:’ -f3 soils_legend2.txt > soils_legendlabels.txt
Checking the new file with more shows us:

Alice fine sandy loam
Barnum silt loam
Barnum silt loam
Boneek silt loam
Boneek silt loam
Butche stony loam

[...]

Note that the first line is empty since the no-data field doesn’t contain a text label. Alternatively
you can compose above steps to one command:

cut -d’,’ -fl1 soils_legend.txt | cut -d’':’ -£f3 >\
soils_legendlabels. txt

Now further hints: In case you want to cut a column at a specific position, you can use the -b
flag:

cut -bl,2 soils_legend.txt

—_— o s WO
s W Www o

-]

If you want to see only the first lines of a file, use head. The number of lines to be displayed
has to be entered with a preceding minus character:

APPENDIX A: Using UNIX text tools for GIS data preparation 369

head -4 soils_legend.txt
The result looks as follows:

:no data:

:AaB:Alice fine sandy loam, 0 to 6
:Ba:Barnum silt loam

:Bb:Barnum silt loam, channeled

w N PO

If you want to see only the last lines, use tail.Itis used similarto head:
tail -3 soils_legend.txt
leading to the output:

53:WaA:Weber loam, 0 to 2
54:Wb:Winetti cobbly loam
55:water

Both may be combined to show a portion of the text file (here only lines 3 to 5):
head -5 soils_legend.txt | tail -3

Here the head command shows the first five lines, the tail command the last three of these
five lines:

2:Ba:Barnum silt loam
3:Bb:Barnum silt loam, channeled
4:BcB:Boneek silt locam, 2 to 6

In order to sequentially concatenate two files, use cat:
cat filel file2 > fileland2

If you need to paste two files column-wise, use paste. You can optionally change the column
delimiter from the default tabulator to another character. The command join is allowing to
work similar to a simple database management system — it joins together ASCII tables according
to unique column entries.

A powerful string editor is sed which allows to exchange, add or cut off strings from text
files by rule definitions.

With awk which we already used throughout the book, you can perform calculations or
formatted printing. For details please refer to the related manual pages.

Appendix B
Selected equations used in GRASS modules

In this section we provide equations for selected GRASS modules, for those users who
would like to have deeper understanding of the methods used in these modules and gain more
confidence in advantages and limitations of the provided functionality. The equations are also
helpful for those who would like improve or extend the modules.

While the number of modules for which we can provide the equations is currently limited
we plan to extend this type of in depth description to other modules in future editions.

B.1. BASIC STATISTICS

Arithmetic Mean:

Y % (B.1)

1
u:;(x1+xz+,..+x,,):

Arithmetic Mean is not unitless.

Median:

The Median is the value below which 50% of the sample lie. To find the Median the data have
to be ordered from smallest to highest. In case of an odd number of samples it is the middle
value, in case of an even number of samples it is as half way between the two middle samples.
Median is not unitless.

Variance:

o= 1Y (xp-m? (B.2)
p=1

Variance is not unitless.

372 OPEN SOURCE GIS

Standard Deviation:

1 n
6= Y Gp—p)2 (B.3)
n—1 &=
p=1
Standard Deviation is not unitless.
Coefficient of variation: 5
v=—x100 (B.4)
|l
Coefficient of Variation is unitless.
Skewness: ,
n _
skewness = ! Yy (x”__"> (B.5)
n = c

Skewness is zero for any symmetric distribution. A distribution with a long tail towards larger
values has a positive skewness (left skewed, typical for remote sensing images, Schowengerdt,
1997: 118). Skewness is unitless and sensitive to outliers.

Kurtosis: .
, 1 & (xp—
kurtosis = [— Yy (-p—ﬂ>] -3 (B.6)
n &= o]
p=1
Kurtosis is zero for a normal distribution. If a distribution has a positive kurtosis, than the peak
is sharper than of a Gaussian distribution. Kurtosis is unitless and sensitive to outliers.

Covariance: Lo
Z (Xpm — tm)(Xpn — #n) (B.7)

p=1

covariance =
n—1

B.2. INTERPOLATION

Inverse distance weighted interpolation (IDW). The method is based on an as-
sumption that the value at an unsampled point can be approximated as a weighted average of
values at points within a certain cut-off distance, or from a given number m of the closest points
(typically 10 to 30). Weights are usually inversely proportional to a power of distance (Watson,
1992, Burrough, 1986) which, at an unsampled location r = (x,y), leads to an estimator

. L, z(ri)/|r—rif?
Fr)=Y we(r) =522 L (B.8)
) ,)::i iz(ri YT
where p is a parameter (typically p = 2, for more details on the influence of this parameter see
Watson, 1992). GRASS modules use p = 2.

Regularized Spline with Tension. The function is a sum of a trend function and a
radial basis function with an explicit form which depends on the choice of the measure of
smoothness, for more details see Mitasova and Mitas, 1993, Mitasova et al., 1995:

z(r) = T(r) + }ZV: AjR(r by, (B.9)

J=t

APPENDIX B: Selected equations used in GRASS modules 373

The trend function 7(r) is given by

T(r) =Y aifi(r) (B.10)
=1

where {f;(r)} is a set of linearly independent functions (monomials) which have zero smooth
seminorm. R(r,rm) is a radial basis function with an explicit form which depends on the
choice of weights for partial derivatives in the smooth seminorm. See Mitasova and Mitas,
1993, Mitasova et al., 1995 for the RST smoothness seminorm, which includes derivatives of
all orders with their weights decreasing with the increasing derivative order.

RST can be generalized to an arbitrary dimension and the corresponding d-variate formula
for the radial basis function is given by

Ry(r,r;) =Rq(Ir~r;|) = Ry(r) = p "2 y(3,p) - é (B.11)

where 7 = [r —r;|, 8 = (d —2)/2,and p = (@r/2)%. Further, @ is a generalized tension param-
eter, and ¥(8,p) is the incomplete gamma function, not to be confused with semivariogram (
Abramowitz and Stegun, 1964). For the special cases d = 2,34 (s. surf.rst, s.vol.rst,
s. volt. rst, respectively), the equation B. 11 can be rewritten as:

Ry(r) = ~[E1(p) +Inp + Cg] (B.12)

R3(r):\/§erf(\/5)—2 (B.13)

l—eP
Rilr) = —— =1 (B.14)
where Cg = 0.577215... is the Euler constant, E;(p) is the exponential integral function and
erf(,/p) is the error function (Abramowitz and Stegun, 1964), while the trend function is a

constant (M = 1):

T(x)—ai, d=2,34 (B.15)

The coefficients ay, {Aj} are obtained by solving the following system of linear equations

N
ap + Z A [R(rm,rm) + 8j,~w0/wj] = i=1,...,N (B.16)
j=1

Aj=0. (B.17)

™=

Jj=1

B.3. TOPOGRAPHIC ANALYSIS

Topographic parameters slope, aspect and curvatures are computed using the principles of
differential geometry using the work by Krcho, 1973, Krcho, 1991 and Mitasova and Hofierka,
1993. Before deriving mathematical expressions for these parameters, using the basic principles
of differential geometry, the following simplifying notations are introduced:

0z dz 9%z %z 02z
fxf—a, fy*g‘a frx‘ma f)’)’“@z" fwvg;g; (B'l8)

374 OPEN SOURCE GIS

and

p=fit+ft, q=p+1 . (B.19)

The steepest slope angle Y and aspect angle & are computed from gradient YV.f = (fy, fy) (its
direction is upslope) as follows

y= arctan./p (B.20)

Sy

o= arctan?— (o == 0 in west direction) (B.21)
X
Sometimes we need to compute change of the surface in a direction given by an angle @. The
directional derivative of the surface z = g(x,y) can be computed as

_9% g .. %
E= == axcosou > sino (B.22)

where (x,y) are the georeferenced coordinates, and o is aspect (given direction).

Curvatures. In general, a surface has different curvatures in different directions. For ap-
plications in geosciences, the curvature in gradient direction (profile curvature) is important be-
cause it reflects the change in slope angle and thus controls the change of velocity of mass flow-
ing down along the slope curve. The curvature in a direction perpendicular to the gradient (tan-
gential curvature) reflects the change in aspect angle and influences the divergence/convergence
of water flow. Both curvatures are measured in the normal plane. Equations for these curvatures
can be derived using the general equation forcurvature K of a plane section through a point on
a surface (Rektorys, 1969, Mitasova and Mitas, 1993).
The equation for the profile curvature is

Sl 2 iyt oS}
Ky = . (B.23)
Ve

The equation for tangential curvature ¥; at a given point is derived as the curvature of normal
plane section in a direction perpendicular to gradient (direction of tangent to the contour line)

K = fxxfyz_szfxfy 'P‘fyyf:\‘z . (824)
Ve
The positive and negative values of profile and tangential curvature can be combined to define
the basic geometric relief forms (Krcho, 1973; Krcho, 1991; Dikau, 1989). Each form has
a different type of flow. Convex and concave forms in gradient direction have accelerated and
slowedflow,respectively, and convex and concave forms in tangential direction have converging
and diverging flow, respectively.
Other types of curvatures, such as the principle, mean, or Gauss curvatures as well as curva-
tures in an arbitrary direction can be computed directly from the interpolation function.

Gradient and curvatures for volumes. Volumes can be modeled by a trivariate
interpolation function in the general form of w = f(x,y,z). When this function is differentiate
at least up to the 2nd order, the topographic parameters for volumes (3D) can be computed
directly from its partial derivatives (Mitasova et al., 1995). First, we introduce simplifying
notations for partial derivatives of this function:

APPENDIX B: Selected equations used in GRASS modules 375

_of _of _of

f\’ av fy* ay’ fz* Za (B25)
?f @f 2f
f\;\' T a 2 va)' axay f\Z axaz
o f a*f 32f
f)‘y = 2,fyz ayaz fzz T 37

Volume topographic parameters are also derived from differential geometry, using additional
independent spatial coordinate (z). Theoretically, such topographic parameters can be derived
up to N-dimensional space (see Hofierka, 1997a). For a three-dimensional cartesian space these
parameters have the following form:

Size of gradient:
VS = 2t 521 f7 (B.26)

Direction of gradient can be defined by two angles.
Horizontal angle A,:

Ap — arctan (%) (B.27)
and vertical angle Bp:
NANS
B, = arctan { +—— (B.28)
1z

The change of gradient size in its direction has the following form:

avf| _Efxx'} 2ffifz 2l fy f Sy 42050502 *fz Sz

i L (B.29)

When we note principal curvatures in 3D cartesian space as k1, k3, k3, then the Gauss-Kronecker
curvature K can by expressed as:

K:kl*kz*k3 (B30)
The mean curvature M is:
ky t ky +k
M- 2l3 (B.31)

In cartesian system these equations can be expressed as follows:

S2 By bR VR f = bt = 2o byt

s (B.32)
(,/1+f}+f} ffz’-)
hiy hiz hia
har h2 hy
hyy haz has (B.33)

T3+ D)

376 OPEN SOURCE GIS

where:

R ST (B.34)
VARN RN RN
by = b L2 27y, (B.35)
VARN RS R
hyp = y F2(l) (B.36)
NAER RN RS
R | B VY (B.37)
VARN RS RN
P STy Y (B.38)
VARN/ RN AW
Sz 12(1 4 f2) (B.39)

R T - S—
NARN RN RN

Estimation of partial derivatives. To compute the above described equations for
gradients and curvatures we need to estimate first and second order partial derivatives.

In the RST-based modules, partial derivatives of RST functions are used. First, several
definitions are introduced

n-3 (B.40)
— ‘(n"/)z
R(rj) =2 [——‘i,—— (B.41)
J
.12 f’(n’/)z _
Muﬂzz@mu)fgc i (B42)

J
Partial derivatives for the bivariate RST basis function can then be expressed as follows:

R(rj) oy (x=xb])
—2 ,,R(rj)T, [12 (B.43)
2p(. _liy2 2
d R(;]) :R”(rj) (x “;) 'le(rj)p_%i)_ (B44)
ox} ry ry

whereas the derivatives, according to y, are found easily from Equation B.44 by exchange of x
toy. The mixed derivative is given by

a2R , . R(r: — o] N

These expressions for first and second order derivatives are used for the compulation of slope,
aspect and curvatures in the modules s . surf . rst, v.surf.rst and r.resamp.rst. Op-
tionally, the values of these partial derivatives are output by the module s.surf.rst when
using the flag -d .

APPENDIX B: Selected equations used in GRASS modules 377

Partial derivatives for trivariate RST :

R(rj) = erﬁexp [— (%)2} ——(Pil‘fe'f(%) (B.46)
R'(rj) = (pir}e'f(%) —\/1?(%}+%2) exp {— (%)2] (B.47)

In r.slope.aspect second order polynomial approximation of a surface defined by given
point and its 3x3 neighborhood is used leading to the following equations for the partial deriva-
tives (as used in Horn’s formula, Horn, 1981):

2(x,y) = ag + a1x + azy + azxy + asx® + asy’ (B.48)

By fitting this polynomial to the 9 grid points (the given point (x,y) and its 3 x3 neighborhood,
as shown below), using weighted least squares) we can derive the coefficient of this polynomial
as well as its partial derivatives (fx = a1, fy = a2, fu = 2a4, fyy = 2as, fxy = a3) while using
weight we = d; 2, d? = (x—x)? + (y — i) &

x-1,y+l ————- X, y+l ————— x+1,y+1
| I |
| | |
i [|
x-1,y ——==—-- Xpy —mommmooo xtl,y
I | |
I | |
I | |
x-1,y-1 -———- X, y-1 ————- x+1l,y-1
fi= (Zx—l,yfl _Zx+l,y-l)+ (sz—l,y_2Zx+l,y)+(zx~l,y+l _Zx-H,y+l) (B 49)
g 8Ax '
f, = (2x—t1y-t = Ze—1y+1) + (22ey—1 =22 y11) + (Tt 1y—1 = Lt 1y+1) (B.50)
4 8Ay)

Let us denote D{(x,8) = zxy+1 + 2xy-1 — 22y and D(8,y) = zyy1,y + 2x~1,y — 22xy- Then we
can write

. D(3,y+ 1)+ (4fol,y+4zx+1,y - SZx,y) +D(8,y—~ 1)
fue = e (B.51)
D@ 1,8) + (4zgyt1 +4zey1 —Bry) + D(x+1,)
= 12(Ay)2 (B.52)
C (Zy—ta1 2yt t) = @y a1~y ixed)
y = ATy (B.53)

where zyy is the elevation value at row y column x, Axis the east-west grid spacing and Ayis
the north-south grid spacing (resolution).

378 OPEN SOURCE GIS

B.4. INSOLATION

Equations for computation of solar energy related parameters used in r.sun (Hofierka,
1997b, Hofierka and Suri, 2002b, further citations in the manual page of r.sun). The clear-sky
solar radiation model applied in this module is based on the work undertaken for development
of European Solar Radiation Atlas (Scharmer and Greif (eds), 2000, Page et al., 2001, Rigollier
etal., 2000).

Solar geometry.
Declination d [rad]:
d = arcsin(0.3978 sin(j — 1.4 + 0.0355 sin(j — 0.0489)}) (B.54)

where:

j = 2mday/365.25 [rad)

Position of the sun in respect to a horizontal plane:

sinhy = CaycosT +-Cy3 (B.55)
CneosT +-C
cosho — _Cuicos? o (B.56)
\/(ng sin T)Z + (CyycosT + Cn)z
where:
)| =sin@cosd
C)3 = —cos@sind
Cypy = cosd
Cy; = cos@cosd
Cy3 = sin(psin b
Position of the sun in respect to an inclined plane:
$in8exp = C3y cos(T —~ N) + (3 (B.57)
where:
C}, = cosq’ cosd
Cl5 = sing’sind
sing’ = —cos@sinyy cosAx + sin@cos Yy
tan = — sinyy sindy
sin@sinyy cosAy +cos Pcosyy
Sunrise/sunset over a horizontal plane:
C
cos(Thyg) = — =2 (B.58)
Cyy
Sunrise/sunset over an inclined plane:
CI
cos(Tpys—N) = ——22 (B.59)

7
C3l

APPENDIX B: Selected equations used in GRASS modules 379

Extraterrestrial irradiance on a plane perpendicular to the solar beam Gy
[W/m?],

Go = Ipe (B.60)

where:
€ = 1+ 0.03344 cos(j — 0.048869)
values j and 0.048869 are in radians.

Extraterrestrial irradiance on a horizontal plane G, [W/m?].

G()h = Go sin ho (B6 l)

Beam irradiance on a horizontal plane B, [W/m?].

By, = Goel 08662 Tik m 8g(m) i o (B.62)
where:

p/po=e
AR = 0.061359(0.1594 + 1.123ho + 0.065656k3) /(1 -+ 28.9344ho 4 277.397142)

! = ho + ARy
m = (p/po)/(sinh -+0.50572(hy’ + 6.07995)~1-6364)

where values h(r)ef and 6.07995 are in degree
3r(m) = 1/(6.6296 + 1.7513m — 0.1202m? + 0.0065m> — 0.00013m*)

(—2/8434.5)

if m <20
Sk(m) = 1/(10.4-+0.718m) if m> 20
Beam irradiance on an inclined plane B; [W/m?].
B; = Gl ~0-8662 Tux m 8g(m)) $in8eyp (B.63)
Diffuse irradiance on a horizontal plane B [W/m?].
Dy, = GoFg(ho)Tn(Tpx) (B.64)

where:
Tn(Trx) = —0.015843 +0.030543 T1.x + 0.0003797 TI}
Fy(hg) = Ay +Azsinhg + Assin hy
A’l =10.26463 - 0.061581T ¢ + 0.0031408fo
A; =0.0022/Tn(Tk)
ifA'l Tn(Tik) <0.0022
Al = A’]
ifA| Tn(Trk) > 0.0022
Ay = 2.04020 4 0.018945 Ty g + 0.01 1161 TLZK
Ay = —1.30254-0.039231 Ty ¢ + 0.0085079 TLZK

380 OPEN SOURCE GIS

Diffuse irradiance on an inclined plane D; [W/m?].

Di = DyFs (B.65)

where:

if plane is in shade (e.g. 8gxp < Qand hy > 0):
Fy=F(w)
F(w) = ri(yn) + (sinyy —yv cosyy — msin® (%)) 0.252271

if plane is sunlit under clear sky:

ifhy > 0.1rad:
Fe =F{yw)(1 —Kp) +Kp sinBex,,/ sinhg

ifho < 0.1rad:
F, = F(‘YN)(I - Kb) + Kp sinyny COSALN/(O.I - 0.008/10)
Al =Ag —AN
Av = Ay

f—m<Ajy<m

AN =Aly — 2R

YAy >
Ay =Ajy+21
ifAjy < —T
F(yn) = ri(v) + (sinyy —yw cosyy — msin® (§)) (0.00263 — 0.712K), — 0.6883K?)

Ky = B,/ Gop,
ri{(yn) = (1+cosyn)/2

Diffuse ground reflected irradiance on an inclined plane R; [W/m?].

Ri= PgGh"g(YN) (B.66)
where:
rg(¥n) = (1 —cosyn)/2
Gy =B, +Dy
with Gy, in [W/m?]
Symbols.

® Position of the grid cell (solar plane):

¢ geographical latitude [rad]
7 elevation above sea level [m]
Y~ slope angle [rad]

AN aspect (orientation, azimuth) - angle between the projection of the normal on the hori-
zontal plane and east [rad]

¢ relative geographical latitude of an inclined plane [rad]

A’ relative geographical longitude [rad]

APPENDIX B: Selected equations used in GRASS modules 381

Parameters of the surface (plane):

pg mean ground albedo

Date-related parameters:

day day number 1-365 (366)

J Julian day number expressed as a day angle [rad]

T time of computation [decimal hours/rad]

Thys time of sunrise and sunset over the local horizon

Tprs time of sunrise and sunset over the inclined grid cell (plane)

O solar declination [rad]

€ correction of the variation of sun-earth distance from its mean value
Solar position:

ho solar altitude — an angle between sun and horizon [rad]

Ag solar azimuth — an angle between sun and meridian measured from east [rad]

AN angle between the vertical plane containing the normal to the surface and vertical
plane passing through the center of the solar disc [radl

Sexp solar incidence angle - an angle between sun and the (inclined) plane [rad]
Solar radiation:

Io solar_const = 1367 W/m?

Go extraterrestrial irradiance on a plane perpendicular to the solar beam {W/m
Gy, Gy = By + Dy, — global solar irradiance on a horizontal plane [W/m?]
G; Gi = B; + D; - R; — global solar irradiance on an inclined plane [W/m

B, beam irradiance on a horizontal plane [W/m?]
2
]

2
2)

B; beam irradiance on an inclined plane {W/m
Dy, diffuse irradiance on an horizontal plane [W/m?)
D; diffuse irradiance on an inclined plane [(W/m?]

R; diffuse ground reflected irradiance on an inclined plane [W/m?]
Parameters of the atmosphere:

p/po correction of station elevation [-]

Trx Linke turbidity factor [-]

T corrected Linke turbidity factor (7;. = 0.8662 Tj), see Kasten, 1996)
m relative optical air mass [-]

Sr(m) Rayleigh optical thickness [-]

Parameters of the radiation transmission:

Fy(ho) diffuse solar elevation function

Tn(Tyk) diffuse transmission function

F(ynv) function accounting for the diffuse sky irradiance distribution

Kp proportion between beam irradiance and extraterrestrial solar irradiance on a horizontal
plane

ri(yny) fraction of the sky dome viewed by an inclined plane [-]

re(yn) fraction of the ground viewed by an inclined plane [-]

Appendix C
UMN/MapServer sample configuration

This appendix section contains a sample UMN/MapServer definition file and a sample
UMN/MapServer HTML template. The example contains read routines for vector data (SHAPE
format) and raster data (GeoTIFF and GRASS LOCATION). Please refer to Section 13.4 for
further details.

C.1. UMN/MapServer DEFINITION FILE

This sample UMN/MapServer definition file defines the map, projection and coordinates
settings.

UMN/MapServer / GRASS:

this file contains the map definitions

This program is Free Software under the GNU GPL (>=2).
Markus Neteler 2001

H

You need:
* grassrc5 stored in $SDOCUMENT_ROOT
(e.g. lustr/local/httpd/htdocs/),
which may be the HOME of the apache user,
containing the entries:
GISDBASE: /usr/local/share/grassdata
LOCATION_NAME: spearfish
MAPSET: PERMANENT
* a tmp directory: /tmp/mapserver (with Apache Alias)
* q start file with this URL to the cgi-bin inside:
http://localhost/cgi-bin/mapserv ?map=\
Jusr/local/httpd/map-script/mapserver. map
* the spearfish. html defining the map/html template
* this mapserver.map containing the map definitions

FHroH oW TR H W H R W W H W W

384 OPEN SOURCE GIS

NAME GRASS
STATUS ON
SIZE 500 400

Spearfish

w S E N
EXTENT 590000 4914000 609000 4928000
UNITS METERS

Start of web interface definition

WEB

reference HTML file:
TEMPLATE /ust/local/httpd/htdocs/spearfish.html

#temp data absolute path:
IMAGEPATH/tmp/mapserver/

#temp data relative path:
IMAGEURL "/tmp/"

max/min zoom:
MINSCALE 1500
MAXSCALE 155000

END # Web

the small reference map, should get a red zoom box
REFERENCE
STATUS ON
IMAGE "/usr/local/httpd/htdocs/spearfish/refmap.png"
SIZE 187 150
EXTENT 590000 4914000 609000 4928000
COLOR 200 200 200
OUTLINECOLOR 255 0 0
END

Start of scalebar
SCALEBAR
IMAGECOLOR 255 225 204
LABEL
COLOR 000
SIZE tiny
END
STYLE 0
SIZE 100 3
COLOR 255 0 0
OUTLINECOLOR 0 0 O
UNITS KILOMETERS
INTERVALS 3
STATUS ON
END

APPENDIX C: UMN/MapServer sample configuration 385

Start of legend
LEGEND
KEYSIZE 18 12
IMAGECOLOR 255 225 204
LABEL
TYPE BITMAP
SIZE MEDIUM
COLOR 0 0 87
END
STATUS ON
END

maps, order determines display order: first here is below, following on top

#raster layer available in GeoTIFF (8bit recommened):
routtiff -t in=elevation,dem out=elevation
convert -colors 256 elevation.tif elevation2.tif
mv elevation2.tif elevation.tif
LAYER
NAME dem
TYPE RASTER
STATUS ON
OFFSITE 0
#switch off map at certain min scale (1:1000):
MINSCALE 1000
DATA /ust/local/httpd/htdocs/spearfish/elevation.tif
END

#GRASS raster map directly from location (8bit only):
LAYER
NAME soils
TYPE RASTER
STATUS ON
DATA "/usr/local/share/grassdata/spearfish/\
PERMANENT/cellhd/soils™"
END # Layer

#vector layer in SHAPE:
#v.out.shape map=roads type=line pref=roads cats=string
LAYER
NAME roads
TYPE LINE
STATUS DEFAULT
DATA /usr/local/httpd/htdocs/spearfish/roads
TOLERANCE 5
LABELITEM CAT_ID
TEMPLATE /usr/local/httpd/htdocs/spearfish/roads.html
OFFSITE 0
CLASS

386 OPEN SOURCE GIS

NAME "Road"

COLOR 80 80 80

LABEL
POSITION CC
SIZE SMALL
COLOR 0 0 225

END

END
END

END # Map File

C.2. UMN/MapServer HTML TEMPLATE

This is a sample HTML template file for UMN/MapServer:

<HTML>

<HEAD>

<TITLE>GRASS - UMN/MapServer</TITLE>

<META name="Author" content="Markus Neteler 2001 (c) GNU GPL>=2">
</HEAD>

<BODY bgcolor=#FFFFCC>

<FORM method=GET action="/cgi-bin/mapserv" name="mform">
<SCRIPT language="javascript" type="text/javascript">
FUNCTION fullmap() {
document.mform.imgext.value="590000 4914000 609000 4928000";
document.mform.imgxy.value="250.5 200.5";
document.mform.zoom[1].checked="true";
document.mform.elements[3].checked="true";
document.mform.submit();

}
</SCRIPT>

<CENTER>
<TABLE border=5 cellpadding=10 width=100%>
<TR><TD>
<TABLE>
<TR><TD align="center">
<INPUT type="hidden" name="mode" value="browse">
Spearfish (Lawrence), South Dakota

<INPUT NAME="img" TYPE="image" src=" [img] " width=500\
height=400 bordercolor=#FFFFFF border=3>
</TD></TR>
<TR><TD align="1left">

Powered by UMN/MapServer / GRASS

APPENDIX C: UMN/MapServer sample configuration 387

 <img src=" [scalebar] " alt="Scale bar"\
align="middle">
 <img sre=" [legend] " alt="Scale bar"\
align="middle" >
</TD></TR>
</TABLE>
</TD><TD>
<TABLE width=100%>
<TR><TD>
<INPUT TYPE="image" name="ref" sre=" [ref] " width=187\
height=150 bordercolor=#0000FF border=1>

<INPUT type="submit" value="Refresh/Query">

<SELECT multiple name="1ayer" size=3>
<option value="soils" [soils_select]> soils map (GRASS)
<option value="dem" [dem_select]> elevation (GeoTIFF)
<option value="roads" [roads_select]> roads (SHAPE)
</SELECT>

Select map(s) and click:

<INPUT type="radio" name="mode" value="browse" checked>
Browse maps

<INPUT type="radio" name="mode" value="query" >
Query road map

</TD></TR>
<TR><TD>

<INPUT type="radio" name="zoom" value=2 [zoom_2_check]>
Zoom in (2x)

<INPUT type="radio" name="zoom" value=1 [zoom_1_check]>
Pan

<INPUT type="radio" name="zoom" value=—2 [zoom_-2_check]>
Zoom out (—2x)

<P>

<INPUT type="button" value="Full map" onClick="fullmap () ">

<INPUT type="hidden" name="imgxy" value="250.5 200.5">

<INPUT type="hidden" name="imgext" value=" [mapext] ">

<INPUT type="hidden" name="map" value=" [map] ">

</P>

</TD></TR>
</TABLE>
</TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Index

3D interpolation, 166
3D raster volume, 157
3D vectors, 131
4D interpolation, 175
aerial color image, 59
aerial photo, 210
annotation bar, 255, 257
camera, 256
focal length, 256
map scale, 256
nadir, 254
optical axis, 254
orthophoto See also orthophoto, 257
plumb line, 254
plumb point, 254
scanning, 258
segmentation, 268
aerial photography, 253
See also orthophoto, 253
albedo, 224
animations
in 2D, 183
in 3D, 191
anisotropy, 162
apparent pixel radiance at sensor, 222-223
arc segments, 9
arc-node representation, 9
ARC/INFO ASCII GRID format
export, 67
import, 59
ARC/INFO Binary GRID format
import, 59
arcs
vector, 9
area measurement, 253
area size
raster map, 93
vector map, 142
areas, 8-9, 131
ASCII raster format

export, 67
import, 59
aspect, 109
ASTER/Terra satellite, 208
ASTER/TERRA, 228
ATKIS, 81
atmospheric effects, 202, 222
correction, 224
attributes, 9-10
AVHRR format
import, 60
awk, 82, 88, 95, 151, 163, 273, 367
azimuth, 16
background execution, 293
bash, 280, 354
batch mode, 280
bias, 222
BIL format
import, 60, 206
BIN format
export, 67
import, 60
binary arrays format
import, 60
bit per channel, 209
bounding gap free import, 66
boxplot, 339
brightness levels, 209-210
Brovey transformation fusion, 241
BSQ format
import, 206
buffer, 118
camera calibration certificate, 255
cartesian coordinates, 14
cat, 367
category labels, 10, 69, 93, 140
assigning to raster maps, 93
category numbers, 9, 69, 140
category
cross-category reports, 115

390

cd, 28, 34
CD-ROM, 208, 223
CELL raster type, 55
central meridian, 16
centroid, 68
CEOS format
import, 206
CERL, xxv
CGl, 273, 281, 356
channel
bandwidth, 205
correlation, 239
radiometric resolution, 205
spatial resolution, 205
spectral resolution, 205
chgrp, 28
Chi-square test, 245
chmod, 28
chown, 28
classification method
MLC, 245, 247
partial supervised, 244, 250
SMAP, 244
supervised, 244, 248
unsupervised, 244-245
cluster algorithm, 245
color composites, 238
color coordinate system, 213
color index, 116
color tables, 86, 210
special, 292
columns, 9
combining of raster images, 115
complete spatial randomness, 156
condition of continuity, 158
continuous 3D field, 8
continuous data, 8

continuous fields, 53, 55, 151, 179, 292

contour lines, 107
digitizing, 137

convex hull, 146

coordinate system, 14, 16
State Plane, 19
UTM, 18

cosine correction, 225

cost surfaces, 120

covariance function, 175

covariograms, 328

cp, 306

cross-validation, 161, 166

cs2cs, 46

CSV format, 82

cut, 273, 367

CVS, 4, 271-272

d.area, 182

d.barscale, 179

d.erase, 76, 86, 88, 106, 120, 300

OPEN SOURCE GIS

d.frame, 88, 142, 178, 333

d.his, 180

d.histogram, 210, 295, 300

d.legend, 86, 179, 300, 333

d.mon, 30, 85, 178

d.rast, 31, 67, 85-87, 89, 104, 106, 120, 123, 146,
169, 177, 180, 210, 290, 292-293, 295-296,
299-300, 305-306, 332-333

d.rast.labels, 179

d.rast.num, 123

d.rast.region, 274

d.redraw, 88

d.site.labels, 154, 179

d.siter, 155

d.sites, 31, 120, 154, 177, 332-333

d.sites.qual, 155

d.text, 179, 182

d.vect, 31, 74, 76-77, 106, 120, 141, 145-146, 177,
270

d.vect.area, 106, 141, 145

d.vect.labels, 141, 179

d.what.rast, 66, 87, 224, 279

d.what.sites, 155

d.what.vect,74, 142

d.where, 142, 153

d.zoom, 66-67, 88-89, 141, 143

dark objects, 224

dataintegration, 13

data model transformations, 11

data set
Imagery See also Imagery data set, 206
Maas river bank See also Maas river bank

soil pollution, 327

Spearfish See also Spearfish data set, 28

database management systems See also
DBMS, 10

database, 9
datum transformation, 47
datum

see map datum, 16
DBMS, 10, 131, 306
DCELL raster type, 55
dcorrelate.sh, 214
debugging

shell scripts, 280
default region, 37, 41
DEFAULT_WIND file, 26
DEM See also elevation model, 292
density plots, 342
densityslicing, 211
developable surface, 15
diffuse irradiance, 224
digital numbers, 213
digitizer board, 131
digitizing source, 134
digitizing

accuracy, 135

INDEX

maps, 133
rules, 133
vectors, 131
discrete data, 8
discrete field, 53
display, 62
distance map, 122
points to vector, 154
distance measurement, 253
diversity, 112
driver
HTMLMAP, 182
PNG, 181
x0 See also monitor, 177
DTD, 273
DTED format
import, 60
DXF format
export, 80
import, 74
DXF map
georeferencing, 75
E00 format
export, 79
import, 71
echo, 120, 280
edge detection, 234, 236
elevation data
LIDAR, 166
elevation model, 290
channels, 126
depressions, 125
generating vector lines, 107
interpolation from vector lines, 147
passes, 126
peaks, 126
pits, 126
planes, 126
re-interpolation See also interpolation, 292
resolution impact, 296
ridges, 126
shaded, 180
synthetic, 127
elevation, 11
ellipsoid, 14-15
Bessel, 19
Clarke 1866, 21
GRS80, 21
WGS84,21
empirical cumulative distribution function See
also R, ecdf(), 341
empirical cumulative distribution function, 353
EOF, 111
EPSG codes, 46
ERDAS/LAN format
import, 206
erosion

USPED, 322
risk, 298
RUSLE, 289
RUSLE3D, 289
topographic potential, 290
USLE, 289
USLE3D, 289
Etopo-5 DEM format
import, 60
excavated volume, 113
export
ARC/INFO ASCII GRID, 67
ASCII, 67
BIN, 67
ERDAS/LAN, 209
MPEG, 67
multi-channel data sets, 209
PPM, 67
sites format, 68
TARGA, 67
TIFF, 67
XYZ ASCII, 68
false color composite, 89, 212
false easting, 17
false northing, 17
FCELL raster type, 55
feature extraction, 268
feature space, 213, 243, 245
fiducial marks, 255
field representation, 8
filter area sizes, 93
filters
spatial convolution, 234
FIPS, 44, 79
fire application, 120
flow accumulation, 290
flow path, 315
flow routing algorithm
D-infinity, 125, 315
D8 (SFD), 312
MFD, 125
bivariate, 125
D8 (SFD), 124
flowline density, 291
format
ARC/INFO Binary GRID, 59
ASCII raster, 59
binary raster, 60
CEOS, 208
DTED, 60
DXEF, 74, 80
E00, 71, 79
GeoTIFF, 383
GIF animated, 193
GIF, 61
GRASS ASCII vector, 73, 79
GSHHS, 77

391

392 OPEN SOURCE GIS

HDF, 208 GIS functionality, 12
JPEG, 61 data integration, 13
MPEG, 193 image processing, 13
PNM, 61 network analysis, 13
SDTS, 73, 79 spatial analysis, 13
SHAPE, 78, 199, 356, 383 visualization, 13
SVG, 199 GIS
TIFF, 61 attribute component, 7
UNGENERATE, 72, 79 concepts, 7
USGS DOQ, 60 Internet based, 12
fractal dimension, 127 object oriented concept, 12
Free Software, 2, 4, 271 simulations, 13
freedom of software, 2 spatial component, 7
FreeGIS project, 2, 25, 327 Web mapping, 356
frequency domain, 233 GISDBASE, 25
g.copy, 93, 139, 297, 306 GLCF Maryland, 49, 207
g list, 29 GLOBE DEM format
g.mapsets, 33 import, 60
g.mlist, 32 gmake53, 284
g.mremove, 32 Gmakefile, 284
g.parser, 279 GMT format
g.projinfo, 38, 42 import, 60

g.region, 38, 42, 56, 67, 76-77, 89, 108, 120, 123, gnumeric, 78
127, 143, 157, 169, 186, 210, 290, 293, 295, gnuplot, 328

299 GPL, 2-3, 271
g.rename, 104 GPS data handling, 354
g.setproj, 58, 282 gps manager, 354
g3.createwind, 57, 172, 174 GPS, 20, 216, 267, 312
g3.list, 174 gpsbabel, 355
g3.region, 57 gpspoint, 355
g3.setregion, 57, 174 gpstrans, 355
gain level, 223 gradient filters, 234, 236
gain, 222 graphical output See also GRASS, monitor, 30
Gauss-Boaga Grid System, 17, 75 graphical output, 177
Gauss-Kriiger Grid System, 17, 19 GRASS 5.7, 23, 131
GCPs, 75, 205 GRASS ASCII vector format
identification, 216-217 export, 79
GDAL library, 12, 49, 57, 206, 223 import, 73
GDAL, 49 GRASS Development Model, 3
libgrass support, 356 GRASS Development Team, 4
gdalinfo, 49, 206, 223, 229 GRASS license See also GPL, 3
gdalwarp, 49 GRASS startup screen, 35, 39
gdal_translate, 49 GRASS, 3
geocoding binaries, 24
checking accuracy, 221 code distribution, 23
geodetic datum See also map datum, 15 coupling external software, 273
geographic coordinates, 14 CVS, 272
geoid, 15 data portability, 55
geomorphology, 126 DATABASE, 25, 35
geoR package, 344 datum transformation, 46, 49
georeferenced map, 13 documentation, 25
GeoTIFF format end session, 31
import, 58, 206 file management, 31
ghostscript, 198 floating point values, 100
GIF format GRASS ADDON PATH, 275
import, 61 install script, 25

gimp, 62, 179, 189, 259 location check, 38, 42

INDEX

LOCATION, 25
mailing lists, 25, 271
MAPSET, 25
modular concept, 273
monitor, 30
networked access (NFS), 26
PERMANENT mapset, 38, 42
GRASS
programming
environment, 271
in C language, 282
level of integration, 273
scripts, 274
XML, 273
raster data precision, 54
source code, 24
grass53, 29, 35, 39
erid cells, 9
grid points, 9
grid resolution, 38, 41, 56, 61
GRID3D raster type, 54
ground control points
See also GCPs, 216
ground truth areas, 248
GSHHS format
import, 77
gstat, 156, 328
GRASS support, 329
kriging, 329
site data, 330
variables, 329
variogram, 329
GTOPO30 DEM format
import, 60
atv, 194
gully, 171
erosion risk, 296
gv, 198
hardcopy maps, 196
hardware acceleration, 195
haze effects, 224
head, 367
head.$ARCH file, 285
heads-up digitizing, 131
high pass filtering, 234
histogram, 210
history file See also r.info, 166
history file, 90
history, 274
HTML image maps
hue, 238
hyperspectral data, 232
hypsometric integral, 341
i.class, 244, 248-249
i.cluster, 244245
i.composite, 239
ifft, 233

See also driver, 182

i.gensig, 244, 250
i.gensigset, 244, 251, 268
i.group, 64, 66, 215, 217, 245
i.his.rgb, 238
Lifft, 233
i.image.mosaic, 116
i.in.erdas, 207
i.maxlik, 244-246, 250
i.oif, 239
i.ortho.photo, 260
i.out.erdas, 209
i.pca, 233
i.points, 64, 6667
i.rectify, 65-67, 216, 219
irgb.his, 238, 240
i.smap, 244, 251, 268
i.target, 64, 67, 217
i.tm.dehaze, 224
i.vpoints, 219
if-conditions, 102,111
IHS color model, 237
IHS color transformation, 180
THS image fusion, 239
image enhancements, 231
image formats, 61
image fusion, 237

Brovey transformation, 241

IHS transformation, 239
image groups, 64, 214
image overlay

into new map, 115
image processing, 13
image pyramid, 251, 268
image ratios, 231
image segmentation

preprocessing, 234
image sharpening, 234
Imagery data set, 206, 208
import

ARC/INFO Binary GRID, 59

ASCII raster, 59

AVHRR, 60

BIL, 60, 206

binary arrays, 60

BSQ, 206

CEOS, 206

DTED, 60

ERDAS/LAN, 206

Etopo-5 DEM, 60

GeoTIFF, 58, 206

GIF, 61

GLOBE DEM, 60

GMT, 60

GTOPO30 DEM, 60

JPEG, 61

PNG, 61, 206

PNM, 61

393

394 OPEN SOURCE GIS

SUN-raster, 206 latitude-longitude, 17,46-47,78, 82, 110, 127,
TIFF, 58, 61, 206 168, 208, 216
USGS DOQ, 60 lattice, 9
USGS SDTS, 61 length-slope factor, 289
intensity (IHS model), 238 libgrass, 356
interpolation, 157 LIDAR, 166, 257
bilinear, 108 line length
IDW, 108, 160, 167 vector map, 142
inverse distance weighted See also line of sight, 127
interpolation, IDW, 160 lines, 8-9, 131
kriging, 175 location, 25, 35, 39, 383
large data sets, 166 auto-generate, 58, 280
multivariate, 171 create Latitude-Longitude, 35
nearest neighbor, 108 create State Plane, 42, 302
precipitation, 171 create UTM, 39
quality analysis (density), 342 create xy, 44, 206-207
quality analysis (ECDF), 341 create, 35, 39
RST, 108, 160 creating new, 34
comparison to IDW, 167 generating automated, 207
deviations, 165 remove, 34
estimating accuracy, 165 look up table See also LUT, 210
evaluate accuracy, 161 low pass filtering, 234
overshoots, 163 Ipr, 198
segmented processing, 166 Is, 71
smoothing, 163 LUT, 210, 222
tension, 161 lynx, 27
trivariate, 174 m.in.e00,71
tuning parameters, 160 m.sdts.read, 79
visible segments, 161, 167 m.svfit, 156
selecting method, 157 Maas river bank soil pollution data, 327-328, 331,
sharp edges, 171 344
splines (general), 175 mail, 90
splines See also interpolation, RST, 171 make.mpeg, 193
topographic influence, 171 map algebra, 9
visible segments, 150 See also r.mapcale, 99
volume-temporal, 174 map center coordinates, 127
interspersion, 112 map datum, 15, 20
IR-DOQQ, 307 NAD27, 19-20
isolines, 10, 107 NADS3, 19-20
JAVA, 12,273 transformation, 20
join, 367 WGS84, 20
JPEG format map design, 198
import, 61 map extent, 55
kernel density, 342, 349 map features, 9
konqueror, 27 map layers, 12
kriging, 175, 329 map legend, 86
gstat, 329 map mosaic, 104
labels map printing, 196
vector, 147 map projection, 14
Lambert Conformal Conic, 19 azimuthal, 16
Lambertian reflector, 225 conformal, 16
land cover factor, 289 conic, 16
land use class, 214 cylindrical, 16
land use/land cover maps, 242 equidistant, 16
LANDSAT-TMS5, 203, 205, 228, 239 equivalent, 16
LANDSAT-TM7, 207, 212, 222, 228, 240-241 map scale, 8, 151

landscape structure analysis, 130 map

INDEX

import and geocoding scanned, 61
maps
bounding gap free import, 66
mapset, 25, 35, 39
search path, 33
MASK, 221, 279
creating with r.mapcalc, 104
See also r.mask, 97
matrix filters, 234
Maximum Likelihood classifier
See also MLC, 244
meshes, 10
metadata, 57, 90, 140, 206
vector, 133
Minnaert correction model, 226
mixed pixels, 244, 250
mkdir, 28
MLC, 245, 247, 269
MODIS/Terra satellite, 208
monitor
frames, 178
list of displayed maps, 88
multiple, 177
size, 179
split, 178
more, 367
movies
See also animations, 193
moving window, 233
MPEG format
export, 67
mpeg_encode, 193
mplayer, 194
multimedia, 12
multispectral data, 203
reclassification, 242
multitemporal data
analysis, 204
visualization, 183
mv, 28, 34
national grid systems, 17
NDVI 101, 231
netpbm tools, 62, 67
netscape, 27
network file system, 55
NFS, 55
NHAP images, 208
nodes
vector, 9
noise distribution model, 118
normality tests, 156
North American Datum 1927, 20
North American Datum 1983, 20
NULL, 68, 91, 97-98, 100, 102
filling data holes in a raster maps, 98
nviz, 152, 155, 169, 183-184, 305
controlling light, 188

395

cutting planes, 190
displaying raster maps, 184-185
displaying sites, 188
displaying vector maps, 188
exaggeration, 191
hardware acceleration, 195
key frame animations, 191
map queries, 189
multiple map layers, 184
multiple surfaces, 190
nested grids, 187
polygon resolution, 186
saving settings, 189
screen saving to file, 189
scripting, 194
surface properties, 185
view control, 185
object oriented
GIS, 12
R data analysis software, 333
objects
geometrical, 8
oblique aerial photos, 253
oblique projection, 16
octtrees, 166
ODBC, 10, 306
OGR library, 49
OGR, 50
ogr2ogr, 50
ogrinfo, 50
Open Source software, 1, 327
OpenGL, 195, 273
optimal route, 122
optimum index factor method, 239
orbit, 204
geostationary, 204
polar, 204
order of polynomial, 219
order of transformation, 220
orthophoto, 253
camera definition, 261
elevation model, 261
exposure station parameters, 266
exterior orientation, 264
fiducial marks, 261
generating target LOCATION, 259
generating xy LOCATION, 260
generation, 257, 260
image group, 261
image-to-pholo, 263
interior orientation, 263
ortho-rectification parameters, 264
ortho-rectification, 265
pseudo, 257
target location, 261
true, 257
oversampling, 167

396 OPEN SOURCE GIS

overshoot, 138 Transverse Mercator, 19
parallel processing, 169 transverse, 16
parameter scans, 194 vector map, 48
parser, 279 ps.map, 196
paste, 367 ps.select, 197
patching raster maps, 115 pseudocolor, 211
path radiance, 224 pstoedit, 199
PCT, 231 Public Domain software, 2
PERL, 273, 281, 356 quadtrees, 166
PERMANENT, 26 Quantile-Quantile plot See also R, QQ plots,
permissions 349

file, 275 R data analysis software See also R, 333
PHP, 273, 281 R, 156
pipes, 67, 153 as.factor(), 349
pixel, 9 as.ordered(), 348
plane batch mode, 352

generate, 105 boxplot(), 340
PNG driver See also driver, 181 c(), 348
PNG driver, 181, 199 cbind(), 340, 345, 349
PNG format class(), 335, 345

import, 61, 206 codes(), 348
PNM format colnames(), 349

import, 61 colors, 337
point data model, 10 contour.G(), 337, 350
POINTS file, 216 contributed packages, 334
points, 9, 131 current region, 334

See also sites maps, 8 data(), 344

polygons, 68 data.frame(), 336, 341, 345, 352

vector, 9 demo(), 334
polynomial transformation, 219 density plots, 342
polynomial density(), 342

order, 219 dev.copy2eps(), 338
portability, 271 dev.off(), 338
PostGIS, 21 dim(), 340
PostgreSQL, 10, 69, 281, 306 ecdf(), 341
Postscript output, 196 example(), 335
PPM format for(), 341

export, 67 geoR package, 344
prevention measures factor, 289 gmeta(), 344
prime meridian, 16 help pages, 335
primitives, 68 hist(), 349
Principal Component Transformation history(), 338

See also PCT, 231 identify(), 348

profile curvature, 109 installation, 334
profile, 87 kdc2d.G(), 350
programmer’s manual, 282 kernel density, 349
programming legend(), 348, 350

GRASS, 271 levels(), 348
PROJ4, 46 library(), 335, 344
projection support, 46 locator(), 343
projection transformation, 46 log(), 347, 349
projection 1s(), 337

Lambert Conformal Conic, 19 mean(), 339

map layer, 48 na.omit(), 337

oblique, 16 names(), 336, 346

raster map, 48 no-data values, 337

sites map, 48 par(), 347, 349

INDEX

plot(), 337, 341, 344, 348, 350, 352

plot.geodata(), 345
points(), 346, 350, 352
postscript(), 338
q0. 338
QQ plots, 349
qqline(), 349
qqnorm(),349
quantile(), 346
rast.get(), 336, 341, 346
rast.put(), 346
rm(), 338
round(), 349
rug(), 348
Spearfish examples, 335
str(), 336, 344
summary(), 335
surf.1s(), 335, 337, 352
system(), 336
table(), 339, 348
tapply(), 339, 349
text(), 346, 352
title(), 337, 346, 348, 350
trend surface, 337, 352
trmat.G(), 337, 352
univariate statistics, 336
r.average, 112, 339
r.bilinear, 109
r.buffer, 118
r.cats, 94, 118
r.centroid, 276
r.clump, 96

r.colors, 86, 116, 158, 179, 210-211, 240, 247,

292-293, 299-300, 333
r.composite, 180, 239
r.contour, 107, 146
r.cost, 121, 123
r.cross, 117
r.digit, 250, 269
r.drain, 122
r.fillnulls, 98
r.flow, 125, 290, 293
r.his, 180
r.hydro.CASC2D, 125
rin.arc, 116
r.in.bin, 60, 207
r.in.gdal, 57-59, 207, 216, 281
r.in.poly, 59
rin.tiff, 207
r.info, 30, 90, 92, 166, 211
r.le.patch, 130
r.le.pixel, 130
r.le.setup, 130
r.le.trace, 130
r.line, 106, 132, 146
r.los, 127

397

r.mapcalc, 89, 99, 117, 123, 125, 146, 171, 223,
226, 229, 234, 250, 269, 293, 295, 299-300,

332
command line, 104
MASK, 104, 222
NULL, 102

r.mask, 97, 295

r.median, 113

r.mfilter, 234

r.null, 98, 171

r.out.arc, 83

r.out.ascii, 68

r.out.mpeg, 183

r.out.ppm, 67

r.out.ppm3, 181, 239
r.patch, 115-116

r.poly, 106, 132, 146, 268, 270
r.profile, 88

r.proj, 46, 48, 216

rrandom, 109, 150, 153, 293
r.reclass, 91, 96, 247
r.reclass.area, 93, 270
r.recode, 105, 110

r.report, 88, 94-95, 115, 146, 279, 295-296, 300,

305, 339
r.resample, 110
r.ros, 130
r.sim.water, 125
r.slope.aspect, 226, 290, 305
r.stats, 68, 88, 95-96
r.sun, 126
r.sunmask, 126, 225-226

r.support, 58, 61, 90, 247, 297, 299

r.surf.area, 113

r.surf.contour, 150

r.surf.fractal, 127

r.surf.idw, 108

r.surf.idw2, 108

r.terraflow, 124-125

r.texture, 269

r.thin, 106, 236

r.timestamp, 90

r.to.sites, 108-109, 146, 152

r.topmodel, 125, 130

r.transect, 88

r.univar, 107, 111, 295, 301

r.volume, 113

r.watershed, 124-125

r.what, 87, 224

r3.out.v5d, 195

r3.to.sites, 152

radiometric resolution, 205, 209

radiometric transformations, 231

rainfall factor, 289

raster data model, 8

raster data structure
reorganizing, 58

398

raster data
floating point, 100
integer, 100

interpolation See also interpolation, 108

transformation to sites model, 108
raster formats See also formats, 57
raster formats

ASCII, 57

binary, 57

image, 57
raster image

export, 67

import, 57
raster map types, 54
raster maps

algebra, 99

assigning category labels, 93

assigning new attributes, 94

automated vectorization, 105

binarization, 236

bounding gap free, 66

buffer, 118

color tables, 86

conversion between raster map types, 110

display, 85

filling data holes, 98

floating point, 100, 179

import, 57

legend, 86

managing category labels, 93

mask, 97

metadata, 90

NULL,98

patching, 115

profile, 87

query, 87

reclassification, 91

resampling, 56, 110

resolution, 55

subsets, 88

univariate statistics, 111

value replacement, 111

zoom, 88
raster model, 9
reclassification, 91, 214
reclassified map

raster, 55

vector, 144
region, 55
rejection map, 245
remote sensing

microwave, 201

optical, 201
reprojection, 46
resampling, 56, 110
resolution, 9, 38, 41, 108, 114, 204
Revised Universal Soil Loss Equation, 289

OPEN SOURCE GIS

RGB color composites, 238
RGB color model, 237
RGB, 292
rgb2gifanim, 193
rm, 34
RMS error, 64, 77, 166, 219, 265
roughness penalty
See also surface smoothness, 161
route
optimal, 122
rows, 9
RST interpolation method, 292
RST
smoothing, 293
tension, 293
rug(), 348
RUSLE, 289
RUSLE3D, 289
s.hull, 146
s.in.ascii, 81, 120, 153, 168, 171
s.in.atkisdgm, 81
s.in.dbf, 81
s.in.garmin.sh, 81, 355
s.in.mif, 81
s.in.shape, 81
s.info, 30, 154
s.mask, 155
s.normal, 156
s.out.ascii, 83, 165
s.out.e00, 83
s.perturb, 153
s.proj, 46, 48
s.qcount, 156
s.random, 153
s.sample, 153
s.surf.idw, 160, 167
s.surf.rst, 98, 109, 150, 160, 166, 293
s.surf.rstcv, 166
s.sv, 156
s.to.rast, 83, 157, 169
s.to.rast3, 157, 174
s.to.vect, 199
s.univar, 156
s.vol.idw, 174
s.vol.rst, 160, 166, 172
s.volt.rst, 160, 175
s.voronoi, 158
SAR SLC, 208
satellite data
color composites, 212, 238
contrast enhancement, 210
export, 206
geocoding, 215
geometric preprocessing, 215
groups, 214
image calibration, 222
image fusion, 237

INDEX

import, 206
radiometric preprocessing, 222
rectification, 219
resolution, 204
surface temperature map, 228
thematic reclassification, 242
thermal channel, 228
variances, 232

saturation, 238

scale factor, 16, 19

scale, 8

scanned map, 61
rectification, 65

scanner, 66, 258

scatterplot, 214

script, 274

scripts, 274

SDTS format
export, 79
import, 73

sea level, 15

sed, 158, 273, 367

segmentation
aerial photo, 268

segmented processing, 166

semivariogram model See also variograms,

156

Sequential Maximum A Posteriori classifier

See also SMAP, 244
SGI GL, 195
shade.rel.sh, 180
shadow map, 126
SHAPE format, 27, 356
export, 78
import, 70
shell scripts, 274-275
shell, 273
shoreline data (GSHHS), 77
shortest distances, 120, 122, 154
simple features, 70
simulations, 13
sink filling, 125
site, 10, 151
sites maps
creating subsets, 154
creating, 81
digitizing, 151
export, 83
generating in GRASS, 152
import, 81
managing, 154
spatial interpolation, 157
timestamp, 81
transformation to rasters, 157
univariate statistics, 156
viewing, 154
sites model, 80

skeletonizing raster lines, 105, 236
Skencil, 199

slide.show.sh, 142

slope, 109

SMAP, 244, 251, 268

smoothness seminorm

See also surface smoothness, 161

snapping threshold, 133
soil factor, 289
soil loss
annual, 289
solar energy maps, 126, 317
source code structure, 283
spaghetti maps, 138
spatial analysis, 13
spatial convolution, 234
spatial domain, 233
spatial interpolation, 151
spatial resolution, 205
Spearfish data set, 28, 85, 206, 335
spectral resolution, 205
spectral vector, 243
spectrum
green vegetation, 202
infrared, 201
microwaves, 201
thermal, 201
unvegelated soil, 202
visible, 201
water, 202
sphere, 14
spheroid, 15
splines, 10, 157

See also interpolation, RST, 171

SPOT-1 data, 240
SPOT-1 HRYV images, 208
SPOT-1 PAN image, 208
standard parallel, 16

State Plane Coordinate System, 17, 19, 42

stdout, 67, 79, 88
Stefan-Boltzmannequation, 229
stereo aerial images, 208
subgroup signature, 251
sun illumination, 126, 317
sun position calculation, 126, 226
SUN-raster format

import, 206
surface calculation, 113
surface smoothness, 161
tail, 367
tar, 28, 34
TARGA format

export, 67
Tasseled Cap transformation, 224
teltkgrass, 29, 57, 179, 273
temperature map, 228
terrain effects, 222

399

400

correction, 224
texture, 269
TFW file, 58
thermal radiation, 229
thin flexible plate splines, 160
thinning of raster lines, 236
TIFF format, 207

export, 67

import, 58, 61, 206
time series, 194, 319
timestamps, 90
topographic parameters, 109
topology, 10, 131, 133
training areas, 244, 249, 251, 268

generating from auxiliary maps, 250

training map, 248
transect, 87
translucent map, 180
Transverse Mercator, 19
transverse projection, 16
trend analysis, 352
trend surface, 352
true map scale, 16
undershoot, 138
UNGENERATE format
export, 79
import, 72
univariate statistics, 156
Universal Soil Loss Equation, 289
Universal Transverse Mercator
17
UNIX
piping See also pipes, 67
UPS, 18
upslope contributing area, 291
USGS DOQ format
import, 60
USGS SDTS format
import, 61
USLE, 289
C factor, 296
K factor, 296
LS factor. 290
P factor, 297
R factor, 296
USLE3D, 289
UTM, 17-18,47
v.alabel, 75, 141
v.area, 142
v.area2line, 147
v.clean, 139
v.cutregion.sh, 143
v.cutter, 143
v.digit, 140-141, 144, 151, 250, 269
contour lines, 137
digitizing, 133
map scale, 73

OPEN SOURCE GIS

metadata screen, 133, 140
nodes snapping, 136

raster map in background, 134

v.distance, 154
v.extract, 145, 250
v.in.arc, 72

v.in.ascii, 73, 76-77, 171
v.in.dxf, 74, 76
v.in.dxf3d, 74-75
v.in.dxf3d.sh, 75
v.in.garmin.sh, 81, 355
v.in.gshhs, 77
v.in.shape, 27

v.info, 30, 79, 140, 142, 145
v.line2area, 75

v.llabel, 141, 147
v.out.arc, 79

v.out.ascii, 79

v.out.dxf, 80

v.out.e00, 79

v.out.sdts, 79
v.out.shape, 78, 199
v.out.xfig, 199

v.patch, 142

v.proj, 46, 48

v.prune, 139

v.reclass, 144

v.report, 141-142, 145, 270
v.sdts.meta, 79

v.spag, 138

v.support, 70, 73-77, 106, 138, 140, 145, 158, 171,

270, 305
v.surf.rst, 149-150

v.to.rast, 120, 147, 150, 158, 171, 250, 269, 305

v.to.sites, 146, 150, 152-153
v.transform, 77
v.what, 142
variograms, 328
vector data
digitizing, 131
vector maps
topology, 69
area sizes, 142
areas, 68
ASCII formal, 70, 75
attribute data, 69
binary format, 70
centroid, 68
clipping, 142
common boundaries, 133

convering to raster model, 147, 150
digitizing See also vectorization, 133

dissolve, 145

feature extraction, 145
intersecting, 142
islands, 69

label point, 69

viewshed
vis5d, 195

INDEX

line length, 142
lines, 68
map scale, 136
metadata, 140
nodes, 69
polylines, 68
querying, 142
reclassification, 144
sites, 68
snapping of nodes, 136
snapping, 133
topology, 70, 131
building, 72
vertices, 69

vector model, 8-9
vectorization

automated, 105
vegetation index, 101, 231

vertical aerial photos, 253
vertices

vector, 9

visual analysis, 177, 184

visualization, 13, 177
in 2D See also d.rast and

177

See also line of sight, 127

in 3D, 184

multiple map layers, 184
multitemporal data, 183, 191

parameter scans, 183

vis5d, 195

volume-temporal, 195
volume calculation, 113
volume

3D queries, 195

3D raster, 152

curvatures, 175

data export, 195

gradients, 175

volume-temporal interpolation, 174

voronoi polygons, 157
voxel, 9, 174

watershed analysis, 123, 312

wildcards, 32, 183
WIND file, 26
wxPython, 273
xfig, 198

xganim, 183
XML, 273

xv, 62

xy location, 66

See also location, create xy, 62

zoom, 88, 141
nviz, 185

401

About the Authors

Markus Neteler, researcher at Centro per la Ricerca Scientifica e Tecno-
logica (ITC-irst), Interactive Sensory Systems Division, Predictive Models for
Biological & Environmental Data Analysis, Trento, Italy.

Helena Mitasova, adjunct associate professor and National Research Coun-
cil senior research fellow at the Department of Marine, Earth and Atmospheric
Sciences, North Carolina State University, Raleigh, U.S.A.

	portada.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	Binder2.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf

	libro2.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf

	Binder2.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf

	Binder3.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf

	Binder4.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf

	Binder5.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	456.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf
	50.pdf
	51.pdf
	52.pdf
	53.pdf
	54.pdf
	55.pdf
	56.pdf
	57.pdf
	58.pdf
	59.pdf
	60.pdf
	61.pdf
	62.pdf
	63.pdf
	64.pdf
	65.pdf
	66.pdf
	67.pdf
	68.pdf
	69.pdf
	70.pdf
	71.pdf
	72.pdf
	73.pdf
	74.pdf
	75.pdf

	Binder1.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf
	50.pdf
	51.pdf
	52.pdf
	53.pdf
	54.pdf
	55.pdf
	56.pdf
	57.pdf
	58.pdf
	59.pdf
	60.pdf
	61.pdf
	62.pdf
	63.pdf
	64.pdf
	65.pdf
	66.pdf
	67.pdf
	68.pdf
	69.pdf
	70.pdf
	71.pdf
	72.pdf
	73.pdf
	74.pdf
	75.pdf
	76.pdf
	77.pdf
	78.pdf
	79.pdf
	80.pdf
	81.pdf
	82.pdf
	83.pdf
	84.pdf
	85.pdf
	86.pdf
	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf
	94.pdf
	95.pdf
	96.pdf
	97.pdf
	98.pdf
	99.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf

